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Abstract A wavelet method of detection and estimation of change points in nonparametric

regression models under random design is proposed. The confidence bound of our test is de-

rived by using the test statistics based on empirical wavelet coefficients as obtained by wavelet

transformation of the data which is observed with noise. Moreover, the consistence of the test is

proved while the rate of convergence is given. The method turns out to be effective after being

tested on simulated examples and applied to IBM stock market data.

Keywords random design; nonparametric regression model; change point; wavelet transfor-

mation; consistent test; rate of convergence.

Document code A

MR(2000) Subject Classification 62G08; 62G10

Chinese Library Classification O212.7

1. Introduction

Nonparametric regression methods are usually applied in order to obtain a smooth fit of a

regression curve without having to specify a parametric class of regression function[1]. However,

sometimes a generally smooth regression function might contain one or more discontinuities,

which are called change points. Thus, it is very necessary to detect and estimate these change

points to ensure the accuracy of modeling.

A remarkable property of wavelet coefficients is to reflect the local regularity of the original

function, being large where the function is irregular and small where the function is smooth. This

property is very useful to detect discontinuities or change points in a regression function observed

with noise[2]. Wang[3] proposed a test statistics based on the optimization of the absolute value

of the wavelet coefficients; Odgen and Parzen[4] presented a method based on the cumulative sum

of squared wavelet coefficients; Raimondo[5] studied the minimax estimation of change point in

nonparametric regression model; Antoniadis and Gijbels[6] considered the wavelet detection and

estimation problem of the location of discontinuities in piecewise smooth regression function.

All the above results are based on the assumption of i.i.d. Gaussian noise and the data are

obtained in a fixed design manner. However, in many practical situations the observed data are
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obtained through a random design manner and the noise process may not be a Gaussian process

but an i.i.d. sequence. In this paper, we study the change point problem in nonparametric

function when noise process is i.i.d. sequence and the data are obtained in a random design

manner.

This paper is organized as follows: Section 2 presents our model and assumptions. Section

3 details the wavelet detection problem and Section 4 establishes the consistency estimators of

change points. A simulated study and a data example are discussed in Section 5. Conclusions

are summarized in Section 6.

2. Model and assumptions

The model considered in this paper is as follows:

Yi = f(Xi) + εi, i = 1, . . . , n, (1)

where εi are i.i.d random variables with zero mean and unit variance and are independent of the

Xi’s. The design point Xi’s are assumed to be supported in the interval [0,1].

Consider the following testing problem:

H0: f is smooth (at least continuously differentiable on [0,1]);

H1(m): f has “at-least 1 and at-most m” jump points and is otherwise smooth.

We assume that the number and the location of the change points in the regression function f

are unknown. However, we suppose that a realistic upper bound to the number of change-points

to be tested is known. In our assumption H1(m), m denotes such an upper bound, it is supposed

to be known. The purpose of this paper is to test H0 against H1(m) and to estimate the number

and the location of the change points, if H0 is rejected.

Suppose that a sample of n data pairs χ = {(X1, Y1), . . . , (Xn, Yn)} is observed, generated

from model (1). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics of the sample X1, . . . , Xn.

Then (1) becomes

Y[i] = f(X(i)) + ei, i = 1, . . . , n, (2)

where Y[i] and ei are rearrangement of Yi and εi, respectively. In fact, (1) can be rewritten as

follows:

Y[i] = f(i/n) + [f(X(i)) − f(i/n)] + ei = f(i/n) + ξi + ei, (3)

where ξi = f(X(i)) − f(i/n).

Throughout this paper, we adopt the following assumptions:

(A): ε1
d
= −ε1;

(B): εi, i = 1, . . . , n satisfy the Cramer’s condition, that is, Eetεi < ∞ when |t| < H for

some H > 0;

(C): f is bounded on the interval [0, 1];

(D): Xi are i.i.d. and Xi ∼ U [0, 1].
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3. Detection of change point

We detect and estimate change point using Haar wavelet. Given Haar “mother” wavelet

function ψ(u) = I[0,1/2)(u) − I[1/2,1](u), a doubly indexed family of wavelets basis is generated

by dilating and translating ψ:

ψj,k(u) = 2j/2ψ(2ju− k), j ∈ N, k ∈ Z.

