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Abstract By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong en-

domorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) =

hEnd(G). A general characterization of an E-H-unretractive graph seems to be difficult. In this

paper, bipartite graphs with E-H-unretractivity are characterized explicitly.
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1. Introduction and preliminaries

The monoid of endomorphisms of a graph has been the object of researches in the theory of

semigroups for quite some time[1,2]. The motivation of these researches is to contribute to the

application of semigroup theory to graph theory. The graphs for which different endomorphism

classes coincide (i.e., various unretractivities) is one of the main themes in this line, and as

justification for the investigation one takes the rich algebra structure which is put on a graph by

its endomorphism classes and the numerous questions connected with them[3]. It was proposed

in [3] as an open question to find conditions on a graph for various unretractivities. As pointed

out in [4] the characterization of graphs with various unretractivities seems a difficult problem.

In this paper bipartite graphs with E-H-unretractivity are explicitly presented.

In this paper, we consider only finite undirected graphs without loops and multiple edges. If

G is a graph, we denote by V (G) (or simply G) and E(G) its vertex set and edge set, respectively.

A graph G is called a bipartite graph if it is possible to partition V (G) into two subsets V1 and

V2 such that every edge of G joins a vertex of V1 to a vertex of V2. By Kn we denote a complete

graph with n vertices and by Cn a cycle with n vertices. It is well known that a graph is bipartite

if and only if it does not contain any Cn where n is an odd number, and therefore trees is a

special class of bipartite graphs. An empty graph with n vertices is denoted by Kn. A graph H

is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Moreover, if for any a, b ∈ V (H),

{a, b} ∈ E(H) if and only if {a, b} ∈ E(G), then we call H an induced subgraph of G. Let

a, b ∈ G. The length of the shortest (a, b)-path (i.e., geodesic line) is called the distance of
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the vertices a and b in G, denoted by dG(a, b). The diameter of a connected graph G(6= K1),

denoted by diam(G), is defined as the maximum of distances of all vertex pairs of G (i.e., the

length of any longest geodesic lines), and define diam(K1) = 0. A subgraph H of G is called

isometric if for any x, y ∈ H , dH(x, y) = dG(x, y). A maximal connected subgraph of G is

called a connected component (or simply component) of G. The length of the shortest cycles

(if it exists) of graph G is called the girth of G. denoted by gir(G). We use nG to represent a

graph composed of n graphs each of which is isomorphic to a connected graph G. A completely

bipartite graph G(V1 ∪ V2, E) with |V1| = m ≥ 1 and |V2| = n ≥ 1 is denoted by Km,n. A

graph K1,n is also called a star. Let G1 and G2 be graphs with disjoint vertex sets. The union

of G1 and G2, denoted by G1 ∪ G2, is a graph such that V (G1 ∪ G2) = V (G1) ∪ V (G2) and

E(G1 ∪ G2) = E(G1) ∪ E(G2). A component K1 is also called an isolated vertex of G. For a

vertex a ∈ G, we denote the degree of a in G by degG(a) or simply deg(a) if it is clear which

graph G is referred to. The usual concepts such as connected graph, completely bipartite graph,

complete graph, empty graph, path, cycle and degree (of a vertex) etc., which are not defined in

this paper, can be found in [5].

The following definitions of various types of endomorphisms are mainly based on [3]. If G

and H are graphs, then a mapping f : V (G) → V (H) is called a homomorphism from G to H if

{a, b} ∈ E(G) implies that {f(a), f(b)} ∈ E(H) for any a, b ∈ G. Moreover, if f is bijective and

its inverse mapping is also a homomorphism (from H to G), then f is called an isomorphism

from G to H . An endomorphism of G is a homomorphism from G to itself. An endomorphism

is called a strong endomorphism if {f(a), f(b)} ∈ E(G) implies that {a, b} ∈ E(G) for any

a, b ∈ G. A bijective endomorphism of a graph G is called an automorphism of G. Evidently, an

automorphism of a graph G is an isomorphism from G to itself. Let f be an endomorphism of

graph G and let a ∈ G. Denote f−1(a) := {x ∈ G|f(x) = a}. An endomorphism f is said to be

half-strong if {f(a), f(b)} ∈ E(G) implies that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such

that {c, d} ∈ E(G), where a, b, c, d ∈ G.

