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Abstract In this paper, we study an important class of (α, β)-metrics in the form F = (α +

β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-

Berwald metrics, where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form

and m is a real number with m 6= −1, 0,−1/n. Furthermore, we also prove that this kind of

(α, β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature.

In this case, S-curvature vanishes and the metric is weakly-Berwald metric.

Keywords mean Berwald curvature; weakly-Berwald metric; S-curvature; (α, β)-metric.

Document code A

MR(2000) Subject Classification 53B40; 53C60

Chinese Library Classification O186.1

1. Introduction

(α, β)-metrics form a very important and rich class of Finsler metrics including Randers

metrics and Riemannian metrics. In the past several years, we witness a rapid development

in Finsler geometry. Various curvatures have been studied and their geometric meanings are

better understood. This is partially due to the study of (α, β)-metrics. Hence, it is worthy of

doing study for such metrics deeply. The important applications of (α, β)-metrics in physics and

biology have been found and studied[1,2,6,8,9].

An (α, β)-metric is expressed in the following form

F = αφ(s), s =
β

α
,

where α =
√

aij(x)yiyj is a Riemannian metric, β = bi(x)yi is a 1-form and φ = φ(s) is a C∞

positive function on an open interval (−b0, b0). It is known that F = αφ(β/α) is a Finsler metric

for any α and β with b := ‖βx‖α < b0 if and only if φ satisfies the following condition[6,11]:

φ(s) − sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0. (1)
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Such metric is called an (α, β)-metric. If φ = 1 + s, one gets a Randers metric.

Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

si
j := aimsmj , sj := bis

i
j = bmsmj , rj := birij ,

where “|” denotes the covariant derivative with respect to the Levi-Civita connection of α. We

will denote r00 := rijy
iyj , s0 := sjy

j, etc.

Bácsó and Yoshikawa first investigated weadly-Berwald spaces in 2002[3]. The class of weakly-

Berwald metrics is larger than that of Berwald metrics. Let

Gi =
gil

4
{[F 2]xkylyk − [F 2]xl}

be the geodesic coefficients of a Finsler metric F = F (x, y), where (gij) := (1
2 [F 2]yiyj ) and

(gij) := (gij)
−1. The Berwald tensor By = Bi

jkl(x, y)dxj ⊗ dxk ⊗ dxl ⊗ ∂
∂xi is defined by

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
(x, y). (2)

Furthermore, the mean Berwald curvature tensor Ey = Eij(x, y)dxi ⊗ dxj is defined by

Eij :=
1

2
Br

ijr(x, y). (3)

For a Finsler metric F and a volume form dV = σ(x)dx on an n-dimensional manifold M , the

S-curvature S is given by

S =
∂Gr

∂xr
− yr ∂ lnσ

∂xr
. (4)

A Finsler metric is called a Berwald metric if the Berwald curvature B = 0. A Finsler metric

is called a weakly-Berwald metric if the mean Berwald curvature E = 0. More general, we have

the following

Definition
[12] Let F be a Finsler metric on an n-dimensional manifold M .

(a) F is of isotropic mean Berwald curvature if

E =
n + 1

2
cF−1h;

(b) F is of isotropic S-curvature if

S = (n + 1)cF,

where c = c(x) is a scalar function on M and h denotes the angular metric tensor of F which is

defined by hij = FFyiyj .

The second author and Shen have proved that, for a Randers metric F = α+β, the following

are equivalent[5]:

(i) S = (n + 1)cF ;

(ii) E = (n + 1)cF−1h;

(iii) rij + bisj + bjsi = 2c(aij − bibj),

where c = c(x) is scalar function on M . In particular, a Randers metric F = α + β is a weakly-

Berwald metric if and only if rij + bisj + bjsi = 0, which is equivalent to S = 0. On the other



On a class of weakly-Berwald (α, β)-metrics 229

hand, Yoshikawa, Okubo and Matsumoto proved that[13] a Matsumoto metric F = α2/(α − β)

is a weakly-Berwald metric if and only if rij = 0, si = 0.