The wavelet transform of a given function f is defined by
∫

f(u)ψj,k(u)du, j ∈ N, k ∈ Z.

Taking into account the L2-normalisation of the empirical wavelet transform, Raimondo[2] and

Härdle[7] approximate the above integrals by sums

wj,k(f) =
1√
n

n
∑

i=1

ψj,k(i/n)f(i/n).

Hence, for any resolution level j, 0 ≤ j ≤ J, 2J = n and indexed k = 0, 1, . . . , 2j, in the wavelet

domain (3) becomes

wk = wk(f) + wk(ξ) + wk(e), (4)

where

wk(f) =
1√
n

n
∑

i=1

ψj,k(i/n)f(i/n), wk(ξ) =
1√
n

n
∑

i=1

ψj,k(i/n)ξi, wk(e) =
1√
n

n
∑

i=1

ψj,k(i/n)ei.

We now present some properties of wk(f), wk(ξ) and wk(e), which are stated as two lemmas.

The first one is borrowed from Raimondo[2].

Lemma 1[2] Under H0 and H1 respectively, the following two properties hold:

1) Under H0, the function f is differentiable so that for all resolution levels j ≥ j0 = 3 and

all k = 0, 1, . . . , 2j − 1, |wk(f)| ≤ c1(n2−3j)1/2.

2) Under H1, there exists at least a point x ∈ [k/2j, (k + 1)/2j) where f has a jump so

that |wk(f)| ≥ c2(n2−j)1/2.

The constants c1, c2 depend only on f . To simply the exposition we take c1 = c2 = 1.

Lemma 2 For any resolution level j and indexed k = 0, 1, . . . , 2j, we have the following two

properties:

1) wk(ξ) = 1√
n

∑n
i=1 ψj,k(i/n)(f(X(i)) − f(i/n)) = oP (1);

2) wk(e)
d−→ N(0, 1), as n −→ ∞.

Proof 1) Since Xi ∼ U [0, 1] by assumption, we have X(i) ∼ β(i, n− i+ 1), thus |X(i) − i/n| =

OP (1/n). Hence using assumption (C) we have

wk(ξ) =
1√
n

n
∑

i=1

ψj,k(i/n)(f(X(i)) − f(i/n)) = OP (1/
√
n) = oP (1).

2) Because Haar wavelet is the step function ψ(u) = I[0,1/2)(u) − I[1/2,1](u), the sup-

port of the ψj,k(u) is exactly the dyadic interval [k/2j, (k + 1)/2j). The number of points
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i/n, i = 1, 2, . . . in the dyadic interval [k/2j, (k + 1)/2j) is n/2j. Since ei are the rearrangement

of εi and εi are i.i.d. random variables, we know from the independence between εi and Xi and

assumption (A) that ei are i.i.d. random variables and ei
d
= −ei. Hence

wk(e) =
1√
n

n
∑

i=1

ψj,k(i/n)ei
d
=

1√
n

n/2j

∑

i=1

2j/2(±1)ei
d
=

1
√

n/2j

n/2j

∑

i=1

ei. (5)

Thus by the central limit theorem, as n −→ ∞,

wk(e)
d−→ N(0, 1).

3.1 Critical region and confidence bounds

In the next theorem, we choose the first m maximum values of |wk|, k = 1, 2, . . . , 2j as

the statistics. We give a condition on the resolution j which ensures that there are at least a

finite number of exceedances over the threshold vn. Our condition depends on the sample size,

and an ≍ bn means that there exist some positive constants c1 and c2, such that, for n large

enough, c1bn ≤ an ≤ c2bn.

Theorem 1 Let |w(k)| be the ordered (absolute value of) wavelet coefficients at the resolution

level j so |w(1)| > |w(2)| > · · · > |w(2j)|. Let vn =
√
n2−3j. Under assumptions (A)-(D) and H0,

if the resolution level j = j(n) satisfies

2j ≍ n

(logn)δ
, 1 < δ < 2, (6)

then for any arbitrary constant m ≥ 1,

P (|w(m)| > vn) −→ 1, as n −→ ∞.

Proof By (4), there is an indexed k1 such that |w(m)| = |wk1
(f) + wk1

(ξ) + wk1
(e)|. Using the

first result of Lemma 1 and the triangle inequality

|w(m)| ≥ |wk1
(ξ) + wk1

(e)| − |wk1
(f)|,

we know that

P{
∣

∣w(m)

∣

∣ > vn} ≥ P{|wk1
(ξ) + wk1

(e)| ≥ 2vn}.

