On a Class of Weakly-Berwald (α, β)-Metrics

XIANG Chun Huan ${ }^{1}$, CHENG Xin Yue ${ }^{2}$
(1. School of Mathematics and Statistics, Chongqing University of Arts and Sciences, Chongqing 402160, China;
2. School of Mathematics and Physics, Chongqing Institute of Technology, Chongqing 400050, China)
(E-mail: xiangch99@yahoo.com.cn)

Abstract

In this paper, we study an important class of (α, β)-metrics in the form $F=(\alpha+$ $\beta)^{m+1} / \alpha^{m}$ on an n-dimensional manifold and get the conditions for such metrics to be weaklyBerwald metrics, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form and m is a real number with $m \neq-1,0,-1 / n$. Furthermore, we also prove that this kind of (α, β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.

Keywords mean Berwald curvature; weakly-Berwald metric; S-curvature; (α, β)-metric.
Document code A
MR(2000) Subject Classification 53B40; 53C60
Chinese Library Classification O186.1

1. Introduction

(α, β)-metrics form a very important and rich class of Finsler metrics including Randers metrics and Riemannian metrics. In the past several years, we witness a rapid development in Finsler geometry. Various curvatures have been studied and their geometric meanings are better understood. This is partially due to the study of (α, β)-metrics. Hence, it is worthy of doing study for such metrics deeply. The important applications of (α, β)-metrics in physics and biology have been found and studied ${ }^{[1,2,6,8,9]}$.

An (α, β)-metric is expressed in the following form

$$
F=\alpha \phi(s), \quad s=\frac{\beta}{\alpha}
$$

where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric, $\beta=b_{i}(x) y^{i}$ is a 1-form and $\phi=\phi(s)$ is a C^{∞} positive function on an open interval $\left(-b_{0}, b_{0}\right)$. It is known that $F=\alpha \phi(\beta / \alpha)$ is a Finsler metric for any α and β with $b:=\left\|\beta_{x}\right\|_{\alpha}<b_{0}$ if and only if ϕ satisfies the following condition ${ }^{[6,11]}$:

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad|s| \leq b<b_{0} \tag{1}
\end{equation*}
$$

Received date: 2006-11-18; Accepted date: 2007-07-13
Foundation item: the National Natural Science Foundation of China (No. 10671214); the Natural Science Foundation of Chongqing Education Committee (No. KJ080620); the Science Foundation of Chongqing University of Arts and Sciences (No. Z2008SJ14).

Such metric is called an (α, β)-metric. If $\phi=1+s$, one gets a Randers metric.
Let

$$
\begin{gathered}
r_{i j}:=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
s_{j}^{i}:=a^{i m} s_{m j}, \quad s_{j}:=b_{i} s^{i}{ }_{j}=b^{m} s_{m j}, \quad r_{j}:=b^{i} r_{i j}
\end{gathered}
$$

where "|" denotes the covariant derivative with respect to the Levi-Civita connection of α. We will denote $r_{00}:=r_{i j} y^{i} y^{j}, s_{0}:=s_{j} y^{j}$, etc.

Bácsó and Yoshikawa first investigated weadly-Berwald spaces in $2002^{[3]}$. The class of weaklyBerwald metrics is larger than that of Berwald metrics. Let

$$
G^{i}=\frac{g^{i l}}{4}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\}
$$

be the geodesic coefficients of a Finsler metric $F=F(x, y)$, where $\left(g_{i j}\right):=\left(\frac{1}{2}\left[F^{2}\right]_{y^{i} y^{j}}\right)$ and $\left(g^{i j}\right):=\left(g_{i j}\right)^{-1}$. The Berwald tensor $\mathbf{B}_{y}=B_{j k l}^{i}(x, y) \mathrm{d} x^{j} \otimes \mathrm{~d} x^{k} \otimes \mathrm{~d} x^{l} \otimes \frac{\partial}{\partial x^{i}}$ is defined by

$$
\begin{equation*}
B_{j k l}^{i}:=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}(x, y) \tag{2}
\end{equation*}
$$

Furthermore, the mean Berwald curvature tensor $\mathbf{E}_{y}=E_{i j}(x, y) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}$ is defined by

$$
\begin{equation*}
E_{i j}:=\frac{1}{2} B_{i j r}^{r}(x, y) \tag{3}
\end{equation*}
$$

For a Finsler metric F and a volume form $\mathrm{d} V=\sigma(x) \mathrm{d} x$ on an n-dimensional manifold M, the S-curvature \mathbf{S} is given by

$$
\begin{equation*}
\mathbf{S}=\frac{\partial G^{r}}{\partial x^{r}}-y^{r} \frac{\partial \ln \sigma}{\partial x^{r}} \tag{4}
\end{equation*}
$$

