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Abstract In this paper, we study an important class of (a, 3)-metrics in the form F = (a +
B)™ %! /a™ on an n-dimensional manifold and get the conditions for such metrics to be weakly-
Berwald metrics, where a = /a;;(x)y?y? is a Riemannian metric and 3 = b;(x)y" is a 1-form
and m is a real number with m # —1,0,—1/n. Furthermore, we also prove that this kind of
(a, B)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature.
In this case, S-curvature vanishes and the metric is weakly-Berwald metric.
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1. Introduction

(a, B)-metrics form a very important and rich class of Finsler metrics including Randers
metrics and Riemannian metrics. In the past several years, we witness a rapid development
in Finsler geometry. Various curvatures have been studied and their geometric meanings are
better understood. This is partially due to the study of (a, §)-metrics. Hence, it is worthy of
doing study for such metrics deeply. The important applications of («, 3)-metrics in physics and
biology have been found and studied!!:2:6:8:9],

An («, B)-metric is expressed in the following form

p

F=a¢(s), s= o
where a = y/a;j(x)y'y/ is a Riemannian metric, 3 = b;(z)y" is a 1-form and ¢ = ¢(s) is a C™
positive function on an open interval (—bg, bp). It is known that F' = a¢(5/«a) is a Finsler metric

for any a and 3 with b := ||3;|la < bo if and only if ¢ satisfies the following condition!®!]

B(s) — 58/ (s) + (b* — 52)¢"(s) >0, |s| <b< bg. (1)
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Such metric is called an (o, 8)-metric. If ¢ = 1+ s, one gets a Randers metric.

Let ) )
’f‘ij = i(blb + bj|1'), Sij = i(bzu — bj|1-),

s =a""sm;, 55 :=0bis";

m N X7
j j = b Smj, ’I”j = b Tij;

where “|” denotes the covariant derivative with respect to the Levi-Civita connection of a. We

will denote rgg := rijyiyj, Sg = sjyj, etc.

(3]

Béacsé and Yoshikawa first investigated weadly-Berwald spaces in 2002!%!. The class of weakly-

Berwald metrics is larger than that of Berwald metrics. Let
9" 2 k 2
G' = Z{[F ]zkyly - [F ]zl}

be the geodesic coefficients of a Finsler metric F = F(z,y), where (gi;) = (§[F?,:,:) and
(9"7) == (gij)~". The Berwald tensor B, = B}, (z,y)dz’ ® da* @ da! ® a?ci is defined by

i Faled
ikl = W(%@/)- (2)

Furthermore, the mean Berwald curvature tensor E, = E;;(x,y)dz’ ® da7 is defined by

1 T
Eij = EBijr(Iay)- (3)
For a Finsler metric F' and a volume form dV = o(2)dz on an n-dimensional manifold M, the

S-curvature S is given by
oG" ~0lno

—y 4
ox" 4 ox” (4)
A Finsler metric is called a Berwald metric if the Berwald curvature B = 0. A Finsler metric

S:

is called a weakly-Berwald metric if the mean Berwald curvature E = 0. More general, we have

the following

Definition*?) Let F' be a Finsler metric on an n-dimensional manifold M.
(a) F is of isotropic mean Berwald curvature if

n—+1

E= cF~th;

(b) F is of isotropic S-curvature if
S = (n+1)cF,

where ¢ = ¢(x) is a scalar function on M and h denotes the angular metric tensor of F' which is
defined by hij = F'Fyiy;.

The second author and Shen have proved that, for a Randers metric F' = a+ 3, the following
are equivalent[5]:

(i) S=(n+1)cF;

(ii) E=(n+1)cF 'h;

(iii) 735 + bisj +bjs; = 2c(aq; — bibj),
where ¢ = ¢(z) is scalar function on M. In particular, a Randers metric F' = a + § is a weakly-

Berwald metric if and only if r;; 4+ b;s; + b;s; = 0, which is equivalent to S = 0. On the other
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hand, Yoshikawa, Okubo and Matsumoto proved that!*3l a Matsumoto metric F = o?/(a — 3)
is a weakly-Berwald metric if and only if r;; =0, s; = 0.
The main purpose of this paper is to study and characterize a special class of weakly-Berwald

(o, B)-metrics in the form

m—+1 i
F= %, = \/W7 B =bi(x)y",

where m is an arbitary real number. Obviously, this class of («, 5)-metrics contains Riemannian
metric F' = a (m = —1), Randers metric F' = a+  (m = 0) and the metric F' = % (m=1).
If we substitute § with —f3 and take m = —2, the resulting metric is just Matsumoto metric

F =a2/(a-f).