By End(G), hEnd(G), sEnd(G) and Aut(G) we denote the sets of endomorphisms, half-strong

endomorphisms, strong endomorphisms and automorphisms of the graph G, respectively. Obvi-

ously, Aut(G) ⊆ sEnd(G) ⊆ hEnd(G) ⊆ End(G). It is well-known that End(G) and sEnd(G)

are monoids (a monoid is a semigroup with an identity element) and that Aut(G) is a group with

respect to the composition of mappings, while hEnd(G) does not form a monoid in general. The

coincidence of these endomorphism classes gives rise to various unretractivities of a graph. In par-

ticular, a graph G is called E-H-unretractive (respectively, E-S-unretractive and E-A-unretractive

etc.). if End(G) = hEnd(G) (respectively, End(G) = sEnd(G) and End(G) = Aut(G) etc.) If

graph G is E-A-unretractive, we also call it simply unretractive. In [1], E-S-unretractivity, E-

A-unretractivity and S-A-unretractivity of a graph were studied. In [6], E-A-unretractivity and

S-A-unretractivity of joins and lexicographic products of graphs were characterized. Relation-

ships among endomorphism classes of trees were explored in [7]. A general characterization of

an E-H-unretractive graph seems to be difficult. Undoubtedly bipartite graphs is one of the

most important families of graphs, and we will completely determine E-H-unretractive bipartite
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graphs.

Let f ∈ End(G). A subgraph of G is called the endomorphic image of G under f , denoted

by If , if V (If ) = f(G), and {f(a), f(b)} ∈ E(If ) if and only if there exist c ∈ f−1(f(a)) and

d ∈ f−1(f(b)) such that {c, d} ∈ E(G), where a, b, c, d ∈ V (G) ([8] for the reasonableness of

this definition). An element a of a semigroup S is called an idempotent if a2 = a[9]. The set

of idempotents of End(G) is denoted by Idpt(G). Each f ∈ Idpt(G) is also called a retraction

of G. If f is a retraction of graph G, the subgraph induced by f(G)(= {f(x)|x ∈ G}) (i.e., the

induced subgraph with vertex set f(G)) is called a retract of G[6,10,11]. Let f ∈ End(G). By

ρf we denote the equivalence relation on V (G) induced by f , i.e., for a, b ∈ V (G), (a, b) ∈ ρf if

and only if f(a) = f(b). Denote by [a]ρf
the equivalence class of a ∈ G under ρf . The following

propositions quoted from the references will be used later.

Proposition 1.1 (1)[1, Example 1.2] The cycles with odd lengths are unretractive.

(2)[7, Propositions 2.1 and 3.1] Any tree is E-H-unretractive.

Proposition 1.2[12,Remark 1.3] Let G be a graph. Let f ∈ End(G) and let a, b ∈ G.

(1) If G is connected, then If is connected;

(2) dIf
(f(a), f(b)) ≤ dG(a, b).

Proposition 1.3 (1)[11,Theorem 5] Every isometric tree T (6= K1) in a bipartite graph G is a

retract of G, i.e., there exists f ∈ Idpt(G) such that T is a subgraph of G induced by f(G).

(2)[3,Proposition 2.2] Idempotent endomorphisms of graph G are elements of hEnd(G).

(3)[13,Lemma 2.1(1)] Let G be a graph and let f ∈ End(G). Then f ∈ hEnd(G) if and only if

If is an induced subgraph of G.

Proposition 1.4 Let G be a bipartite graph and let P be a path in G. If P is a geodesic line,

there exists f ∈ Idpt(G) such that If = P .

Proof Obviously, P is an isometric tree in G, and so by Proposition 1.3(1), there exists f ∈

Idpt(G) such that P is the subgraph induced by f(G). By Proposition 1.3(2) f ∈ hEnd(G), and

so by Proposition 1.3(3) If is an induced subgraph of G. Hence If = P . 2

2. E-H-unretractive bipartite graphs

In this section, we will explicitly characterize bipartite graphs with E-H-unretractivity (The-

orem 2.11). First, we consider connected bipartite graphs.