Since vn = o(
√

n/2j) and ei are i.i.d. sequence, by Lemma 2, assumption (B) and Cramer Large

Deviation Theorem[8] we have that

lim
n→∞

P{
∣

∣w(m)

∣

∣ > vn} ≥ lim
n→∞

P{|wk1
(ξ) + wk1

(e)| ≥ 2vn}
= lim

n→∞
P{|wk1

(e)| ≥ 2vn}
= lim

n→∞
P{|N | ≥ 2vn} (where N ∼ N(0, 1)) .

Observe that the resolution level j satisfies (6) and vn −→ 0, as n −→ ∞, so that

lim
n→∞

P{|N | ≥ 2vn} = 1 (where N ∼ N(0, 1)) ,

which completes the proof. 2
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Theorem 1 shows that the number of the wavelet coefficients |wk| which exceed the thresh-

old vn is m at least, which means that vn may be too small in application. Instead, we consider

the statistics

Ti =
∣

∣w(i)

∣

∣ −
∣

∣w(m+1)

∣

∣ , i = 1, 2, . . . ,m. (7)

In the theorem below we use result of Theorem 1 to derive 100(1− β)/% confidence bounds for

the combined m-exceedances (7).

Theorem 2 Let β be an arbitrary number, 0 < β < 1, and put ci =
√

−2 log β
m(m−i+1) ,

Rn(β) = ∪
i=1,...,m

{Ti > ci}. (8)

Under assumptions (A)–(D) and H0, if the level j satisfies (6) and n→ ∞, then

P{Rn(β)} ≤ β.

Proof Let An be the event that
∣

∣w(m+1)

∣

∣ > vn. Then we have that limn→∞ P (An) = 1 and

P{Ti > x|An} ≤ P{
∣

∣w(i)

∣

∣ − vn > x
∣

∣An} for any constant x. Writing |wi| , |wi+1| , . . . , |wm| for

the unordered set of coefficients whose ordered sequences are
∣

∣w(i)

∣

∣ ≥
∣

∣w(i+1)

∣

∣ ≥ · · · ≥
∣

∣w(m)

∣

∣ , we

obtain from (4) and Lemma 1 that

P{
∣

∣w(i)

∣

∣ − vn > x
∣

∣An} = P{ max
k=i,...,m

|wk| − vn > x|An} ≤
m

∑

k=i

P{ |wk| − vn > x|An}

≤
m

∑

k=i

P{ |wk(ξ) + wk(e)| > x|An}.

By Theorem 1, Lemma 2 and Feller’s inequality, we have

lim
n→∞

P{Ti > x|An} ≤ lim
n→∞

m
∑

k=i

P{ |wk(ξ) + wk(e)| > x|An}

≤
m

∑

k=i

P{|N | > x} (where N ∼ N(0, 1))

≤ (m− i+ 1)
2√
2π

· 1

x
· exp(−x

2

2
).

Putting x = ci, then we obtain

lim
n→∞

P{Rn(β)} = lim
n→∞

P{Rn(β)|An}

≤ lim
n→∞

m
∑

i=1

P{Ti > ci|An}

≤ m(m− i+ 1)
2√
2π

· 1

ci
· exp(−c

2
i

2
)

= m(m− i+ 1) · 2√
2π

· 1
√

−2 log β
m(m−i+1)

· β

m(m− i+ 1)

≤ β.

2
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Remark 1 If the model considered is Yi = f(Xi) + σεi, i = 1, 2, . . . , n, then the critical value

in (8) is σci.

3.2 The consistence of detection

We discuss the consistence of the detection in this section.

Theorem 3 Let Rn(β) be defined by Theorem 2. Under H1(m), if the resolution level j satisfies

(6), then

lim
n→∞

P{Rn(β)} = 1.