The main purpose of this paper is to study and characterize a special class of weakly-Berwald

(α, β)-metrics in the form

F =
(α + β)m+1

αm
, α =

√

aij(x)yiyj , β = bi(x)yi,

where m is an arbitary real number. Obviously, this class of (α, β)-metrics contains Riemannian

metric F = α (m = −1), Randers metric F = α+β (m = 0) and the metric F = (α+β)2

α
(m = 1).

If we substitute β with −β and take m = −2, the resulting metric is just Matsumoto metric

F = α2/(α − β).

Theorem 1.1 Let F = (α + β)m+1/αm be an (α, β)-metric on an n-dimensional manifold M ,

where m is a real number with m 6= −1, 0,−1/n. Then F is weakly-Berwald metric if and only

if rij = 0, si = 0.

Furthermore, we obtain the following

Theorem 1.2 Let F = (α + β)m+1/αm be an (α, β)-metric on an n-dimensional manifold M ,

where m is a real number with m 6= −1, 0,−1/n. Then the following conditions are equivalent:

(i) F is of isotropic S-curvature, S = (n + 1)cF ;

(ii) F is of isotropic mean Berwald curvature, E = n+1
2 cF−1h;

(iii) β is a Killing 1-form with b = constant with respect to α, that is, rij = 0, si = 0;

(iv) S = 0;

(v) F is weakly-Berwald metric, i.e. E = 0,

where c = c(x) is a scalar function on M .

2. (α, β)-metric

Let Gi and Gi
α be the spray coefficient of F and α respectively given by

Gi =
gil

4
{[F 2]xkylyk − [F 2]xl}, Gi

α =
ail

4
{[α2]xkylyk − [α2]xl},

where (aij) := (aij)
−1. We have the following formula for the spray coefficients Gi of F :

Lemma 2.1
[6,10] The geodesic coefficients Gi are related to Gi

α by

Gi = Gi
α + Θ{−2Qαs0 + r00}

yi

α
+ αQsi

0 + Ψ{−2Qαs0 + r00}b
i, (5)

where Gi
α denote the spray coefficients of α and

Θ :=
(φ − sφ′)φ′ − sφφ′′

2φ((φ − sφ′) + (b2 − s2)φ′′)
,

Q :=
φ′

φ − sφ′
,

Ψ :=
φ′′

2((φ − sφ′) + (b2 − s2)φ′′)
,
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where s := β/α, b = ‖βx‖α.

It is well known that the condition for a Finsler metric to be weakly-Berwald metric is

Br
jkr = 0. This is equivalent to that N r

r := ∂Gr/∂yr is a 1-form. By Lemma 2.1 and (2), we

have the following

Lemma 2.2
[13] An (α, β)-metric F = αφ(β/α) is a weakly-Berwald metric if and only if N r

r is

a 1-form.

From Lemma 2.1, we can get

N r
r = Lr00 + 2Mr0 + Ns0, (6)

where

L := (n + 1)α−1Θ +
∂Ψ

∂yr
br,

M := Ψ,

N := −
{

2(n + 1)QΘ +
∂(2ΨQα)

∂yr
br

}

+
∂(αQ)

∂yr
s0s

r
0.

Recently, the second author and Z. Shen have obtained a formula for the S-curvature of an

(α, β)-metric on an n-dimensional manifold M as follows

Lemma 2.3
[4] The S-curvature of an (α, β)-metric is given by

S = µ(r0 + s0) + 2(Ψ + QC)s0 − 2Ψr0 + α−1
[

(b2 − s2)Ψ′ + (n + 1)Θ
]

r00, (7)

where µ := −f ′(b)/[bf(b)] is a scalar function on M and C := −(b2 − s2)Ψ′ − (n + 1)Θ.