Lemma 2.1 Let G be a connected bipartite graph with cycles. If diam(G) ≤ gir(G) − 2, G is

E-H-unretractive.

Proof Assume G is not E-H-unretractive. Then there exists f ∈ End(G)\hEnd(G). Thus there

exist a, b ∈ G such that {f(a), f(b)} ∈ E(G). Whereas {x, y} 6∈ E(G) for any x ∈ f−1(f(a)) and

any y ∈ f−1(f(b)), by the definition of the image of an endomorphism, {f(a), f(b)} 6∈ E(If ).



260 LI W M

Since G is connected, by Proposition 1.2(1) If is connected, and so in If there is a geodesic line

P connecting f(a) and f(b) with length dIf
(f(a), f(b)). Therefore, P ∪ {f(a), f(b)} is a cycle

in G with length dIf
(f(a), f(b)) + 1. Then gir(G) ≤ dIf

(f(a), f(b)) + 1. Furthermore, gir(G) ≤

dG(a, b) + 1 ≤ diam(G) + 1 by Proposition 1.2(2), which contradicts diam(G) ≤ gir(G) − 2. 2

Lemma 2.2 Let G be a graph, and let f ∈ Idpt(G). Then for any a ∈ If , f(a) = a.

Proof Since a ∈ If and f2 = f , there exists x ∈ G such that f(x) = a and so

f(a) = f(f(x)) = f(x) = a. 2

The next theorem characterizes connected bipartite graphs with E-H-unretractivity.

Theorem 2.3 Let G be a connected bipartite graph. Then G is E-H-unretractive if and only if

G is a tree or diam(G) ≤ gir(G) − 2.

Proof Sufficiency is by Proposition 1.1(2) and Lemma 2.1.

Necessity. Now suppose G is not a tree and diam(G) ≥ gir(G) − 1. Let gir(G) = n (=

4, 6, 8, ...) and let diam(G) = d. So d ≥ n− 1 and there exists a geodesic line P in G with length

d, denoted by P = a1a2 · · ·ad+1. By Proposition 1.4, there exists f ∈ Idpt(G) such that If = P .

Let Cn = b1b2 · · · bn be a cycle with length n(= gir(G)). Now define a mapping g from V (G) to

itself by the following rule:

g(x) = bi if x ∈ [ai]ρf
with i ∈ {1, 2, . . . , n};

g(x) = bn−1 if x ∈ [ai]ρf
with i ∈ {n + 1, n + 3, . . .} ⊆ {n + 1, n + 2, n + 3, . . . , d + 1};

g(x) = bn if x ∈ [ai]ρf
with i ∈ {n + 2, n + 4, . . .} ⊆ {n + 1, n + 2, n + 3, . . . , d + 1}.

It remains to show g ∈ End(G) \ hEnd(G). Noting d + 1 ≥ n, we see the mapping g is well

defined. Let {x1, x2} ∈ E(G). Since f ∈ End(G), {f(x1), f(x2)} ∈ E(If ) = E(P ). Without

loss of generality, we suppose f(x1) = ai and f(x2) = ai+1 for some i ∈ {1, 2, . . . , d}. As f is

an idempotent, f(x1) = f(f(x1)) = f(ai) and f(x2) = f(f(x2)) = f(ai+1), i.e., x1 ∈ [ai]ρf
and

x2 ∈ [ai+1]ρf
for some i ∈ {1, 2, . . . , d}. By the definition of g, if i ∈ {1, 2, . . . , n − 1}, then

g(x1) = bi and g(x2) = bi+1; if i ∈ {n, n + 2, n + 4, . . .} ⊆ {n, n + 1, n + 2, n + 3, . . . , d}, then

g(x1) = bn and g(x2) = bn−1; if i ∈ {n + 1, n + 3, . . .} ⊆ {n, n + 1, n + 2, n + 3, . . . , d}, then

g(x1) = bn−1 and g(x2) = bn. In each case we see {g(x1), g(x2)} ∈ E(G), from which it follows

that g ∈ End(G).