Theorem 1.1 Let F = (a+ $)™/a™ be an («, 3)-metric on an n-dimensional manifold M,
where m Is a real number with m # —1,0,—1/n. Then F' is weakly-Berwald metric if and only
jfTij = O, S; = 0.

Furthermore, we obtain the following

Theorem 1.2 Let F = (a+ )™ /a™ be an («a, 3)-metric on an n-dimensional manifold M,
where m is a real number with m # —1,0, —1/n. Then the following conditions are equivalent:
(i) F is of isotropic S-curvature, S = (n + 1)cF;
(ii)) F is of isotropic mean Berwald curvature, E = ”THCF_lh;
(iii) B is a Killing 1-form with b = constant with respect to «, that is, r;; =0, s; = 0;
(iv) S=0;
(v) F is weakly-Berwald metric, i.e. E =0,

where ¢ = ¢(x) is a scalar function on M.

2. (a, f)-metric
Let G* and G°, be the spray coefficient of F' and « respectively given by
gl R
G' = I{[FQ]xkylyk - [Fz]xl}v Gfx = Z{[az]xkylyk - [az]zl}v
where (@) := (a;;)~'. We have the following formula for the spray coefficients G* of F:

6,10]

Lemma 2.1! The geodesic coefficients G are related to G°, by

G' =G’ +0{—2Qusy + roo}% + aQsh + ¥{—2Qasg + oo }V', (5)
where G¢, denote the spray coefficients of o and

(¢ — 5¢')¢' — 599"

0=
20((¢ — s¢') + (b* — 52)¢"")’
__¢
R
U= 4

2((¢ = s¢') + (0% — 5%)¢")’
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where s := 3/a, b = || Bzl
It is well known that the condition for a Finsler metric to be weakly-Berwald metric is
= 0. This is equivalent to that N7 := 9G"/Jy" is a 1-form. By Lemma 2.1 and (2), we

have the following

BT‘

Jkr

Lemma 2.2l An (a, §)-metric F = a¢(B3/a) is a weakly-Berwald metric if and only if N7 is
a 1-form.

From Lemma 2.1, we can get

N = Lroo + 2Mry + N s, (6)
where
L:=(n+1)a'e+ qulrbr’
M:=V,
02¥Qa), .\ | 9(aQ) .
N = —{2(TL + 1)@@ + Tyrb } + 8yr 508¢-

Recently, the second author and Z. Shen have obtained a formula for the S-curvature of an

(c, B)-metric on an n-dimensional manifold M as follows

Lemma 2.3 The S-curvature of an («, 3)-metric is given by
S = u(ro + so) + 2(¥ 4+ QC)sp — 2Urg + a ' [(b” — s*)¥' + (n + 1)O]rqp, (7)
where p := —f'(b)/[bf (b)] is a scalar function on M and C := —(b? — s*)¥’ — (n +1)O.

3. Proof of Theorem 1.1

In this section, we consider the («, 3)-metric in the following form:

m—+1
p=CAD _ohs), o= 4smH, s=2 (®)
o o
Let by = bo(m) > 0 be the largest number such that
(1+8)"™ >0, (1+5)(1—ms)+m(m+1)(b*—s%) >0, [s|<b< by, (9)

so that F' = (a+ 3)™"/a™ is a Finsler metric if and only if 3 satisfies that b := ||8z]|a < bo
for any © € M . Tt is easy to see that by = by(m) < 1 for m # —1. Particularly, we have known
that by = 1 as m = 0, 151012 and by = % as m = —27l. In general, for fixed m, we always can
determine by such that (9) holds. For example, when m > 0 and b := ||Gz]|o < min{1,1/m} (9)
holds.

For F = (a+ B)™*!/a™, by Lemmas 2.1 and 2.2 and by using Maple programm, we can
easily get the following

I— (n+1)(m+1)(a —2mp) N
2{[1 + m(m + 1)b?]a® + (1 — m)afB — m(m + 2)5%}
m(m +1)(8% — b2a?)[(1 — m)a — 2m(m + 2)3)

2{[1 +m(m+ 1)b?Ja? + (1 = m)af — m(m + 2)3?}2’
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m(m + 1)a?