3. Proof of Theorem 1.1

In this section, we consider the (α, β)-metric in the following form:

F =
(α + β)m+1

αm
= αφ(s), φ = (1 + s)m+1, s =

β

α
. (8)

Let b0 = b0(m) > 0 be the largest number such that

(1 + s)m+1 > 0, (1 + s)(1 − ms) + m(m + 1)(b2 − s2) > 0, |s| ≤ b < b0, (9)

so that F = (α + β)m+1/αm is a Finsler metric if and only if β satisfies that b := ‖βx‖α < b0

for any x ∈ M . It is easy to see that b0 = b0(m) ≤ 1 for m 6= −1. Particularly, we have known

that b0 = 1 as m = 0, 1[5,10,12] and b0 = 1
2 as m = −2[7]. In general, for fixed m, we always can

determine b0 such that (9) holds. For example, when m > 0 and b := ‖βx‖α < min{1, 1/m} (9)

holds.

For F = (α + β)m+1/αm, by Lemmas 2.1 and 2.2 and by using Maple programm, we can

easily get the following

L =
(n + 1)(m + 1)(α − 2mβ)

2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}
+

m(m + 1)(β2 − b2α2)[(1 − m)α − 2m(m + 2)β]

2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}2
,
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M =
m(m + 1)α2

2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}
,

N =
−(n + 1)(m + 1)2α2(α − 2mβ)

(α − mβ){[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}
+

−m(m + 1)2[1 + m(m + 1)b2]α5β

(α − mβ)2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}2
+

m(m + 1)2α3β2[2m2(m + 1)b2 + 4n − 2α + 9mβ]

(α − mβ)2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}2
+

m(m + 1)2α2{−4m2(m + 2)β4 − b2[m2(m + 1)b2 + 2n − 1]α4}

(α − mβ)2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}2
+

m(m + 1)2b2α4β[3m2(m + 2)β − α]

(α − mβ)2{[1 + m(m + 1)b2]α2 + (1 − m)αβ − m(m + 2)β2}2
+

m(m + 1)α2

(α − mβ)2
. (10)

Proof of Theorem 1.1 Assume F is weakly-Berwald metric. Plugging (10) into (6) yields the

following equation

Aα6 + Bα4 + Cα2 + D + α(Eα4 + Fα2 + G) = 0, (11)

where

A :=2
[

1 + m(m + 1)b2]2N r
r − 2m(m + 1)[1 + m(m + 1)b2

]

r0+

2(m + 1)
[

1 + m(m + 1)b2
]{

(n + 1)(m + 1) − m[1 + m(m + 1)b2]
}

s0+

2m(m + 1)2b2
[

m2(m + 1)b2 + 2m − 1
]

s0,

B :=2
{

(1 − m)2 + m
[

1 + m(m + 1)b2
][

2m − 8 + m(1 + m(m + 1)b2)
]}

β2N r
r +

{4(n + 1)m(m + 1)[1 + m(m + 1)b2] − (n + 1)(1 − m2) − 6m2(m + 1)b2}βr00+

2m2(m + 1)
{

4 − m − m[1 + m(m + 1)b2]
}

β2r0+

2m(m + 1)
{

2m(mn + 2m + n + 3)[1 + m(m + 1)b2] + 1 − 5m2+

(m + 1)
[

(n + 1)(2m − 5) − m2(5m + 8)b2
]}

β2s0,

C :=2m2
{

9 + 2(m + 2)[2 − 2m− m
(

1 + m(m + 1)b2
)