A Finsler metric is called a Berwald metric if the Berwald curvature $\mathbf{B}=0$. A Finsler metric is called a weakly-Berwald metric if the mean Berwald curvature $\mathbf{E}=0$. More general, we have the following

Definition ${ }^{[12]}$ Let F be a Finsler metric on an n-dimensional manifold M.
(a) F is of isotropic mean Berwald curvature if

$$
\mathbf{E}=\frac{n+1}{2} c F^{-1} h
$$

(b) F is of isotropic S-curvature if

$$
\mathbf{S}=(n+1) c F
$$

where $c=c(x)$ is a scalar function on M and h denotes the angular metric tensor of F which is defined by $h_{i j}=F F_{y^{i} y^{j}}$.

The second author and Shen have proved that, for a Randers metric $F=\alpha+\beta$, the following are equivalent[5]:
(i) $\mathbf{S}=(n+1) c F$;
(ii) $\mathbf{E}=(n+1) c F^{-1} h$;
(iii) $r_{i j}+b_{i} s_{j}+b_{j} s_{i}=2 c\left(a_{i j}-b_{i} b_{j}\right)$,
where $c=c(x)$ is scalar function on M. In particular, a Randers metric $F=\alpha+\beta$ is a weaklyBerwald metric if and only if $r_{i j}+b_{i} s_{j}+b_{j} s_{i}=0$, which is equivalent to $\mathbf{S}=0$. On the other
hand, Yoshikawa, Okubo and Matsumoto proved that ${ }^{[13]}$ a Matsumoto metric $F=\alpha^{2} /(\alpha-\beta)$ is a weakly-Berwald metric if and only if $r_{i j}=0, s_{i}=0$.

The main purpose of this paper is to study and characterize a special class of weakly-Berwald (α, β)-metrics in the form

$$
F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}, \quad \alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}, \quad \beta=b_{i}(x) y^{i}
$$

where m is an arbitary real number. Obviously, this class of (α, β)-metrics contains Riemannian metric $F=\alpha(m=-1)$, Randers metric $F=\alpha+\beta(m=0)$ and the metric $F=\frac{(\alpha+\beta)^{2}}{\alpha}(m=1)$. If we substitute β with $-\beta$ and take $m=-2$, the resulting metric is just Matsumoto metric $F=\alpha^{2} /(\alpha-\beta)$.

Theorem 1.1 Let $F=(\alpha+\beta)^{m+1} / \alpha^{m}$ be an (α, β)-metric on an n-dimensional manifold M, where m is a real number with $m \neq-1,0,-1 / n$. Then F is weakly-Berwald metric if and only if $r_{i j}=0, s_{i}=0$.

Furthermore, we obtain the following
Theorem 1.2 Let $F=(\alpha+\beta)^{m+1} / \alpha^{m}$ be an (α, β)-metric on an n-dimensional manifold M, where m is a real number with $m \neq-1,0,-1 / n$. Then the following conditions are equivalent:
(i) F is of isotropic S-curvature, $\mathbf{S}=(n+1) c F$;
(ii) F is of isotropic mean Berwald curvature, $\mathbf{E}=\frac{n+1}{2} c F^{-1} h$;
(iii) β is a Killing 1 -form with $b=$ constant with respect to α, that is, $r_{i j}=0, s_{i}=0$;
(iv) $\mathbf{S}=0$;
(v) F is weakly-Berwald metric, i.e. $\mathbf{E}=0$,
where $c=c(x)$ is a scalar function on M.

2. (α, β)-metric

Let G^{i} and G_{α}^{i} be the spray coefficient of F and α respectively given by

$$
G^{i}=\frac{g^{i l}}{4}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\}, \quad G_{\alpha}^{i}=\frac{a^{i l}}{4}\left\{\left[\alpha^{2}\right]_{x^{k} y^{l}} y^{k}-\left[\alpha^{2}\right]_{x^{l}}\right\}
$$

where $\left(a^{i j}\right):=\left(a_{i j}\right)^{-1}$. We have the following formula for the spray coefficients G^{i} of F :
Lemma 2.1 ${ }^{[6,10]}$ The geodesic coefficients G^{i} are related to G_{α}^{i} by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\Theta\left\{-2 Q \alpha s_{0}+r_{00}\right\} \frac{y^{i}}{\alpha}+\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i} \tag{5}
\end{equation*}
$$

where G_{α}^{i} denote the spray coefficients of α and

$$
\begin{aligned}
\Theta & :=\frac{\left(\phi-s \phi^{\prime}\right) \phi^{\prime}-s \phi \phi^{\prime \prime}}{2 \phi\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)}, \\
Q & :=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\Psi & :=\frac{\phi^{\prime \prime}}{2\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)}
\end{aligned}
$$

where $s:=\beta / \alpha, b=\left\|\beta_{x}\right\|_{\alpha}$.
It is well known that the condition for a Finsler metric to be weakly-Berwald metric is $B_{j k r}^{r}=0$. This is equivalent to that $N_{r}^{r}:=\partial G^{r} / \partial y^{r}$ is a 1 -form. By Lemma 2.1 and (2), we have the following

Lemma 2.2 ${ }^{[13]}$ An (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ is a weakly-Berwald metric if and only if N_{r}^{r} is a 1 -form.