Proof To simplify the exposition we suppose that m = 1 (extension to other cases is straight-

forward). The theorem will follow if we prove that

T1 −→ ∞, as n −→ ∞. (9)

Let xn =
√

2 logn, Bn = {maxk=0,...,2j−1 |wk(ξ) + wk(e)| ≤ xn}. We prove the theorem in the

following two steps. Firstly, we prove (9) on condition Bn. Secondly, we prove that

P (Bn) −→ 1, as n −→ ∞. (10)

Under H1(1), by Lemma 1, there exists a unique index k2 such that |wk2
(f)| ≥

√
n2−j where

|wk(f)| ≤
√
n2−3j = vn for any k 6= k2. Working conditionally on Bn, using (6) and the definition

of xn, it is not hard to check that vn = o(xn), xn = o(
√
n2−j). It follows that |wk| ≤ |wk(f)| +

|wk(ξ) + wk(e)| ≤ vn + xn = O(xn), k 6= k2 and |wk2
| ≥ |wk(f)| − |wk(ξ) + wk(e)| ≥

√
n2−j −

xn =
√
n2−j(1 + o(1)). This shows that for n large enough,

∣

∣w(1)

∣

∣ = max
k=0,...,2j−1

|wk| = |wk2
| ≥

√
n2−j(1 + o(1)).

Since
∣

∣w(2)

∣

∣ = |wk3
| for some k3 6= k2, we have

T1 =
∣

∣w(1)

∣

∣ −
∣

∣w(2)

∣

∣ ≥
√
n2−j −O(xn) =

√
n2−j(1 + o(1)),

thus T1 −→ ∞, as n −→ ∞. Now we prove (10). Note that

P (Bc
n) = P ( max

k=0,...,2j−1
|wk(ξ) + wk(e)| > xn) ≤

2j

∑

k=1

P{|wk(ξ) + wk(e)| > xn}.

Recalling that xn = o(
√
n2−j), ei are i.i.d. random variables, and applying Lemma 2 and

Cramer Large Deviation Theorem[8], we have that

lim
n→∞

P (Bc
n) ≤ lim

n→∞

2j

∑

k=1

P{|wk(ξ) + wk(e)| > xn}

≤ lim
n→∞

2j

∑

k=1

P{|wk(e)| > xn} = lim
n→∞

2j

∑

k=1

P{|N | > xn}

= 2 lim
n→∞

2j

∑

k=1

P{N) > xn} (where N ∼ N(0, 1))



Wavelet detection and estimation change points 253

≤ 2 lim
n→∞

(2j · 1

xn
· 1√

2π
· 1

n
) ≤ C lim

n→∞
1

(logn)1/2+δ

= 0.

2

In the next section, we will use statistics (7) to estimate the location and the number of the

change points.

4. Estimation of change points

Theorem 4 Under H1(m), denote by q and 0 < θ1 < · · · < θq < 1 the number and locations

of the change points of the function f , 1 ≤ q ≤ m, respectively. Take q̂ = sup{i : 1 ≤ i ≤
m,Ti > ci}. Let k1 ≤ k2 · · · ≤ kq̂ index the wavelet coefficients

∣

∣w(1)

∣

∣ ≥
∣

∣w(2)

∣

∣ ≥ · · · ≥
∣

∣w(q̂)

∣

∣ , i.e.,

|wk1
|, |wk2

|, . . . , |wkq̂
| are the unordered coefficients whose ordered sequences are

∣

∣w(1)

∣

∣ ≥
∣

∣w(2)

∣

∣ ≥
· · · ≥

∣

∣w(q̂)

∣

∣ . Let (θ̂1, . . . , θ̂q̂) = (k1/2
j, . . . , kq̂/2

j). Then under the same assumptions as in

Theorem 3,

P (q̂ → q) = 1, as n −→ ∞, (11)

q̂
∑

i=1

(θ̂i − θi)
2 = Op(

1

22j
). (12)

Proof Using the arguments in the proof of Theorem 3, we can easily prove (11) and we omit it

here. Let xn and Bn be defined as in Theorem 3. Observe that

|wk(f)| − |wk(ξ) + wk(e)| ≤ |wk| ≤ |wk(f)| + |wk(ξ) + wk(e)| . (13)

Combing (13), Lemma 1, xn = o(
√
n2−j),

√
n2−3j = o(xn) along with (10), we obtain that with

probability tending to 1, the following two inequalities hold

max
k=0,...,2j

{|wk| : ∃θi ∈ [
k

2j
,
k + 1

2j
)} ≥

√
n2−j − xn =

√
n2−j(1 + o(1)), (14)

max
k=0,...,2j

{|wk| : ∀θi /∈ [
k

2j
,
k + 1

2j
)} ≤

√
n2−3j + xn ≤ xn(1 + o(1)) ≤

√
n2−j(1 + o(1)). (15)