2{[1 + m(m + 1)b2]a2 + (1 — m)aB — m(m + 2)32}’

N = —(n+1)(m+1)2a?(a — 2mp) N
(@ =mB){[L +m(m + 1)b?]a? + (1 — m)af —m(m +2)3%}
—m(m + 1)?[1 + m(m + 1)b%a’3

{1 +m(m+1)b%a? + (1 —m)af — m(m + 2)32}2

m+1)2a36%2m?(m + 1)b? + 4n — 2a + 9mf]

(@ =mB)X{[L +m(m + 1)b?Ja? + (1 — m)af —m(m + 2)52}?

m(m + 1)2a2{—4m?(m + 2)8* — b2[m?(m + 1)b + 2n — 1]a*}

AL+ m(m + 1)p%a? + (1 — m)af —m(m + 2)32}?
m(m + 1)2b2a?B[3m?(m + 2) — o]
(@ —mpB)*{[1+m(m +1)b%]a? + (1 — m)aff — m(m + 2)52}2
m(m + 1)a?

(@ —mp)*
Proof of Theorem 1.1 Assume F' is weakly-Berwald metric. Plugging (10) into (6) yields the

M =

(a —mp +

m

)
(

+

(a—m

+

(10)

following equation
Ad® + Ba* + Ca? + D + a(Ea + Fa? + G) =0, (11)
where

A:=2[1+m(m+ 1)V*? N} — 2m(m + 1)[1 + m(m + 1)b*]ro+
2(m+1)[1+m(m~+1)b*{(n+1)(m+ 1) — m[1 + m(m + 1)b*] } so+
2m(m + 1)%b* [m*(m + 1)b* + 2m — 1] so,

B :=2{(1 —m)? +m[1l+m(m+ 1)b*] [2m — 8 + m(1 + m(m + 1)b%)] } BZN +
{4(n+ Dm(m + D[L +m(m + 1)b?] — (n + 1)(1 — m?) — 6m?(m + 1)b?} Broo+
2m*(m 4+ 1){4 — m — m[1 + m(m + 1)b*] } B*ro+
2m(m + 1){2m(mn + 2m + n + 3)[1 + m(m + 1)b*] + 1 — 5m*+
(m+1)[(n+1)(2m — 5) — m?(5m + 8)b*] } 550,

C :=2m*{9 + 2(m +2)[2 — 2m — m(1 + m(m + 1)b*)] } B* N/ +
m?(m+1){2(n + L)m[1 + m(m + 1)b*] + (n + 1)(m — 13)+
6 — 2m?*(m + 2)b%} B*rop — 4m®(m + 1)(m + 2)(2m + n + 2)3*s0,

D :=2m*(m + 2)?B°N — 2nm*(m + 1)(m + 2)3°roo,

E =4[l +m(m + DV’{m[l + m(m + 1)b*] + m — 1} BN+
(m+ 1){(n + D[ +m(m + 1)b*] + m(m — 1)b> }roo—
2m(m + 1){(m — 1) + m[L + m(m + 1)b*] } Bro+
2(m + 1) {(m+ 1)[(m — 1)(n + 1) — 6m>b*]+
m[l 4+ m(m + 1)b%)(3mn + 3n + 4) } Bso,

F={12m(1 — m) — 4m*(m + 5)[1 + m(m + 1)b°] } B> N] +
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m(m+ 1) {dmn+ 1)1 +m(m+ 1)b*] +3(n+1)(m—2) +1—m—
3m®(m + 3)b°} 810 + 2m®(m + 1)(m + 5)F°ro+
2{—(n+1)m*(m +1)*(m + 8) +m*(m +1)(2m + 1)(m + 5)} #*so,
G :=[12m*(m + 2)]B°N; = 3m*(m + 1)(mn + 4n + 1)8*rgo.

By assumption, N is a 1-form. Note that the coefficients of « in (11) must be zero (because

a®’" is a polynomial in y¢). Then (11) is equivalent to the following two equations
Aa® + Ba* + Ca? + D =0, (12)
Ea* 4+ Fo? +G =0. (13)
If m # —2, (12) x 6 subtracting (13) x m(m + 2)8 yields
64a’ + Ha* + Ia? — 3m*(m + 1)(m + 2)(mn + 1) °ro = 0, (14)

where H = 6B —m(m+2)BE, I =6C —m(m+2)GF. Note that m # 0, —1 and —1/n, we know
from (14) that 3%rgo can be divided by a?. Because 3° and o? are relatively prime polynomials

of (y'), there is a scalar function p(x) on M such that
roo = p(x)a?. (15)
Substituting (15) into (13), we get
Ea* + [F —3m3(m + 1)(mn + 4n + 1)p(x)3*]a® = —12m3(m + 2) B°NT.