From Lemma 2.1, we can get

$$
\begin{equation*}
N_{r}^{r}=L r_{00}+2 M r_{0}+N s_{0}, \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
L & :=(n+1) \alpha^{-1} \Theta+\frac{\partial \Psi}{\partial y^{r}} b^{r}, \\
M & :=\Psi, \\
N & :=-\left\{2(n+1) Q \Theta+\frac{\partial(2 \Psi Q \alpha)}{\partial y^{r}} b^{r}\right\}+\frac{\partial(\alpha Q)}{\partial y^{r}} s_{0} s_{0}^{r} .
\end{aligned}
$$

Recently, the second author and Z. Shen have obtained a formula for the S-curvature of an (α, β)-metric on an n-dimensional manifold M as follows

Lemma 2.3 ${ }^{[4]}$ The S-curvature of an (α, β)-metric is given by

$$
\begin{equation*}
\mathbf{S}=\mu\left(r_{0}+s_{0}\right)+2(\Psi+Q C) s_{0}-2 \Psi r_{0}+\alpha^{-1}\left[\left(b^{2}-s^{2}\right) \Psi^{\prime}+(n+1) \Theta\right] r_{00}, \tag{7}
\end{equation*}
$$

where $\mu:=-f^{\prime}(b) /[b f(b)]$ is a scalar function on M and $C:=-\left(b^{2}-s^{2}\right) \Psi^{\prime}-(n+1) \Theta$.

3. Proof of Theorem 1.1

In this section, we consider the (α, β)-metric in the following form:

$$
\begin{equation*}
F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}=\alpha \phi(s), \quad \phi=(1+s)^{m+1}, \quad s=\frac{\beta}{\alpha} . \tag{8}
\end{equation*}
$$

Let $b_{0}=b_{0}(m)>0$ be the largest number such that

$$
\begin{equation*}
(1+s)^{m+1}>0, \quad(1+s)(1-m s)+m(m+1)\left(b^{2}-s^{2}\right)>0, \quad|s| \leq b<b_{0}, \tag{9}
\end{equation*}
$$

so that $F=(\alpha+\beta)^{m+1} / \alpha^{m}$ is a Finsler metric if and only if β satisfies that $b:=\left\|\beta_{x}\right\|_{\alpha}<b_{0}$ for any $x \in M$. It is easy to see that $b_{0}=b_{0}(m) \leq 1$ for $m \neq-1$. Particularly, we have known that $b_{0}=1$ as $m=0,1^{[5,10,12]}$ and $b_{0}=\frac{1}{2}$ as $m=-2^{[7]}$. In general, for fixed m, we always can determine b_{0} such that (9) holds. For example, when $m>0$ and $b:=\left\|\beta_{x}\right\|_{\alpha}<\min \{1,1 / m\}$ (9) holds.

For $F=(\alpha+\beta)^{m+1} / \alpha^{m}$, by Lemmas 2.1 and 2.2 and by using Maple programm, we can easily get the following

$$
\begin{aligned}
L= & \frac{(n+1)(m+1)(\alpha-2 m \beta)}{2\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}}+ \\
& \frac{m(m+1)\left(\beta^{2}-b^{2} \alpha^{2}\right)[(1-m) \alpha-2 m(m+2) \beta]}{2\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}^{2}},
\end{aligned}
$$