We now verify g 6∈ hEnd(G). Noting g(a1) = b1 and g(an) = bn, we have {g(a1), g(an)} =

{b1, bn} ∈ E(Cn) ⊆ E(G). Let x ∈ g−1(g(a1)) and let y ∈ g−1(g(an)), i.e., x ∈ g−1(b1) and

y ∈ g−1(bn). By the definition of g, it is easy to see that g−1(b1) = [a1]ρf
and g−1(bn) =

∪{[ai]ρf
|i ∈ {n, n + 2, n + 4, . . .} ⊆ {n, n + 1, n + 2, . . . , d + 1}}. Then f(x) = f(a1) and f(y) ∈

{f(an), f(an+2), f(an+4), . . .} ⊆ {f(an), f(an+1), f(an+2), . . . , f(ad+1)}. Recalling f ∈ Idpt(G)

with If = P = a1a2 · · · ad+1, by Lemma 2.2, f(ai) = ai for any i ∈ {1, 2, . . . , d + 1}, and so

f(x) = a1 and f(y) ∈ {an, an+2, an+4, . . .} ⊆ {an, an+1, an+2, . . . , ad+1}. Since P is a geodesic

line and n ≥ 4, {a1, ai} 6∈ E(G) for any ai ∈ {an, an+1, an+2, . . . , ad+1}. Hence {f(x), f(y)} 6∈

E(G), and furthermore {x, y} 6∈ E(G) since f ∈ End(G), which implies g 6∈ hEnd(G) as required.

2
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Example For the following connected bipartite graphs Hi (i = 1, 2, 3, 4), clearly, gir(Hi) =

6 (i = 1, 2, 3, 4). Then by Theorem 2.3,

since diam(H1) = 5 > 4 = gir(H1) − 2, H1 is not E-H-unretractive;

since diam(H2) = 5 > 4 = gir(H2) − 2, H2 is not E-H-unretractive;

since diam(H3) = 4 ≤ 4 = gir(H3) − 2, H3 is E-H-unretractive;

since diam(H4) = 4 ≤ 4 = gir(H4) − 2, H4 is E-H-unretractive.

For the following connected bipartite graphs Hi (i = 5, 6, 7, 8), gir(Hi) = 8 (i = 5, 7, 8) and

gir(H6) = 4.

Since diam(H5) = 7 > 6 = gir(H5) − 2, H5 is not E-H-unretractive;

since diam(H6) = 4 > 2 = gir(H6) − 2, H6 is not E-H-unretractive;

since diam(H7) = 6 ≤ 6 = gir(H7) − 2, H7 is E-H-unretractive;

since diam(H8) = 5 ≤ 6 = gir(H8) − 2, H8 is E-H-unretractive.
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In particular, we see immediately the following:

Corollary 2.4 All cycles are E-H-unretractive.

Proof Notice all cycles with odd lengths are unretractive (Proposition 1.1(1)) and all cycles

C2m(m ≥ 2) satisfy the condition in Theorem 2.3, i.e., diam(C2m) = m ≤ m+(m−2) = 2m−2 =

gir(C2m) − 2. The result follows immediately. 2

Now, we consider E-H-unretractivity of non-connected bipartite graphs. First, we list several

lemmas as follows:

Lemma 2.5 Let G be a bipartite graph with n (≥ 2) components.

(1) If each component is K1, i.e., G = Kn, then G is E-H-unretractive;

(2) If each component of G is K2 or K1,m(m ≥ 2) (i.e., a star), then G is E-H-unretractive.

Proof (1) By the definition of a half-strong endomorphism, G is trivially E-H-unretractive.