It is easy to see that the left-hand side of the above equation can be divided by a?. Hence N/

can be divided by o?. However, N is a 1-form. So we obtain
N =0. (16)

By (15), we have

ro = p(x)B. (17)
Plugging (15), (16), (17) into (12) yields

Aot + {B+m*(m+1)[2(n+ 1)m(L + m(m + 1)b%)+
(n+1)(m — 13) + 6 — 2m*(m + 2)b°] p(2)3° }o*
=2m3(m + 1)(m + 2) [2(2m + n + 2)so + nmp(z) 3] .
Since o2 is not divided by 3%, from the above equation, we get
22m +n + 2)so + nmp(z)8 =0,

that is
2(2m+n + 2)s; + nmp(z)b; = 0. (18)

Contracting (18) with b? yields nmp(z)b? = 0. Since m # 0, we obtain p(z) = 0. Thus, from
(15), (17) and (18), we obtain
Too =To = So = 0. (19)
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When m = —2, if we substitute 8 with —3 , the resulting metric is just Matsumoto metric
F = a?/(a — f3). In this case, the result is still truel*?.
Conversely, we suppose that the equations r;; = s; = 0 hold. Then from (6), we have N/ = 0.

This completes the proof. O

4. Proof of Theorem 1.2

For F = M, by Lemma 2.1, we have

©= 1m—+m13’
o= (m+1)(1 —2ms)
C2[L+m(m A+ 1)b2 — (m —1)s — m(m + 2)s?]’
T m(m + 1)
2[4+ m(m+1)b2 — (m —1)s — m(m + 2)s2]’
o - m(m+ 1)[2m(m + 2)s +m — 1] (20)

2[1+m(m+ 1)b2 — (m — 1)s — m(m + 2)s2]2’
Proof of Theorem 1.2 The proof contains the following steps:
Step 1. (i) & (ii). In fact, (i) = (ii) is clearly true. Assume that (ii) holds, which is
equivalent to
S = (n+ 1){cF +n}, (21)
where 7 is a 1-form on M. So (i) is equivalent to (ii) if and only if n = 0. Plugging (20) and (21)
into (7) yields
J6045 + J5Oé4 + J4Oz3 + J3a2 + Joa+ Jq
(Oé +ﬁ)m+1

am ’

= (n+ 1)c[Kea® + Kza' + Kya® + K3a® + Koo + K] (22)

where

Ky = —2m*(m +2)*3°,

Ky := —2m?(m + 2)(m — 4)3%,

K3 :=2m[3m? + 8m — 5+ 2m?*(m + 1)(m + 2)b*]5°,

Ky = —12m[1 — m(m + 1)b*] 5%,

Ky = — 2[m®(m + 1)2b* + 3m — 6 + 2m(m + 1)(2m — 1)b2)3,

Kg :=2[1 + m(m + 1)b%]?,

Ji = —2um®(m + 2)2B8%(so + 10) — 2nm®(m + 1) (m + 2)f*reo+
2(n + 1)gm®(m +2)*5°,

Jo i= —2um?*(m + 2)(m — 4)*(so + o) + m2(m + 1)[(n + 1)(m + 8) — m — 5330+
2(n + L)pm?(m + 2)(m — 4)8*,

Js :=2um[3m? + 8m — 5 + 2m2(m + 1) (m + 2)b%] 5% (so + 70)+
2m2(m + 1)(m + 2)[m — 2n(m + 1)]8%s0 — 2m>(m + 1)(m + 2) 8*ro+
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m[(n+1)(4m —5) —m + 1+ 2m?[(n + 1)(m + 1) — m — 2]b*]|3*rgo—
2(n + V)nm[3m?* 4+ 8m — 5+ 2m*(m + 1)(m + 2)b%) 3%,
Ja :=12pum[1 — m(m + 1)b%|3%(so + o) + 2m(m + 1)[3 — n(m + 1)(m — 4)]3*so+
6m*(m +1)8%ro + (m +1)[m*(m + 5)b* — 3m?(n + 1)(m + 1)b*—
(4m —1)(n + 1)]Broo +12(n + L)nm[1 — m(m + 1)b*]5%,
Js i=[m*(m 4+ 1)%b* — 3m — 6 + 2m(m + 1)(2m — 1)b?|B(s0 + 7o)+
2(m 4+ 1)[n(3m — 1)(m + 1) +m? 4+ 3m — 1 — 2nm?*(m + 1)?b*| Bso+
2m(m + 1)[2m — 1 4+ m2(m + 1)b|Bro + (m + 1)[m(m — 1)b>+
(n+1)(1 +m(m + 1)b*)]roo + 2(n + 1)n[m?(m + 1)*0* 4+ 3m — 6+
+2m(m + 1)(2m — 1)b?]3,
Jo :=2p[1 + m(m + 1)b%]|(so + ro) — 2(m + 1)[n(m + 1)+
1+ (m+ Dn(m+ 1) + m]b?]sg — 2m(m + 1)[1 4+ m(m + 1)b?|ro—
2(n + )n[l + m(m + 1)b?)>.
Rewrite (22) as follows
Q™[ Jea® + Jsat + Jya® + Jza? 4 Jaa + Ji) -
(n+1)c[Kea? + Ks5a® + K4a® + Kza + Kola(a + )"~
(n+ 1)cKq(a+ B)™* = 0. (23)