$$
\begin{align*}
M= & \frac{m(m+1) \alpha^{2}}{2\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}}, \\
N= & \frac{-(n+1)(m+1)^{2} \alpha^{2}(\alpha-2 m \beta)}{(\alpha-m \beta)\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}}+ \\
& \frac{-m(m+1)^{2}\left[1+m(m+1) b^{2}\right] \alpha^{5} \beta}{(\alpha-m \beta)^{2}\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}^{2}}+ \\
& \frac{m(m+1)^{2} \alpha^{3} \beta^{2}\left[2 m^{2}(m+1) b^{2}+4 n-2 \alpha+9 m \beta\right]}{(\alpha-m \beta)^{2}\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}^{2}}+ \\
& \frac{m(m+1)^{2} \alpha^{2}\left\{-4 m^{2}(m+2) \beta^{4}-b^{2}\left[m^{2}(m+1) b^{2}+2 n-1\right] \alpha^{4}\right\}}{(\alpha-m \beta)^{2}\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}^{2}}+ \\
& \frac{m(m+1)^{2} b^{2} \alpha^{4} \beta\left[3 m^{2}(m+2) \beta-\alpha\right]}{(\alpha-m \beta)^{2}\left\{\left[1+m(m+1) b^{2}\right] \alpha^{2}+(1-m) \alpha \beta-m(m+2) \beta^{2}\right\}^{2}}+ \\
& \frac{m(m+1) \alpha^{2}}{(\alpha-m \beta)^{2}} . \tag{10}
\end{align*}
$$

Proof of Theorem 1.1 Assume F is weakly-Berwald metric. Plugging (10) into (6) yields the following equation

$$
\begin{equation*}
A \alpha^{6}+B \alpha^{4}+C \alpha^{2}+D+\alpha\left(E \alpha^{4}+F \alpha^{2}+G\right)=0 \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
A:= & 2\left[1+m(m+1) b^{2}\right]^{2} N_{r}^{r}-2 m(m+1)\left[1+m(m+1) b^{2}\right] r_{0}+ \\
& 2(m+1)\left[1+m(m+1) b^{2}\right]\left\{(n+1)(m+1)-m\left[1+m(m+1) b^{2}\right]\right\} s_{0}+ \\
& 2 m(m+1)^{2} b^{2}\left[m^{2}(m+1) b^{2}+2 m-1\right] s_{0}, \\
B:= & 2\left\{(1-m)^{2}+m\left[1+m(m+1) b^{2}\right]\left[2 m-8+m\left(1+m(m+1) b^{2}\right)\right]\right\} \beta^{2} N_{r}^{r}+ \\
& \left\{4(n+1) m(m+1)\left[1+m(m+1) b^{2}\right]-(n+1)\left(1-m^{2}\right)-6 m^{2}(m+1) b^{2}\right\} \beta r_{00}+ \\
& 2 m^{2}(m+1)\left\{4-m-m\left[1+m(m+1) b^{2}\right]\right\} \beta^{2} r_{0}+ \\
& 2 m(m+1)\left\{2 m(m n+2 m+n+3)\left[1+m(m+1) b^{2}\right]+1-5 m^{2}+\right. \\
& \left.(m+1)\left[(n+1)(2 m-5)-m^{2}(5 m+8) b^{2}\right]\right\} \beta^{2} s_{0}, \\
C:= & 2 m^{2}\left\{9+2(m+2)\left[2-2 m-m\left(1+m(m+1) b^{2}\right)\right]\right\} \beta^{4} N_{r}^{r}+ \\
& m^{2}(m+1)\left\{2(n+1) m\left[1+m(m+1) b^{2}\right]+(n+1)(m-13)+\right. \\
& \left.6-2 m^{2}(m+2) b^{2}\right\} \beta^{3} r_{00}-4 m^{3}(m+1)(m+2)(2 m+n+2) \beta^{4} s_{0}, \\
D:= & 2 m^{4}(m+2)^{2} \beta^{6} N_{r}^{r}-2 n m^{4}(m+1)(m+2) \beta^{5} r_{00}, \\
E:= & 4\left[1+m(m+1) b^{2}\right]\left\{m\left[1+m(m+1) b^{2}\right]+m-1\right\} \beta N_{r}^{r}+ \\
& (m+1)\left\{(n+1)\left[1+m(m+1) b^{2}\right]+m(m-1) b^{2}\right\} r_{00}- \\
& 2 m(m+1)\left\{(m-1)+m\left[1+m(m+1) b^{2}\right]\right\} \beta r_{0}+ \\
& 2(m+1)\left\{(m+1)\left[(m-1)(n+1)-6 m^{2} b^{2}\right]+\right. \\
& \left.m\left[1+m(m+1) b^{2}\right](3 m n+3 n+4)\right\} \beta s_{0}, \\
F:= & \left\{12 m(1-m)-4 m^{2}(m+5)\left[1+m(m+1) b^{2}\right]\right\} \beta^{3} N_{r}^{r}+
\end{aligned}
$$

$$
\begin{aligned}
& m(m+1)\left\{5 m(n+1)\left[1+m(m+1) b^{2}\right]+3(n+1)(m-2)+1-m-\right. \\
& \left.3 m^{2}(m+3) b^{2}\right\} \beta^{2} r_{00}+2 m^{3}(m+1)(m+5) \beta^{3} r_{0}+ \\
& 2\left\{-(n+1) m^{2}(m+1)^{2}(m+8)+m^{2}(m+1)(2 m+1)(m+5)\right\} \beta^{3} s_{0}, \\
G:= & {\left[12 m^{3}(m+2)\right] \beta^{5} N_{r}^{r}-3 m^{3}(m+1)(m n+4 n+1) \beta^{4} r_{00} . }
\end{aligned}
$$