(2) Suppose f ∈ End(G). Let a, b ∈ G such that {f(a), f(b)} ∈ E(G). As G has no isolated

vertices, there exist x, y ∈ G with {a, x} ∈ E(G) and {b, y} ∈ E(G). So {f(a), f(x)} ∈ E(G) and

{f(b), f(y)} ∈ E(G). If the edge {f(a), f(b)} is exactly a component K2 of G, then f(x) = f(b),
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i.e., there exist x ∈ f−1(f(b)) and a ∈ f−1(f(a)) such that {a, x} ∈ E(G). If {f(a), f(b)} belongs

to a component K1,m where m ≥ 2, then clearly either deg(f(a)) = 1 and deg(f(b)) = m or

deg(f(b)) = 1 and deg(f(a)) = m. In the former situation, we have f(x) = f(b), i.e., there exist

x ∈ f−1(f(b)) and a ∈ f−1(f(a)) such that {a, x} ∈ E(G). In the latter situation, we have

f(y) = f(a), i.e., there exist y ∈ f−1(f(a)) and b ∈ f−1(f(b)) such that {b, y} ∈ E(G). Hence

f ∈ hEnd(G). 2

Lemma 2.6 Let G be a bipartite graph with n (≥ 2) components. If exactly one component is

K1 while any of the other components is K2, then G is E-H-unretractive.

Proof Suppose f ∈ End(G). Let a, b ∈ G such that {f(a), f(b)} ∈ E(G). Clearly at least

one vertex of a and b, say a, is not an isolated vertex of G. Then there exists c ∈ G such

that {a, c} is a component K2 of G, and so {f(a), f(c)} is also a component K2 of G. Thus

f(b) = f(c), i.e., there exist a ∈ f−1(f(a)) and c ∈ f−1(f(b)) such that {a, c} ∈ E(G), which

implies f ∈ hEnd(G). 2

Lemma 2.7 Let G be a bipartite graph with n (≥ 2) components. If exactly one component is

K2 while any of the other components is K1, then G is E-H-unretractive.

Proof Suppose f ∈ End(G). Let a, b ∈ G such that {f(a), f(b)} ∈ E(G). Let {u, v} be the

unique component K2 of G. Thus {f(a), f(b)} = {u, v}, say, f(a) = u and f(b) = v. Thus

u ∈ f−1(f(a)) and v ∈ f−1(f(b)) such that {u, v} ∈ E(G), which implies f ∈ hEnd(G). 2

Lemma 2.8 Suppose G is a non-connected bipartite graph with isolated vertices. If there exists

a component Gi in G such that diam(Gi) ≥ 2 or G = mK2 ∪ nK1 where m ≥ 2, n ≥ 2, i.e.,

G = mK2 ∪ nK1 (m ≥ 2, n ≥ 2), then End(G) 6= hEnd(G).

Proof Firstly, suppose there exists a component being K1 = {a} and a component G1 with

diam(G1) ≥ 2. Then there exist u, u1, u2 ∈ G such that the path P = uu1u2 is a geodesic line

of G. By Proposition 1.4, there exists f ∈ Idpt(G) such that If = P . Now define a mapping g

from V (G) to itself by the following rule:

g(a) = u2;

g(x) = u1 if x ∈ f−1(u1) \ {a};

g(x) = u if x ∈ (f−1(u) ∪ f−1(u2)) \ {a}.

Clearly, the mapping g is well defined. We now show g ∈ End(G) \ hEnd(G). Let x, y ∈

G such that {x, y} ∈ E(G). Then {f(x), f(y)} ∈ E(If ), and so {f(x), f(y)} = {u, u1} or

{f(x), f(y)} = {u1, u2}. Without loss of generality, we may suppose f(x) = u and f(y) = u1, or

f(x) = u1 and f(y) = u2. In both situations, it is easy to check {g(x), g(y)} = {u, u1} ∈ E(G),

and so g ∈ End(G).

Since u1 ∈ If and f ∈ Idpt(G), by Lemma 2.2, f(u1) = u1. Thus u1 ∈ f−1(u1) \ {a}

and so g(u1) = u1. Then {g(a), g(u1)} = {u2, u1} ∈ E(G). Now let x ∈ g−1(g(a)) and let

y ∈ g−1(g(u1)). Clearly, x = a and so {x, y} 6∈ E(G). Hence g 6∈ hEnd(G) as required.
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Secondly, suppose G is a union of n(≥ 2) isolated vertices, say, a1, a2, . . . , an, and m (≥ 2)

components K2s, say, {x1, y1}, {x2, y2}, . . . , {xm, ym}. Define a mapping g from V (G) to itself

by the following rule:

g(xi) = x1 and g(yi) = y1 for any i ∈ {1, 2, . . . , m};

g(a1) = x2 and g(aj) = y2 for any j ∈ {2, 3, . . . , n}.

