
Journal of Mathematical Research & Exposition

Mar., 2009, Vol. 29, No. 2, pp. 237–246

DOI:10.3770/j.issn:1000-341X.2009.02.006

Http://jmre.dlut.edu.cn

Triangle Evolution–A Hybrid Heuristic for Global
Optimization

LUO Chang Tong1,2, YU Bo3

(1. Institute of Mathematics, Jilin University, Jilin 130012, China;

2. Jilin Institute of Architecture and Civil Engineering, Jilin 130021, China;

3. Department of Applied Mathematics, Dalian University of Technology,

Liaoning 116024, China)

(E-mail: c.t.luo@163.com)

Abstract This paper presents a hybrid heuristic–triangle evolution (TE) for global optimization.

It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each

individual in current population and attempts to replace it by a new better individual. However,

the way of generating new individuals is different. TE generates new individuals in a Nelder-

Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very

easy to use and efficient for global optimization problems with continuous variables. Moreover, it

requires only one (explicit) control parameter. Numerical results show that the new algorithm is

comparable with DE for low dimensional problems but it outperforms DE for high dimensional

problems.
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1. Introduction

Consider global optimization problem with continuous variables of the form

min
X∈D

f(X) (1)

where D ⊂ Rn and f : D −→ R is of the black-box type, which may be discontinuous.

Direct search optimization algorithm is the first choice for such problems. A typical deter-

minate direct search technique is simplex method which was first introduced by Spendley, Hext

and Himsworth[8]. Nelder and Mead developed a modification to it that allows the procedure

to adjust its search step according to the evaluation result of the new point generated[3]. Press

presented an annealed Nelder and Mead strategy[5]. Evolutionary algorithm (EA) is a family of

stochastic direct search algorithms. Varieties of evolutionary computational models that have

been proposed and studied[11] include: genetic algorithm (GA), evolutionary programming (EP),

evolution strategy (ES), genetic programming (GP), etc. However often the convergence speed

of them is not fast.
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Hybridizing EA with a traditional optimization algorithm is a good way to accelerate the

convergence of original EA. There are two possible ways for designing hybrid algorithm: inter-

weaving EA with traditional algorithm and introducing new operators inspired from traditional

optimization algorithms. Several hybrid methods, such as GPL and simplex-GA[7], have been

developed and show better behavior. GPL, a coupling of real-coded GA and Powell’s method, is

a representative of the first kind of hybridization. In GPL, a Powell’s process for each individual

in the current population is executed using the current individuals as the initial point and, the

individual is replaced by the termination point found by the Powell’s process. In Simplex-GA,

the simplex operators are used as the crossover operator with a given probability. Consequently,

Simplex-GA falls into the second kind of hybridization. Nevertheless, the reliability and the

computing efficiency are not satisfactory yet.

In 1995, Rainer Storn and Kenneth Price broke through the framework of crossover, mutation

and selection, and designed a new effective algorithm–differential evolution (DE)[9,10]. However,

the convergence speed of DE becomes slow as the region of global minimum is approached. Let

the optimization process be divided into two phases, global approach and local improvement.

Then DE is fast in the phase of global approach but slow in the phase of local improvement.

As is known, Nelder-Mead method is good at local searching. So we try to use the idea from

Nelder-Mead method to accelerate the local improvement process of DE. To this end, we use the

evolutionary operators for the explorative (global approach) process and simplex operators for the

exploitative (local improvement) process. However, both interweaving EA with simplex search

and introducing the simplex operators as the crossover operator turned out to be disappointing

to attain an efficient algorithm, and we found that full dimensional simplex operators could slow

down the evolutionary process remarkably.

In this paper, we will present a new heuristic–triangle evolution. Different from [7], it does not

use full dimensional simplex, and uses 1 or 2 dimensional simplex operators: triangle reflection,

triangle contraction and last struggle as the main search operators in the evolutionary process. It

takes both advantages of strong local search ability of the simplex method and global convergence

of evolutionary algorithms and, since only 1 or 2 dimensional simplex operators are used, the

speed will not be slowed down as in [7].

The rest of this paper is organized as follows: two related algorithms, simplex-GA and DE,

are briefly described in Section 2. In Section 3, our TE algorithm is described in detail and its

relationships with simplex-GA and DE are also analyzed. Numerical experiments are presented

in Section 4 and concluding remarks are made in Section 5.

2. Brief overviews of relevant algorithms

2.1. Simplex-GA method

Simplex-GA is a kind of real-coded evolutionary algorithm proposed by Renders and Bersini[7].