By assumption, N_{r}^{r} is a 1 -form. Note that the coefficients of α in (11) must be zero (because $\alpha^{\text {even }}$ is a polynomial in y^{i}). Then (11) is equivalent to the following two equations

$$
\begin{gather*}
A \alpha^{6}+B \alpha^{4}+C \alpha^{2}+D=0 \tag{12}\\
E \alpha^{4}+F \alpha^{2}+G=0 \tag{13}
\end{gather*}
$$

If $m \neq-2,(12) \times 6$ subtracting $(13) \times m(m+2) \beta$ yields

$$
\begin{equation*}
6 A \alpha^{6}+H \alpha^{4}+I \alpha^{2}-3 m^{4}(m+1)(m+2)(m n+1) \beta^{5} r_{00}=0 \tag{14}
\end{equation*}
$$

where $H=6 B-m(m+2) \beta E, I=6 C-m(m+2) \beta F$. Note that $m \neq 0,-1$ and $-1 / n$, we know from (14) that $\beta^{5} r_{00}$ can be divided by α^{2}. Because β^{5} and α^{2} are relatively prime polynomials of $\left(y^{i}\right)$, there is a scalar function $\rho(x)$ on M such that

$$
\begin{equation*}
r_{00}=\rho(x) \alpha^{2} \tag{15}
\end{equation*}
$$

Substituting (15) into (13), we get

$$
E \alpha^{4}+\left[F-3 m^{3}(m+1)(m n+4 n+1) \rho(x) \beta^{4}\right] \alpha^{2}=-12 m^{3}(m+2) \beta^{5} N_{r}^{r}
$$

It is easy to see that the left-hand side of the above equation can be divided by α^{2}. Hence N_{r}^{r} can be divided by α^{2}. However, N_{r}^{r} is a 1 -form. So we obtain

$$
\begin{equation*}
N_{r}^{r}=0 . \tag{16}
\end{equation*}
$$

By (15), we have

$$
\begin{equation*}
r_{0}=\rho(x) \beta \tag{17}
\end{equation*}
$$

Plugging (15), (16), (17) into (12) yields

$$
\begin{aligned}
A \alpha^{4}+ & \left\{B+m^{2}(m+1)\left[2(n+1) m\left(1+m(m+1) b^{2}\right)+\right.\right. \\
& \left.\left.(n+1)(m-13)+6-2 m^{2}(m+2) b^{2}\right] \rho(x) \beta^{3}\right\} \alpha^{2} \\
= & 2 m^{3}(m+1)(m+2)\left[2(2 m+n+2) s_{0}+n m \rho(x) \beta\right] \beta^{4} .
\end{aligned}
$$

Since α^{2} is not divided by β^{4}, from the above equation, we get

$$
2(2 m+n+2) s_{0}+n m \rho(x) \beta=0
$$

that is

$$
\begin{equation*}
2(2 m+n+2) s_{i}+n m \rho(x) b_{i}=0 . \tag{18}
\end{equation*}
$$

Contracting (18) with b^{i} yields $n m \rho(x) b^{2}=0$. Since $m \neq 0$, we obtain $\rho(x)=0$. Thus, from (15), (17) and (18), we obtain

$$
\begin{equation*}
r_{00}=r_{0}=s_{0}=0 \tag{19}
\end{equation*}
$$

When $m=-2$, if we substitute β with $-\beta$, the resulting metric is just Matsumoto metric $F=\alpha^{2} /(\alpha-\beta)$. In this case, the result is still true ${ }^{[13]}$.

Conversely, we suppose that the equations $r_{i j}=s_{i}=0$ hold. Then from (6), we have $N_{r}^{r}=0$. This completes the proof.