]
}

β4N r
r +

m2(m + 1)
{

2(n + 1)m[1 + m(m + 1)b2] + (n + 1)(m − 13)+

6 − 2m2(m + 2)b2
}

β3r00 − 4m3(m + 1)(m + 2)(2m + n + 2)β4s0,

D :=2m4(m + 2)2β6N r
r − 2nm4(m + 1)(m + 2)β5r00,

E :=4[1 + m(m + 1)b2]
{

m[1 + m(m + 1)b2] + m − 1
}

βN r
r +

(m + 1)
{

(n + 1)[1 + m(m + 1)b2] + m(m − 1)b2
}

r00−

2m(m + 1)
{

(m − 1) + m[1 + m(m + 1)b2]
}

βr0+

2(m + 1)
{

(m + 1)[(m − 1)(n + 1) − 6m2b2]+

m[1 + m(m + 1)b2](3mn + 3n + 4)
}

βs0,

F :=
{

12m(1 − m) − 4m2(m + 5)[1 + m(m + 1)b2]
}

β3N r
r +
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m(m + 1){5m(n + 1)[1 + m(m + 1)b2] + 3(n + 1)(m − 2) + 1 − m−

3m2(m + 3)b2}β2r00 + 2m3(m + 1)(m + 5)β3r0+

2{−(n + 1)m2(m + 1)2(m + 8) + m2(m + 1)(2m + 1)(m + 5)}β3s0,

G :=
[

12m3(m + 2)
]

β5N r
r − 3m3(m + 1)(mn + 4n + 1)β4r00.

By assumption, N r
r is a 1-form. Note that the coefficients of α in (11) must be zero (because

αeven is a polynomial in yi). Then (11) is equivalent to the following two equations

Aα6 + Bα4 + Cα2 + D = 0, (12)

Eα4 + Fα2 + G = 0. (13)

If m 6= −2, (12) × 6 subtracting (13) × m(m + 2)β yields

6Aα6 + Hα4 + Iα2 − 3m4(m + 1)(m + 2)(mn + 1)β5r00 = 0, (14)

where H = 6B−m(m+2)βE, I = 6C −m(m+2)βF . Note that m 6= 0,−1 and −1/n, we know

from (14) that β5r00 can be divided by α2. Because β5 and α2 are relatively prime polynomials

of (yi), there is a scalar function ρ(x) on M such that

r00 = ρ(x)α2. (15)

Substituting (15) into (13), we get

Eα4 + [F − 3m3(m + 1)(mn + 4n + 1)ρ(x)β4]α2 = −12m3(m + 2)β5N r
r .

It is easy to see that the left-hand side of the above equation can be divided by α2. Hence N r
r

can be divided by α2. However, N r
r is a 1-form. So we obtain

N r
r = 0. (16)

By (15), we have

r0 = ρ(x)β. (17)

Plugging (15), (16), (17) into (12) yields

Aα4 +
{

B + m2(m + 1)
[

2(n + 1)m
(

1 + m(m + 1)b2
)

+

(n + 1)(m − 13) + 6 − 2m2(m + 2)b2
]

ρ(x)β3
}

α2

= 2m3(m + 1)(m + 2)
[

2(2m + n + 2)s0 + nmρ(x)β
]

β4.

Since α2 is not divided by β4, from the above equation, we get

2(2m + n + 2)s0 + nmρ(x)β = 0,

that is

2(2m + n + 2)si + nmρ(x)bi = 0. (18)

Contracting (18) with bi yields nmρ(x)b2 = 0. Since m 6= 0, we obtain ρ(x) = 0. Thus, from

(15), (17) and (18), we obtain

r00 = r0 = s0 = 0. (19)
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When m = −2, if we substitute β with −β , the resulting metric is just Matsumoto metric

F = α2/(α − β). In this case, the result is still true[13].

Conversely, we suppose that the equations rij = si = 0 hold. Then from (6), we have N r
r = 0.