The population size is set to λ · (n + 1). At each iteration (generation), every n + 1 points form

a mating group, and λ mating groups are formed. Each group generates one individual, and the
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λ new indiviudals will replace the λ worst individuals of the current population. Simplex-GA

uses standard ranking selection scheme (proportional) for parents selection. Besides standard

crossover operators (discrete crossover and average crossover), simplex-GA uses simplex crossover

with a given probability Ps. After crossover, standard mutation operator is applied to produce

a new generation.

Simplex crossover used in simplex-GA belongs to standard simplex operators (reflection,

expansion or contraction). Suppose points X1, X2, and X3 form an original simplex, and the

point X1 is the worst point. Point X̄ represents the centroid of X2 and X3. Figure 1(a) illustrates

how a new point is generated with the simplex crossover in R2.
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Figure 1 Generation of a new point in three Algorithms:

(a) Simplex-GA (if simplex crossover is used); (b) DE algorithm; (c) TE algorithm.

2.2. Differential evolution

Differential evolution (DE) was proposed by Storn and Price in 1995. It was proved to be

the fastest evolutionary algorithm among the 1st ICEO conference entries[10]. Some modified

versions of DE have been provided by Kaelo and Ali[1], in which localization techniques are

combined.

DE is a population based algorithm. For each individual Xi(t) (a point in Rn) in current

population ~X(t), DE reproduces a trial point by mutation and crossover. In the mutation phase

DE randomly selects three distinct points Xr1
(t), Xr2

(t), Xr3
(t) from the current population

~X(t). These points should be different from Xi(t). The mutated point Xm(t) is a permutation

of any of three point along the differential variation of the other two: Xm(t) = Xr1
(t) + F ·

(Xr2
(t)−Xr3

(t)), where F is a scaling factor. The trial point X
′

(t) is then generated by crossover
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x′

i,j(t) =

{

xm,j(t), if rand [0, 1) < CR or j = jrand;

xi,j(t), otherwise,
j = 1, 2, . . . , n. The way of generating a

new individual in TE from the i-th individual and three randomly selected individuals is shown

in Figure 1(b). The trial point replaces Xi(t) from the current population if and only if it is not

worse than it.

The outline of the differential evolution algorithm is as follows.

Procedure DE:

Step 1. Input population size N , initial bounds lb, ub, crossover probability CR and crossover

factor F ∈ (0, 1). Set t = 0; Initialize population ~X(0) = {X1(0), X2(0), . . . , XN (0)}, where

Xi(0) = (xi,1(0), xi,2(0), . . . , xi,n(0));

Step 2. Repeat

1) Evaluate ~X(t): Compute f(Xi(t)) for each individual;

2) Reproduce ~X(t): For every i ∈ {1, 2, . . . , N}, randomly generate three mutually different

integers r1, r2, r3 ∈ {1, 2, . . . , N} and jrand ∈ {1, 2, · · · , n}. Let

x′

i,j(t) =











xr1,j(t) + F · (xr2,j(t) − xr3,j(t)), if rand[0, 1) < CR

or j = jrand;

xi,j(t), otherwise.

3) Update ~X(t): Xi(t+1) =

{

X
′

i(t), if f(X
′

i(t)) ≤ f(Xi(t));

Xi(t), otherwise.
until some stopping criterion

is satisfied.

3. Triangle evolution (TE)

Motivated by DE and Simplex-GA, we designed a new real coded evolutionary algorithm–

triangle evolution (TE). As in DE, it targets each individual in current population and attempts

to replace it by a new better individual. But the method of generating a new individual is

different, it generates a new individual with 1 or 2 dimensional simplex operators.

3.1. Evolutionary operators

For each individual in the current population ~X(t), TE selects three mutually different points

(individuals) Xr1
(t), Xr2

(t), Xr3
(t) from ~X(t) to form a 2-simplex (i.e., a triangle). Then the

Nelder-Mead style evolutionary operators are based on this triangle. Let the three individuals

satisfy f(Xr1
(t)) > f(Xr2

(t)) > f(Xr3
(t)). Then the Evolutionary operators introduced in TE

can be described as follows.

1) Triangle reflection. Reflect the worst point across the centroid of the other two, Xreflection =

Xr2
(t) + Xr3

(t) − Xr1
(t).

2) Triangle contraction. Contract to the centroid of the three randmom selected parents,

Xcontraction = 1
3 (Xr1

(t) + Xr2
(t) + Xr3

(t)).
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3) Last struggle. Step towards the best individual or away from the worst individual,

Xstruggle =

{

Xi(t) + 0.618 · (Xr3
(t) − Xi(t)), if f(Xr3

(t)) < f(Xi(t));

Xi(t) + 0.382 · (Xi(t) − Xr1
(t)), else.