4. Proof of Theorem 1.2

For $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$, by Lemma 2.1, we have

$$
\begin{align*}
Q & =\frac{m+1}{1-m s} \\
\Theta & =\frac{(m+1)(1-2 m s)}{2\left[1+m(m+1) b^{2}-(m-1) s-m(m+2) s^{2}\right]} \\
\Psi & =\frac{m(m+1)}{2\left[1+m(m+1) b^{2}-(m-1) s-m(m+2) s^{2}\right]} \\
\Psi^{\prime} & =\frac{m(m+1)[2 m(m+2) s+m-1]}{2\left[1+m(m+1) b^{2}-(m-1) s-m(m+2) s^{2}\right]^{2}} \tag{20}
\end{align*}
$$

Proof of Theorem 1.2 The proof contains the following steps:
Step 1. (i) \Leftrightarrow (ii). In fact, (i) \Rightarrow (ii) is clearly true. Assume that (ii) holds, which is equivalent to

$$
\begin{equation*}
\mathbf{S}=(n+1)\{c F+\eta\} \tag{21}
\end{equation*}
$$

where η is a 1-form on M. So (i) is equivalent to (ii) if and only if $\eta=0$. Plugging (20) and (21) into (7) yields

$$
\begin{align*}
& J_{6} \alpha^{5}+J_{5} \alpha^{4}+J_{4} \alpha^{3}+J_{3} \alpha^{2}+J_{2} \alpha+J_{1} \\
& \quad=(n+1) c\left[K_{6} \alpha^{5}+K_{5} \alpha^{4}+K_{4} \alpha^{3}+K_{3} \alpha^{2}+K_{2} \alpha+K_{1}\right] \frac{(\alpha+\beta)^{m+1}}{\alpha^{m}} \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{1}:=-2 m^{3}(m+2)^{2} \beta^{5}, \\
& K_{2}:=-2 m^{2}(m+2)(m-4) \beta^{4}, \\
& K_{3}:= 2 m\left[3 m^{2}+8 m-5+2 m^{2}(m+1)(m+2) b^{2}\right] \beta^{3}, \\
& K_{4}:=-12 m\left[1-m(m+1) b^{2}\right] \beta^{2}, \\
& K_{5}:=-2\left[m^{3}(m+1)^{2} b^{4}+3 m-6+2 m(m+1)(2 m-1) b^{2}\right] \beta, \\
& K_{6}:=2\left[1+m(m+1) b^{2}\right]^{2}, \\
& J_{1}:=-2 \mu m^{3}(m+2)^{2} \beta^{5}\left(s_{0}+r_{0}\right)-2 n m^{3}(m+1)(m+2) \beta^{4} r_{00}+ \\
& 2(n+1) \eta m^{3}(m+2)^{2} \beta^{5}, \\
& J_{2}:=-2 \mu m^{2}(m+2)(m-4) \beta^{4}\left(s_{0}+r_{0}\right)+m^{2}(m+1)[(n+1)(m+8)-m-5] \beta^{3} r_{00}+ \\
& 2(n+1) \eta m^{2}(m+2)(m-4) \beta^{4}, \\
& J_{3}:= 2 \mu m\left[3 m^{2}+8 m-5+2 m^{2}(m+1)(m+2) b^{2}\right] \beta^{3}\left(s_{0}+r_{0}\right)+ \\
& 2 m^{2}(m+1)(m+2)[m-2 n(m+1)] \beta^{3} s_{0}-2 m^{3}(m+1)(m+2) \beta^{3} r_{0}+
\end{aligned}
$$

$$
\begin{aligned}
& m\left[(n+1)(4 m-5)-m+1+2 m^{2}[(n+1)(m+1)-m-2] b^{2}\right] \beta^{2} r_{00}- \\
& 2(n+1) \eta m\left[3 m^{2}+8 m-5+2 m^{2}(m+1)(m+2) b^{2}\right] \beta^{3}, \\
J_{4}:= & 12 \mu m\left[1-m(m+1) b^{2}\right] \beta^{2}\left(s_{0}+r_{0}\right)+2 m(m+1)[3-n(m+1)(m-4)] \beta^{2} s_{0}+ \\
& 6 m^{2}(m+1) \beta^{2} r_{0}+(m+1)\left[m^{2}(m+5) b^{2}-3 m^{2}(n+1)(m+1) b^{2}-\right. \\
& (4 m-1)(n+1)] \beta r_{00}+12(n+1) \eta m\left[1-m(m+1) b^{2}\right] \beta^{2}, \\
J_{5}:= & \left.m^{3}(m+1)^{2} b^{4}-3 m-6+2 m(m+1)(2 m-1) b^{2}\right] \beta\left(s_{0}+r_{0}\right)+ \\
& 2(m+1)\left[n(3 m-1)(m+1)+m^{2}+3 m-1-2 n m^{2}(m+1)^{2} b^{2}\right] \beta s_{0}+ \\
& 2 m(m+1)\left[2 m-1+m^{2}(m+1) b^{2}\right] \beta r_{0}+(m+1)\left[m(m-1) b^{2}+\right. \\
& \left.(n+1)\left(1+m(m+1) b^{2}\right)\right] r_{00}+2(n+1) \eta\left[m^{3}(m+1)^{2} b^{4}+3 m-6+\right. \\
& \left.+2 m(m+1)(2 m-1) b^{2}\right] \beta, \\
J_{6}:= & 2 \mu\left[1+m(m+1) b^{2}\right]\left(s_{0}+r_{0}\right)-2(m+1)[n(m+1)+ \\
& \left.1+(m+1)[n(m+1)+m] b^{2}\right] s_{0}-2 m(m+1)\left[1+m(m+1) b^{2}\right] r_{0}- \\
& 2(n+1) \eta\left[1+m(m+1) b^{2}\right]^{2} .
\end{aligned}
$$