Thinking of maxk |wk| as a function of k, by (14) and (15) we can easily see that, with probability

tending to 1, the maximum of |wk| will be achieved at some k, where θi ∈ [ k
2j ,

k+1
2j ), i =

1, 2, . . . , q. By the definition of ki, with probability tending to 1, θi ∈ [ ki

2j ,
ki+1
2j ), i = 1, 2, . . . , q̂.

That is, θi−θ̂i

1/2j ∈ [0, 1). Thus θi − θ̂i = Op(
1
2j ), i = 1, 2, . . . , q̂, which yields (12). 2

Remark 2 We know from (6) that θi − θ̂i = Op(
1
n (log n)δ), i = 1, 2, . . . , q̂, 1 < δ < 2. Such rate

of convergence is the same as Wang’s[3], whose result is based on the assumptions of Gaussian

noise and the data are obtained in a fixed design manner.

5. Numerical properties

5.1 Simulation study

Consider the following data generating process:

Yi = f(Xi) + σεi, i = 1, 2, . . . , n, (16)
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where Xi ∼ U [0, 1], σ = 0.2, εi ∼ N(0, 1). We carry out the experiment in the following two

cases:

H0: f(x) = 4x(1 − x) ( f is continuously differentiable on [0,1]),

H1: g(x) = f(x) + 1{x>0.25} − 1{x>0.5} (there are two change points in function g ).

Figure 1(a) and (b) are the noise-free function of f and g, respectively. While Figure 1(c)

and (d) are the illustrations of f and g which are observed with Gaussian noise N(0, 0.22).

Take the sample size n = 210 = 1024, the upper bound of the number of change points m =

3 and the significance level β = 0.05. At resolution level j = 5, the wavelet coefficient wk is

obtained by the Haar wavelet transformation. Figure 1(e) and (f) depict the absolute val-

ues of wavelet coefficients (|wk|) under H0 and H1, respectively. The threshold line is drawn

at |w(4)|. The critical region is drawn according to (8).

From Figure 1(e), we can find that the number of the wavelet coefficients that exceed the

critical region line is 0. Thus we accept H0. This implies that there is no change in function f .

While from Figure 1(f) we can see that, the wavelet coefficients exceed the critical region line

nearby 0.25 and 0.5 where the function g has change points. The simulation results show that

our method is effective.
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Figure 1 Simulated data

5.2 Application to IBM data

We applied our method to the IBM data in this section. Figure 2(a) shows the 29 = 512 data

points of IBM daily closing prices starting from January 2, 1996 until January 8, 1998. Figure

2(b) is the plot of the absolute wavelet coefficients which are obtained at j = 4, where the dashed

horizontal line is the critical region which is drawn at significance level β = 0.05, m = 6. In

Figure 2(b), the wavelet coefficients exceed the critical region line at four locations. The vertical

line in Figure 2(a) shows these locations. The locations of these large wavelet coefficients are

observations 64 (April 1, 1996), 320 (April 4, 1997), 336 (April 29, 1997) and 353 (May 22, 1997),

so there are local structural changes near the corresponding times. The first change point in 1996

may be caused by Crisis in the Taiwan strait in 1996. While the next three change points in

1997 are caused by the Asian Economic Storms in 1997.
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Figure 2 IBM data
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6. Conclusions

We study the detection and estimation problem of change points in nonparametric regression

model under random design. The 100(1 − β)/% confidence bounds using the test statistics

based on the wavelet coefficients is derived, meanwhile, the consistence of test is proved. The

test statistics can also be used to estimate the locations and the number of the change points.

The convergence rate of the change estimator is the same as Wang’s[3]. The simulation study

supports our result and the IBM real example shows that our method can be used to solve

practical problems.

However, we must point out that, though we succeed in avoiding the assumptions of Gaussian

noise and fixed random design, we still assume that the noises are i.i.d.. While in applications,

the data may be obtained in dependent cases. At this moment, our method is invalid. This

problem has not been solved yet. It will take more time to get it right.
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