For the i-th individual in current population Xi(t), it has two chances to improve. The

first chance is provided by triangle reflection. If the reflection point Xreflection is better than

Xi(t), then Xi(t) is replaced by Xreflection, thus Xi(t) gets improved. If the reflection is not

successful, the i-th individual Xi(t) failed to get improved by the reflection operator, then triangle

contraction is used trying to improve Xi(t). If the contraction point Xcontraction is better than

Xi(t), then Xi(t) is replaced by Xcontraction. If the i-th individual Xi(t) lost the previous

two chances and it cannot receive average profit, that is, its function value is no less than the

average value of the current population, it will take its last struggle, and Xi(t) will be replaced

by the struggle point Xstruggle, regardless of their function values. Usually, not all of the three

operators take effect to generate an acceptable new trial. In fact, the triangle contraction takes

effect only if the triangle reflection failed to improve the quality of the i-th individual Xi(t),

and the last struggle takes effect only if the triangle reflection failed again. To keep track of the

percent of each operator, we take the 17 problems in Section 4 to do our numerical experiments.

Numerical results show that the success rates of the three operators are 43.7%, 46.6% and 38.6%,

respectively. Here an operator is said to be successful if it generates a new trial better than the

i-th individual Xi(t).

The last struggle operator could also be regarded as a simplex operator, 1-dimensional re-

flection or 1-dimensional contraction. Note that the last struggle operator might degenerate the

i-th individual, but it could increase the diversity of the population. The way of generating a

new individual in TE from the i-th individual and three randomly selected individuals is shown

in Figure 1(c).

3.2. Main procedure

The outline of the triangle evolution algorithm is as follows.

Procedure TE:

Step 1. Input population size N , initial bounds lb, ub. Set t = 0; Initialize population

~X(0) = {X1(0), X2(0), . . . , XN (0)}, where Xi(0) = (xi,1(0), xi,2(0), . . . , xi,n(0));

Step 2. Repeat

1) Evaluate ~X(t): Compute f(Xi(t)) for each individual;

2) Reproduce and update ~X(t): For every i ∈ {1, 2, . . . , N}, randomly generate three mu-

tually different integers r1, r2, r3 ∈ {1, 2, . . . , N}, rk 6= i, k = 1, 2, 3. Rearrange r1, r2, r3 to make

that f(Xr1
(t)) > f(Xr2

(t)) > f(Xr3
(t)). Let Xreflection = Xr2

(t) + Xr3
(t) − Xr1

(t).

If f(Xreflection) < f(Xi(t)), then Xi(t + 1) = Xreflection
else

Let Xcontraction = 1
3 (Xr1

(t) + Xr2
(t) + Xr3

(t));

If f(Xcontraction) < f(Xi(t)), then Xi(t + 1) = Xcontraction
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else if f(Xi(t)) ≥ 1
N

∑

i

f(Xi(t)) then

Xi(t + 1) =

{

Xi(t) + 0.618 · (Xr3
(t) − Xi(t)), if f(Xr3

(t)) < f(Xi(t))

Xi(t) + 0.382 · (Xi(t) − Xr1
(t)), else.

Until some stopping criterion is satisfied.

3.3. Similarities and differences with Simplex-GA and DE

TE shares similar idea in using heuristic information to Simplex-GA. Both of the algorithms

have so-called reflection operator and contraction operator. But there are many differences

between the two algorithms.

1) Most of the evolutionary operators in Simplex-GA are standard evolutionary operators,

except that it uses the simplex crossover with a given probability Ps. While TE does not use

other standard evolutionary operators to generate new individuals except the triangle reflection,

triangle contraction and last struggle.

2) Simplex-GA uses full dimensional simplex. While TE uses 1 or 2 dimensional simplex.

Thus the reflection and contraction of TE are relatively simpler than those of simplex-GA.

3) The simplex crossover in simplex-GA has three operators: reflection, expansion and

contraction. But TE has only reflection and contraction. In TE, a trial point would not expand

even though it succeeded in reflection.

4) The criteria to judge whether a reflection/contraction is successful is different. Simplex-

GA uses the worst point in the simplex as the reference point, but TE uses the current individual

Xi(t).

5) Simplex-GA uses new individuals to replace the λ worst individuals of the current

population after all of the new λ individuals are generated. But TE uses a new individual to

replace the current individual Xi(t).