This completes the proof. 2

4. Proof of Theorem 1.2

For F = (α+β)m+1

αm , by Lemma 2.1, we have

Q =
m + 1

1 − ms
,

Θ =
(m + 1)(1 − 2ms)

2[1 + m(m + 1)b2 − (m − 1)s − m(m + 2)s2]
,

Ψ =
m(m + 1)

2[1 + m(m + 1)b2 − (m − 1)s − m(m + 2)s2]
,

Ψ′ =
m(m + 1)[2m(m + 2)s + m − 1]

2[1 + m(m + 1)b2 − (m − 1)s − m(m + 2)s2]2
. (20)

Proof of Theorem 1.2 The proof contains the following steps:

Step 1. (i) ⇔ (ii). In fact, (i) ⇒ (ii) is clearly true. Assume that (ii) holds, which is

equivalent to

S = (n + 1){cF + η}, (21)

where η is a 1-form on M . So (i) is equivalent to (ii) if and only if η = 0. Plugging (20) and (21)

into (7) yields

J6α
5 + J5α

4 + J4α
3 + J3α

2 + J2α + J1

= (n + 1)c[K6α
5 + K5α

4 + K4α
3 + K3α

2 + K2α + K1]
(α + β)m+1

αm
, (22)

where

K1 := − 2m3(m + 2)2β5,

K2 := − 2m2(m + 2)(m − 4)β4,

K3 :=2m[3m2 + 8m − 5 + 2m2(m + 1)(m + 2)b2]β3,

K4 := − 12m[1 − m(m + 1)b2]β2,

K5 := − 2[m3(m + 1)2b4 + 3m − 6 + 2m(m + 1)(2m − 1)b2]β,

K6 :=2[1 + m(m + 1)b2]2,

J1 := − 2µm3(m + 2)2β5(s0 + r0) − 2nm3(m + 1)(m + 2)β4r00+

2(n + 1)ηm3(m + 2)2β5,

J2 := − 2µm2(m + 2)(m − 4)β4(s0 + r0) + m2(m + 1)[(n + 1)(m + 8) − m − 5]β3r00+

2(n + 1)ηm2(m + 2)(m − 4)β4,

J3 :=2µm[3m2 + 8m − 5 + 2m2(m + 1)(m + 2)b2]β3(s0 + r0)+

2m2(m + 1)(m + 2)[m − 2n(m + 1)]β3s0 − 2m3(m + 1)(m + 2)β3r0+
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m[(n + 1)(4m − 5) − m + 1 + 2m2[(n + 1)(m + 1) − m − 2]b2]β2r00−

2(n + 1)ηm[3m2 + 8m − 5 + 2m2(m + 1)(m + 2)b2]β3,

J4 :=12µm[1− m(m + 1)b2]β2(s0 + r0) + 2m(m + 1)[3 − n(m + 1)(m − 4)]β2s0+

6m2(m + 1)β2r0 + (m + 1)[m2(m + 5)b2 − 3m2(n + 1)(m + 1)b2−

(4m − 1)(n + 1)]βr00 + 12(n + 1)ηm[1 − m(m + 1)b2]β2,

J5 :=[m3(m + 1)2b4 − 3m − 6 + 2m(m + 1)(2m − 1)b2]β(s0 + r0)+

2(m + 1)[n(3m − 1)(m + 1) + m2 + 3m − 1 − 2nm2(m + 1)2b2]βs0+

2m(m + 1)[2m− 1 + m2(m + 1)b2]βr0 + (m + 1)[m(m − 1)b2+

(n + 1)(1 + m(m + 1)b2)]r00 + 2(n + 1)η[m3(m + 1)2b4 + 3m − 6+

+ 2m(m + 1)(2m − 1)b2]β,

J6 :=2µ[1 + m(m + 1)b2](s0 + r0) − 2(m + 1)[n(m + 1)+

1 + (m + 1)[n(m + 1) + m]b2]s0 − 2m(m + 1)[1 + m(m + 1)b2]r0−

2(n + 1)η[1 + m(m + 1)b2]2.

Rewrite (22) as follows

αm[J6α
5 + J5α

4 + J4α
3 + J3α

2 + J2α + J1]−

(n + 1)c[K6α
4 + K5α

3 + K4α
2 + K3α + K2]α(α + β)m+1−

(n + 1)cK1(α + β)m+1 = 0. (23)

When m is a positive integer, it is easy to see that the term which does not includ α in (23)

is just −(n + 1)cK1β
m+1. Because α2 is not divided by β, we get c = 0. So

J6α
5 + J5α

4 + J4α
3 + J3α

2 + J2α + J1 = 0.