It is easy to check g ∈ End(G). Notice {g(a1), g(a2)} = {x2, y2} ∈ E(G). However, since

g−1(g(a1)) = g−1(x2) = {a1} and g−1(g(a2)) = g−1(y2) = {a2, a3, . . . , an}, so for any s ∈

g−1(g(a1)) and any t ∈ g−1(g(a2)), {s, t} 6∈ E(G). Thus g 6∈ hEnd(G). 2

Lemma 2.9 Suppose G is a non-connected bipartite graph without isolated vertices. In either

of the following two cases, End(G) 6= hEnd(G):

Case 1. There exists a component Gi such that diam(Gi) ≥ 3;

Case 2. Any component Gi has diam(Gi) ≤ 2 and there exists a component Gi such that

Gi = Km,n(m, n ≥ 2).

Proof Case 1. Suppose G has n(≥ 2) components G1, G2, . . . , Gn such that Gi 6= K1 for any

i ∈ {1, 2, ... , n} and diam(G1) ≥ 3. Clearly there exists a geodesic line P with length 3 in G1, say,

P = u1u2u3u4. Since G has no isolated vertices, there exists an edge e ∈ E(G2 ∪G3 ∪ · · · ∪Gn),

say, e = {a, b}. By Proposition 1.4, there exists f ∈ Idpt(G1) such that If = P and g ∈

Idpt(G2 ∪ G3 ∪ · · ·Gn) such that Ig = e.

Now define a mapping h from V (G) to itself by the following rule:

h(x) = u1 if x ∈ f−1(u1) ∪ f−1(u3);

h(x) = u2 if x ∈ f−1(u2) ∪ f−1(u4);

h(x) = u3 if x ∈ g−1(a);

h(x) = u4 if x ∈ g−1(b).

Obviously, the mapping h is well-defined. Let x, y ∈ G with {x, y} ∈ E(G). First suppose

{x, y} ∈ E(G1), then {f(x), f(y)} ∈ E(If ) = E(P ). If {f(x), f(y)} = {u1, u2}, say, f(x) = u1

and f(y) = u2, then {h(x), h(y)} = {u1, u2} ∈ E(G1) ⊆ E(G). If {f(x), f(y)} = {u2, u3} or

{f(x), f(y)} = {u3, u4}, we may similarly show {h(x), h(y)} ∈ E(G). Now suppose {x, y} ∈

E(G2 ∪ G3 ∪ · · ·Gn), we may prove {h(x), h(y)} ∈ E(G) in an analogous manner. Hence h ∈

End(G). By Lemma 2.2, f(u2) = u2 and g(a) = a, and so {h(u2), h(a)} = {u2, u3} ∈ E(G).

Since h−1(h(u2)) = h−1(u2) ⊆ V (G1) and h−1(h(a)) = h−1(u3) ⊆ V (G2 ∪ G3 ∪ · · · ∪ Gn),

{x, y} 6∈ E(G) for any x ∈ h−1(h(u2)) and any y ∈ h−1(h(a)). Hence h 6∈ hEnd(G).

Case 2. Assume G has k(≥ 2) components G1, G2, . . . , Gk. Without loss of generality,

suppose G1 = Km,n (m, n ≥ 2). Let G1 = (A ∪ B, E) with |A| = m ≥ 2 and |B| = n ≥ 2.

Let a1, a2 ∈ A and b1, b2 ∈ B, and let e = {a1, b1} ∈ E(G1). Clearly, there exists an edge

e1 = {c, d} ∈ E(G2 ∪ · · · ∪ Gk). Then by Proposition 1.4, there exists f ∈ Idpt(G1) such that

If = e and g ∈ Idpt(G2 ∪ · · · ∪ Gk) such that Ig = e1.

Now we define a mapping h from V (G) to itself by the following rule:

h(x) = f(x) if x ∈ G1;

h(x) = a2 if x ∈ g−1(c);
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h(x) = b2 if x ∈ g−1(d).