6) TE introduces a new evolutionary operator, the last struggle operator.

TE shares similar method for parent selection with DE. Both of the algorithms produce a

new individual from the i-th individual and three randomly selected mutually different parents.

However, the reproduction process is quite different.

1) DE produces a new individual by perturbing one of the selected parents with the differ-

ential of the other two parents for some components of the vector. While TE produces a new

individual by reflecting or contracting the worst parent to the centroid of other two parents or

by stepping towards the best parent.

2) DE replaces the i-th individual with the new child only if it is worse than the child.

Therefore, the average cost value of the population decreases steadily in DE. While the last

struggle operator of TE may degenerate the i-th individual. Thus, the cost value of the population

may fluctuate in TE.

3) DE does not take into consideration the parents’ function value when creating a new

trial. While TE utilizes these heuristic information in a Nelder-Mead way. Thus, TE is more

reasonable.



Triangle evolution–a hybrid heuristic for global optimization 243

The differences of generating of a new point in the three algorithms are shown in Figure 1.

As can be seen from the above discussion, TE has some similarities to simplex-GA and DE, but

it is far from either of them.

4. Numerical experiments

TE algorithm is implemented in C language and executed on a notebook PC with 800MHz

AMD CPU and 224M memory. The main search engine of TE is in only about twenty lines

of C codes. Because DE has outperformed other well known stochastic algorithms as already

described, we compare numerical results of TE with DE. The source code of DE we use was

downloaded from http://www.icsi.berkeley.edu/∼ storn/. For convenience of comparison, we use

the same notations as those in [10]. For all functions, an initial parameter range (IPR) and a

value to reach (VTR) are defined. At the beginning of the optimization, the initial parameter

values are drawn randomly from IPR. If a minimizer gets below the VTR, the problem is assumed

to be solved. VTR is generally set to f∗+10−6, where f∗ is the global minimum of the objective

function. The evolutionary process terminates if the current minimum becomes below VTR or

the maximum number of function evaluations (which is set to 10 · n2 in our test) is reached.

The average number of function evaluations (nfe) over successful runs and the success rate (rate)

are used as two criterions of the performance of the algorithms. The results were computed by

averaging 100 trial runs for each test case. If the corresponding field for the average number

of function evaluations contains a hyphen (−), it means that the global minimum could not be

found in the 100 runs.

Control parameters of DE used in our experiments follow [10]. Several combinations of

different parameters are carried out for each problem, and only the best results are listed in the

following tables.

4.1. Low dimensional test problems

This set of test functions is from [10]. They are frequently used for testing the performance

of stochastic algorithms. The test results are listed in Table 1.

1) Second De Jong function (Rosenbrock’s saddle, f2(X) in [10])

f1(X) = 100 · (x2
1 − x2)

2 + (1 − x1)
2; IPR : xj ∈ [−2.048, 2.048], VTR : 10−6.

2) Fifth De Jong function (Shekel’s Foxholes, f5(X) in [10])

f2(X) =
1

0.002 +
∑24

i=0

1

(i + 1) +
∑2

j=1

(xj − aij)
6,

where ai1 = {−32,−16, 0, 16, 32} for i = 0, 1, 2, 3, 4 and ai1 = aimod5,1 as well as ai2 =

{−32,−16, 0, 16, 32} for i = 0, 5, 10, 15, 20 and ai2 = ai+k,2, k = 1, 2, 3, 4. Note that (i + 1)

in the expression of f4(X) is mistakenly printed as i in [10]. IPR: xj ∈ [−65.536, 65.536], VTR:

0.998004 + 10−6.
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3) Griewangk’s function (Griewangk ,1981, f7(X) in [10])

f3(X) =
10
∑

j=1

x2
j

4000
−

10
∏

j=1

cos(
xj√

j
) + 1; IPR : xj ∈ [−400, 400], VTR : 10−6.

4) Six-hump camel function ( f20(X) in [10])

f4(X) = (4− 2.1 · x2
1 + 1

3x4
1) · x2

1 + x1 · x2 + (−4 + 4 · x2
2) · x2

2 ; Note that, f7(X) is mistakenly

printed as (4 − 2.1 · x2
1 + 1

3x4
1) + x1 · x2 + (−4 + 4 · x2

2) · x2
2 in [10]. IPR: xj ∈ [−10, 10], VTR:

−1.0316285 + 10−6.

5) Polynomial (f26(X) in [10])

f5(X) = 0.25 ·x4
1 − 0.5 ·x2

1 + 0.1 ·x1 + 0.5 ·x2
2; IPR: xj ∈ [−10, 10], VTR: −0.3523861 + 10−6.