Rewrite (22) as follows

$$
\begin{align*}
& \alpha^{m}\left[J_{6} \alpha^{5}+J_{5} \alpha^{4}+J_{4} \alpha^{3}+J_{3} \alpha^{2}+J_{2} \alpha+J_{1}\right]- \\
& \quad(n+1) c\left[K_{6} \alpha^{4}+K_{5} \alpha^{3}+K_{4} \alpha^{2}+K_{3} \alpha+K_{2}\right] \alpha(\alpha+\beta)^{m+1}- \\
& \quad(n+1) c K_{1}(\alpha+\beta)^{m+1}=0 . \tag{23}
\end{align*}
$$

When m is a positive integer, it is easy to see that the term which does not includ α in (23) is just $-(n+1) c K_{1} \beta^{m+1}$. Because α^{2} is not divided by β, we get $c=0$. So

$$
J_{6} \alpha^{5}+J_{5} \alpha^{4}+J_{4} \alpha^{3}+J_{3} \alpha^{2}+J_{2} \alpha+J_{1}=0
$$

When m is a non-zero real number but not a positive integer, we know that the left-hand side of (22) is a polynomial in α, but the the term $(\alpha+\beta)^{m+1} / \alpha^{m}$ is not a polynomial in α. Hence we also have

$$
J_{6} \alpha^{5}+J_{5} \alpha^{4}+J_{4} \alpha^{3}+J_{3} \alpha^{2}+J_{2} \alpha+J_{1}=0
$$

Therefore, when m is a non-zero real number, we always have

$$
\begin{equation*}
J_{5} \alpha^{4}+J_{3} \alpha^{2}+J_{1}+\alpha\left(J_{6} \alpha^{4}+J_{4} \alpha^{2}+J_{2}\right)=0 . \tag{24}
\end{equation*}
$$

Note that the coefficients of α in (24) must be zero (because $\alpha^{\text {even }}$ is a polynomial in y^{i}). Then (24) is equivalent to the following two equations

$$
\begin{align*}
& J_{5} \alpha^{4}+J_{3} \alpha^{2}+J_{1}=0 \tag{25}\\
& J_{6} \alpha^{4}+J_{4} \alpha^{2}+J_{2}=0 \tag{26}
\end{align*}
$$

If $m \neq-2,(25) \times(m-4)-(26) \times m(m+2) \beta$ yields

$$
X \alpha^{4}+Y \alpha^{2}-3 m^{3}(m+1)(m+2)(m n+1) \beta^{4} r_{00}=0
$$

where $X=(m-4) J_{5}-m(m+2) \beta J_{6}, Y=(m-4) J_{3}-m(m+2) \beta J_{4}$. Note $m \neq 0,-1$ and $-1 / n$, and β^{4} and α^{2} are relatively prime polynomials of $\left(y^{i}\right)$, we know that r_{00} can be divided by α^{2}. That is, there is a scalar function $\tau(x)$ on M such that

$$
\begin{equation*}
r_{00}=\tau(x) \alpha^{2} \tag{27}
\end{equation*}
$$

Substituting (27) into (25), we get

$$
\begin{equation*}
J_{5} \alpha^{4}+\left[J_{3}-2 n m^{3}(m+1)(m+2) \tau(x) \beta^{4}\right] \alpha^{2}+2 m^{3}(m+2)^{2}\left[(n+1) \eta-\mu\left(s_{0}+r_{0}\right)\right] \beta^{5}=0 \tag{28}
\end{equation*}
$$

This implies that $\left[(n+1) \eta-\mu\left(s_{0}+r_{0}\right)\right] \beta^{5}$ can be divided by α^{2}. Because β^{5} and α^{2} are relatively prime polynomials of $\left(y^{i}\right)$, we know that $(n+1) \eta-\mu\left(s_{0}+r_{0}\right)$ can be divided by α^{2}, which is impossible unless

$$
\begin{equation*}
(n+1) \eta-\mu\left(s_{0}+r_{0}\right)=0 \tag{29}
\end{equation*}
$$