When m is a positive integer, it is easy to see that the term which does not includ « in (23)
is just —(n + 1)cK; 8™, Because o? is not divided by 3, we get ¢ = 0. So

J6a5 + J5a4 + Juad + J3a2 + oo+ J; = 0.

When m is a non-zero real number but not a positive integer, we know that the left-hand
side of (22) is a polynomial in «, but the the term (a + 8)™*!/a™ is not a polynomial in a.

Hence we also have

J6a5 + J5a4 + Juad + J3a2 + oo+ J; = 0.
Therefore, when m is a non-zero real number, we always have
Jsat 4+ Jsa? + Ji + a(Jsat + Jya? + Jo) = 0. (24)

Note that the coefficients of a in (24) must be zero (because a®’*" is a polynomial in y'). Then

(24) is equivalent to the following two equations
Jsat 4+ Jza? 4+ J; =0, (25)
Jead 4+ Jya? 4+ Jo = 0. (26)
If m # —2, (25) x (m —4) — (26) x m(m + 2)0 yields

Xa* +Ya? = 3m*(m+ 1)(m + 2)(mn + 1) 5*re0 = 0,
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where X = (m —4)J5 — m(m + 2)8Js, Y = (m — 4)J3 — m(m + 2)3Js. Note m # 0,—1 and
—1/n, and #* and o? are relatively prime polynomials of (3%), we know that 799 can be divided

by a?. That is, there is a scalar function 7(z) on M such that
roo = T(x)a’. (27)
Substituting (27) into (25), we get
Jsat + [Js — 2nm®(m + 1) (m + 2)7(2)8']a” 4 2m®(m + 2)*[(n + 1)n — u(s0 +70)]8° = 0. (28)

This implies that [(n+1)n— pu(so+70)]B° can be divided by a?. Because 8° and o? are relatively
prime polynomials of (y%), we know that (n + 1)n — u(sg + o) can be divided by «?, which is
impossible unless

(n+1)n — p(so + o) = 0. (29)

From (27), we have
ro = 7(x)3. (30)
Plugging (27), (29), (30) into (25) yields
Jsa? +m{(n+1)(4m —5) — (m — 1) + 2m*[(n + 1)(m + 1) — (m + 2)]|6*} () 3%
=2m*(m +1)(m + 2){[m — 2n(m + 1)]so — m(n + 1)7(2)3} 3> (31)
Since (4° is not divided by a2, we get
[m — 2n(m + 1)]so — m(n + 1)7(z)3 = 0,
that is,
[m — 2n(m +1)]s; — m(n + 1)7(x)b; = 0. (32)
Contracting (32) with b; yields
—m(n + 1)7(x)b* = 0.
Because b? # 0 and m # 0, 7(x) = 0. From (27), (30) and (32), we obtain
o0 =0, 70 =0, 59 = 0. (33)

Thus, from (29), we obtain = 0.

When m = —2, if we substitute 8 with —3, the resulting metric is just Matsumoto metric
F =a?/(a — f3). In this case, the result is still truel.

Step 2. (ii) = (iii). The proof has been contained in the Step 1.

Step 3. (iii) = (iv). When rgp = 0, sp = 0, by Lemma 2.3, we have S = 0.

Step 4. (iv) = (v). S = 0 implies that F' is of isotropic S-curvature with ¢ = 0. Thus we
obtain E = 0 by the equivalence of (i) and (ii).

Step 5. (v) = (i). E = 0 is equivalent to that F is of isotropic mean Berwald curvature with
¢ = 0, that is, (ii) holds with ¢ = 0. By the equivalence of (i) and (ii), we know that F' has

isotropic S-curvature with ¢ = 0. This completes the proof. O
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