When m is a non-zero real number but not a positive integer, we know that the left-hand

side of (22) is a polynomial in α, but the the term (α + β)m+1/αm is not a polynomial in α.

Hence we also have

J6α
5 + J5α

4 + J4α
3 + J3α

2 + J2α + J1 = 0.

Therefore, when m is a non-zero real number, we always have

J5α
4 + J3α

2 + J1 + α(J6α
4 + J4α

2 + J2) = 0. (24)

Note that the coefficients of α in (24) must be zero (because αeven is a polynomial in yi). Then

(24) is equivalent to the following two equations

J5α
4 + J3α

2 + J1 = 0, (25)

J6α
4 + J4α

2 + J2 = 0. (26)

If m 6= −2, (25) × (m − 4) − (26) × m(m + 2)β yields

Xα4 + Y α2 − 3m3(m + 1)(m + 2)(mn + 1)β4r00 = 0,
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where X = (m − 4)J5 − m(m + 2)βJ6, Y = (m − 4)J3 − m(m + 2)βJ4. Note m 6= 0,−1 and

−1/n, and β4 and α2 are relatively prime polynomials of (yi), we know that r00 can be divided

by α2. That is, there is a scalar function τ(x) on M such that

r00 = τ(x)α2. (27)

Substituting (27) into (25), we get

J5α
4 + [J3 − 2nm3(m + 1)(m + 2)τ(x)β4]α2 + 2m3(m + 2)2[(n + 1)η − µ(s0 + r0)]β

5 = 0. (28)

This implies that [(n+1)η−µ(s0+r0)]β
5 can be divided by α2. Because β5 and α2 are relatively

prime polynomials of (yi), we know that (n + 1)η − µ(s0 + r0) can be divided by α2, which is

impossible unless

(n + 1)η − µ(s0 + r0) = 0. (29)

From (27), we have

r0 = τ(x)β. (30)

Plugging (27), (29), (30) into (25) yields

J5α
2 + m

{

(n + 1)(4m − 5) − (m − 1) + 2m2
[

(n + 1)(m + 1) − (m + 2)
]

b2
}

τ(x)β2α2

= 2m2(m + 1)(m + 2)
{

[m − 2n(m + 1)]s0 − m(n + 1)τ(x)β
}

β3. (31)

Since β3 is not divided by α2, we get

[m − 2n(m + 1)]s0 − m(n + 1)τ(x)β = 0,

that is,

[m − 2n(m + 1)]si − m(n + 1)τ(x)bi = 0. (32)

Contracting (32) with bi yields

−m(n + 1)τ(x)b2 = 0.

Because b2 6= 0 and m 6= 0, τ(x) = 0. From (27), (30) and (32), we obtain

r00 = 0, r0 = 0, s0 = 0. (33)

Thus, from (29), we obtain η = 0.

When m = −2, if we substitute β with −β, the resulting metric is just Matsumoto metric

F = α2/(α − β). In this case, the result is still true[4].

Step 2. (ii) ⇒ (iii). The proof has been contained in the Step 1.

Step 3. (iii) ⇒ (iv). When r00 = 0, s0 = 0, by Lemma 2.3, we have S = 0.

Step 4. (iv) ⇒ (v). S = 0 implies that F is of isotropic S-curvature with c = 0. Thus we

obtain E = 0 by the equivalence of (i) and (ii).

Step 5. (v) ⇒ (i). E = 0 is equivalent to that F is of isotropic mean Berwald curvature with

c = 0, that is, (ii) holds with c = 0. By the equivalence of (i) and (ii), we know that F has

isotropic S-curvature with c = 0. This completes the proof. 2
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