From (27), we have

$$
\begin{equation*}
r_{0}=\tau(x) \beta \tag{30}
\end{equation*}
$$

Plugging (27), (29), (30) into (25) yields

$$
\begin{align*}
& J_{5} \alpha^{2}+m\left\{(n+1)(4 m-5)-(m-1)+2 m^{2}[(n+1)(m+1)-(m+2)] b^{2}\right\} \tau(x) \beta^{2} \alpha^{2} \\
& \quad=2 m^{2}(m+1)(m+2)\left\{[m-2 n(m+1)] s_{0}-m(n+1) \tau(x) \beta\right\} \beta^{3} . \tag{31}
\end{align*}
$$

Since β^{3} is not divided by α^{2}, we get

$$
[m-2 n(m+1)] s_{0}-m(n+1) \tau(x) \beta=0
$$

that is,

$$
\begin{equation*}
[m-2 n(m+1)] s_{i}-m(n+1) \tau(x) b_{i}=0 \tag{32}
\end{equation*}
$$

Contracting (32) with b_{i} yields

$$
-m(n+1) \tau(x) b^{2}=0
$$

Because $b^{2} \neq 0$ and $m \neq 0, \tau(x)=0$. From (27), (30) and (32), we obtain

$$
\begin{equation*}
r_{00}=0, r_{0}=0, s_{0}=0 \tag{33}
\end{equation*}
$$

Thus, from (29), we obtain $\eta=0$.
When $m=-2$, if we substitute β with $-\beta$, the resulting metric is just Matsumoto metric $F=\alpha^{2} /(\alpha-\beta)$. In this case, the result is still true ${ }^{[4]}$.

Step 2. (ii) \Rightarrow (iii). The proof has been contained in the Step 1.
Step 3. (iii) \Rightarrow (iv). When $r_{00}=0, s_{0}=0$, by Lemma 2.3, we have $\mathbf{S}=0$.
Step 4. (iv) $\Rightarrow(\mathrm{v}) . \quad \mathbf{S}=0$ implies that F is of isotropic S-curvature with $c=0$. Thus we obtain $\mathbf{E}=0$ by the equivalence of (i) and (ii).

Step 5. (v) $\Rightarrow(\mathrm{i}) . \mathbf{E}=0$ is equivalent to that F is of isotropic mean Berwald curvature with $c=0$, that is, (ii) holds with $c=0$. By the equivalence of (i) and (ii), we know that F has isotropic S-curvature with $c=0$. This completes the proof.

References

[1] ANTONELLI P L, MIRON R. Lagrange and Finsler Geometry. Applications to Physics and Biology [M]. Kluwer Acad. Publ., Dordrecht, 1996.
[2] BALAN V, STAVRINOS P C. Finslerian (α, β)-Metrics in Weak Gravitational Models [M]. Kluwer Acad. Publ., Dordrecht, 2003.
[3] BÁCSó S, YOSHIKAWA R. Weakly-Berwald spaces [J]. Publ. Math. Debrecen, 2002, 61(1-2): 219-231.
[4] Cheng Xinyue and Shen Zhongmin. A class of Finsler metics with isotropic S-curvature[J]. Israel J. Math., 2009, 169(1): 317-340.
[5] CHENG Xinyue, SHEN Zhongmin. Randers metrics with special curvature properties [J]. Osaka J. Math., 2003, 40(1): 87-101.
[6] CHERN S S, SHEN Zhongmin. Riemann-Finsler Geometry [M]. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[7] LI Benling. Projectively flat Matsumoto metric and its approximation [J]. Acta Math. Sci. Ser. B Engl. Ed., 2007, 27(4): 781-789.
[8] MATSUMOTO M. On C-reducible Finsler spaces [J]. Tensor (N.S.), 1972, 24: 29-37.
[9] ROMAN M, SHIMADA H, SABĂU V S. On β-change of the Antonelli-Shimada ecological metric [J]. Tensor (N.S.), 2004, 65(1): 65-73.
[10] SHEN Zhongmin, CIVI Y G. On a class of projectively flat metrics with constant flag curvature [J]. Canad. J. Math., 2008, 60(2): 443-456.
[11] Shen Zhongmin. A Sampler of Riemann-Finsler Geometry [M]. Cambridge University Press, Cambridge, 2004.
[12] Shen Zhongmin. Differential Geometry of Spray and Finsler Spaces [M]. Kluwer Acad. Publ., Dordrecht, 2001.
[13] YOSHIKAWA R, OKUBO K, MATSUMOTO M. The conditions for some (α, β)-metric spaces to be weaklyBerwald spaces [J]. Tensor (N.S.), 2004, 65(3): 277-290.