It is easy to see that the mapping h is well-defined. Let x, y ∈ G with {x, y} ∈ E(G). If

{x, y} ∈ E(G1), then {h(x), h(y)} = {f(x), f(y)} ∈ E(G1) ⊆ E(G); if {x, y} ∈ E(G2 ∪ · · · ∪Gk),

then {g(x), g(y)} = {c, d}, say, g(x) = c and g(y) = d, and so {h(x), h(y)} = {a2, b2} ∈ E(G).

Thus h ∈ End(G). Since c ∈ Ig and g ∈ Idpt(G2 ∪ · · · ∪ Gk), by Lemma 2.2, g(c) = c, i.e.,

c ∈ g−1(c); similarly, since b1 ∈ If and f ∈ Idpt(G1), f(b1) = b1. Thus {h(c), h(b1)} = {a2, b1} ∈

E(G). However, h−1(h(c)) = h−1(a2) ⊆ V (G2 ∪ · · · ∪ Gk) and h−1(h(b1)) = h−1(b1) ⊆ V (G1),

so for any s ∈ h−1(h(c)) and any t ∈ h−1(h(b1)), {s, t} 6∈ E(G). Hence h 6∈ hEnd(G). 2

The following lemma can be proved in a routine manner.

Lemma 2.10 Let G be a connected bipartite graph. Then

(i) diam(G) = 0 if and only if G = K1;

(ii) diam(G) = 1 if and only if G = K2;

(iii) diam(G) = 2 if and only if G = Km,n with max{m, n} ≥ 2.

Now we present the main theorem of this paper, which characterizes E-H-unretractive bipar-

tite graphs, as follows:

Theorem 2.11 Let G be a bipartite graph with n (≥ 1) components. Then G is E-H-unretractive

if and only if G belongs to one of the following cases:

(1) G is a tree;

(2) n = 1 and diam(G) ≤ gir(G) − 2;

(3) n ≥ 2 and each component is K1, i.e., G = Kn;

(4) n ≥ 2, and each component is = K2 or K1,m (m ≥ 2) (i.e., a star);

(5) n ≥ 2, and exactly one component is K1 while any of the other components is K2;

(6) n ≥ 2, and exactly one component is K2 while any of the other components is K1.

Proof Sufficiency is by Lemmas 2.6, 2.7, 2.8 and Theorem 2.3.

Necessity. We consider the graph G separately as containing isolated vertices and not con-

taining any isolated vertices.

Firstly, we suppose G is a non-connected bipartite graph with isolated vertices. Then by

Lemma 2.10 there are two cases to be considered as follows, where the second case may be

divided into four subcases:

Case 1. There exists a component Gi such that diam(Gi) ≥ 2;

Case 2. G = mK2 ∪ nK1 where m ≥ 0, n ≥ 1 and m + n ≥ 2;

Subcase 1. m = 0, n ≥ 2, i.e., G = Kn(n ≥ 2);

Subcase 2. m = 1, n ≥ 1, i.e., G = K2 ∪ Kn(n ≥ 1);

Subcase 3. m ≥ 2, n = 1, i.e., G = mK2 ∪ K1(m ≥ 2);

Subcase 4. m ≥ 2, n ≥ 2, i.e., G = mK2 ∪ nK1(m ≥ 2, n ≥ 2).

By Lemma 2.9, for Case 1 or Subcase 4 of Case 2, End(G) 6= hEnd(G).

Secondly, we suppose G is a non-connected bipartite graph without isolated vertices. Then

there are two cases to be considered as follows, where the second case may be divided into two
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subcases by Lemma 2.10:

Case 1. There exists a component Gi such that diam(Gi) ≥ 3;

Case 2. Any component Gi has diam(Gi) ≤ 2:

Subcase 1. There exists a component Gi such that Gi = Km,n (m, n ≥ 2);

Subcase 2. Any component Gi = K2 or Gi = K1,n (n ≥ 2).

By Lemma 2.10, for Case 1 and Subcase 1 of Case 2, End(G) 6= hEnd(G).

Therefore, combining Theorem 2.3 we complete the proof. 2
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