Table 1 shows that TE has almost the same performance as DE for low dimensional problems.

4.2. High dimensional test problems

All problems in [10] are low dimensional. To test the performance of our algorithm for high

dimensional problems, we choose some problems from other literatures. The chosen problems are

all n-dimensional. The function family f6(X) is from [2]. f7(X) is the First De Jong function.

And f8(X), f9(X) are from [4]. The test results are listed in Table 2.

1) (Goffin in §4.1, [2])

f6(X) = n · max
j∈Q

xj −
∑

j∈Q

xj ; Q = {1, 2, . . . , n}, IPR: xj ∈ [−1, 1], VTR: 10−6

2) f7(X) =

n
∑

j=1

x2
j ; IPR: xj ∈ [−5, 5], VTR: 10−6

3) (Ex. 6.15 in [4])

f8(X) = max
j∈Q

x2
j ; Q = {1, 2, . . . , q}, n = q, IPR: xj ∈ [−1, 1], VTR: 10−6

4) (Ex. 6.17 in [4])

f9(X) = max
j∈Q

(x2
4j−3 + x2

4j−2 + x2
4j−1 + x2

4j) ; Q = {1, 2, . . . , q}, n = 4 · q, IPR: xj ∈ [−1, 1],

VTR: 10−6

Table 1 Comparison of DE and TE in low dimensional cases

func problem DE

F CR N nfe rate

TE

N nfe rate

f1 Rosenbrock

f2 Foxholes

f3 Griewangk

f4 Six-hump Camel

f5 Polynomial

0.9 0.9 10 542 100%

0.5 0.1 40 1224 100%

0.5 0.1 100 46385 100%

0.5 0.1 20 1137 100%

0.5 0.1 20 669 100%

10 428 100%

35 1546 100%

1000 43457 100%

20 598 100%

30 773 100%
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Table 2 Comparison of DE and TE in high dimensional cases

func dimension DE

N nfe rate

TE

N nfe rate

f6 n = 3

f6 n = 5

f6 n = 20

f7 n = 100

f7 n = 150

f7 n = 200

f8 n = 20

f8 n = 40

f8 n = 50

f9 n = 20

f9 n = 40

f9 n = 80

50 134191 90%

up to 100 − 0%

up to 300 − 0%

120 180696 100%

200 293161 100%

up to 400 − 0%

50 42785 100%

100 229409 100%

up to 200 − 0%

50 27220 100%

50 69896 100%

up to 300 − 0%

50 1536 100%

50 2551 100%

800 187235 100%

800 105347 100%

1000 131540 100%

1200 149194 100%

500 57495 100%

1500 98576 100%

1800 115427 100%

500 43723 100%

800 84270 100%

1200 91591 100%

From Table 2, we can see that TE outperforms DE for high dimensional problems. Therefore,

TE is a good candidate for higher dimensional optimization.

4.3. Choice of control parameter

TE requires only one control variable, the population size N . Thus it is not difficult to

choose in order to obtain a good result. According to our experience, a reasonable choice for N

is between 3n and 30n, and a good first choice is 5n.

5. Conclusions

Motivated by simplex-GA and differential evolution (DE), a new evolutionary algorithm–

Triangle Evolution (TE) has been presented. TE selects parents and updates individuals in DE

style, and the new individuals are generated in a Nelder-Mead way. The algorithm is very easy

to implement. Its main search engine is in only about twenty lines of C codes. Furthermore,

TE is very easy to use. It requires only one control variable, the population size N . Numerical

experiments indicate that it is very efficient for global optimization problems with continuous

variables. Comparison results show that it has a similar performance with DE for low dimensional

problems and outperforms DE for high dimensional problems.

Hybridizing EA with some traditional optimization algorithm is a good way to improve

the performance of the original EA. However, a simple combination of traditional optimization

algorithm with EA might not work well. Usually some essential modifications need to be done

for the original algorithms to get a successful hybridized algorithm. As a matter of fact, although

TE could be regarded as a hybrid of simplex-GA and DE, it is far from either of the original

algorithm.

Although TE has proved to be a kind of evolutionary computation model which is easy to
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use, reliable and efficient, its working mechanism is still not clear yet, that is, we cannot tell why

on earth TE works so well. TE is purely heuristic with no theoretical proof. The parameter N

of TE could be very large for some problems to converge to global minimum. This slows down

TE’s convergence rate. Further research is underway in developing the theoretical results and in

developing more efficient TE requiring less population size.
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