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Abstract In this paper, two iterative schemes for approximating common element of the set of
zero points of maximal monotone operators and the set of fixed points of a kind of generalized
nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are
proposed. Two strong convergence theorems are obtained and their applications on finding the
minimizer of a kind of convex functional are discussed, which extend some previous work.
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1. Introduction and preliminaries

During the past 20 years or so, many efforts have been done to the construction of iterative
schemes to approximate zero points of maximal monotone operators or to approximate fixed
points of nonexpansive mappings in Hilbert spaces. Can we construct iterative schemes to be
strongly convergent to both zero points of maximal monotone operators and the fixed points of
nonexpansive mappings in more general space than Hilbert spaces? We shall give an answer in
this paper, which can be regarded as an extension or complement of our previous work in [1-4].

First, we shall give a definition of generalized nonexpansive mapping in the sense of Lyapunov
functional which is reduced to nonexpansive mapping in the common sense in Hilbert spaces.
Then, we present two new iterative schemes with errors which are proved to be strongly conver-
gent to common element of the set of zero points of maximal monotone operators and the set of
fixed points of the generalized nonexpansive mappings in a real uniformly smooth and uniformly
convex Banach space. Moreover, it is shown that some results obtained by Martinez-Yanes and

Xu in [5] and Solodov and Svaiter in [6] are special cases of our results in the case of Hilbert

Received date: 2007-03-09; Accepted date: 2007-09-07
Foundation item: the National Natural Science Foundation of China (No.10771050).



284 WEI' L and ZHOU H'Y

spaces. Finally, the new iterative schemes are applied to find the minimizer of one kind of convex
functionals.
Now , let F be a real Banach space with norm || - ||, and E* be its dual space. The normalized

duality mapping J : E — 2F7 is defined as follows:
J(@) ={f € E*: (&, f) = ll=|[ - IF 1, 1] = ll=[1}, @ € B,

where (-, -) denotes the generalized duality pairing between E and E*. We use “—” and “w-lim”
to denote strong and weak convergence in E or in E*, respectively.

A multi-valued operator T : E — 2" with domain D(T) = {z € E : Tz # ()} and range
R(T)=U{Tz:2 € D(T)} is said to be monotone if (z1 — x2,y1 — y2) > 0, for Vz; € D(T') and
yi € Tx;,i =1,2. A monotone operator T is said to be maximal monotone if R(J+rT) = E*, for
Vr > 0. For a monotone operator T, we denote by 7710 = {x € D(T) : 0 € Tz} the set of zero
points of T' . For a single-valued mapping S : F — E, we denote by Fix(S) = {x € E: Sx = a}
the set of fixed points of S.

"8 The duality mapping J has the following properties:

Lemma 1.1!
(i) If E is a real reflexive and smooth Banach space, then J : E — E* is single-valued;
(ii) Yz € E, VX € R, J(Az) = AJx;
(iii) If E is a real uniformly convex and uniformly smooth Banach space, then J~1 : E* — E
is also a duality mapping. Moreover, both J and J~! are uniformly continuous on each bounded

subset of E or E*, respectively.

Lemma 1.28] Let E be a real smooth and uniformly convex Banach space, and T : E — 2F
be a maximal monotone operator. Then T~'0 is a closed and convex subset of E and the
graph of T, G(T), is demi-closed in the following sense: V{x,} C D(T) with =, — = in E, and
Yyn € Txpwith y, — y in E* imply that x € D(T) and y € Tx.

Definition 1.1'=% Let E be a real smooth and uniformly convex Banach space and T :
E — 277 be a maximal monotone operator. For Vr > 0, define the operator QT - E — E by
Qfr = (J+rT) Y Jx, forx € E.

Definition 1.2['=4 Let F be a real smooth Banach space. Then the Lyapunov functional
¢: E x E— RY is defined as follows:

ez, y) = 2| = 2(z. 5(y)) + [yl
forVa,y € E and j(y) € J(y).

Lemma 1.3'~% Let F be a real reflexive, strictly convex, and smooth Banach space, let C' be
a nonempty closed and convex subset of F, and let x € E. Then there exists a unique element
xo € C such that o(xg,z) = min{p(z,x) : z € C}.

In this case, we can define the mapping Q¢ of E onto C by Qcx = xp, for Vx € E. And,
Q¢ is called the generalized projection operator from E onto C. It is easy to see that Q¢ is

coincident with the metric projection P in a Hilbert space.
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Lemma 1.4[1-4

Let E be a real reflexive, strictly convex and smooth Banach space, let C
be a nonempty closed and convex subset of E, and let x € E. Then, for Vy € C, ¢(y,Qcx) +

@(chv JJ) < so(y, JJ)

Lemma 1.5'=4 Let E be a real smooth and uniformly convex Banach space, and let {z,,} and
{yn} be two sequences of E. If either {z,} or {y,} is bounded and ¢(z,,y,) — 0, as n — oo,

then x,, — y, — 0, as n — oo.

Lemma 1.61—4

Let E be a real reflexive, strictly convex and smooth Banach space and
T : E — 2% be a maximal monotone operator with T='0 # (. Then for Vx € E, y € T~'0 and
r > 0, we have

oy, Qrz) + (Qr ) < p(y, ).
Lemma 1.7!=4 Let E be a real smooth Banach space, let C be a convex subset of E, let & € E
and xg € C. Then ¢(xg,z) = inf{p(z,z) : z € C} if and only if (z — xg, Jrog — Jx) > 0, Vz € C.

Definition 1.3 Let E be a real Banach space. Then S : E — FE is called a nonexpansive

mapping in the sense of Lyapunov functional if p(Sz, Sy) < ¢(x,y), for Va,y € E.

Remark 1.1 If F is reduced to a real Hilbert space H, then S is reduced to a nonexpansive

mapping in the common sense that || Sz — Sy|| < ||z — y||, for Vo, y € H.

Lemma 1.8 Let E be a real smooth and uniformly convex Banach space. If S : E — FE is
defined as that in Definition 1.3, then Fix(S) is a convex and closed subset of E.

Proof In fact, we only need to prove the case that Fix(S) # 0. For Vx,y € Fix(S),Vt € [0,1],
let z =tz + (1 —t)y. Then
(2, 8z) =t([ll* — 2(x, JS2) + [S2]1) + (1 = ) (llyll* — 2{y, JS2) + [|S2]|*)—
thall* = (1 = )llyll* + 2]

=tp(z, 8z) + (1 = t)p(y, Sz) — tllal® — (1 = t)lly]l* + |2

<tp(z,2) + (1= )y, 2) — tllz]* = 1= Ollyl* + [|21* = (2, 2) = 0.
By using Lemma 1.5, we know that z = Sz, which implies that Fix(S) is a convex subset of E.

Vi, € Fix(S) such that z, — =z, we can easily see from Definition 1.3 that ¢(Sz,,Sz) <

¢(xn,z) — 0. Then Lemma 1.5 implies that Sz, — Sz, as n — oo. So z € Fix(S). This
completes the proof. O

2. Strong convergence of the new iterative schemes

Throughout this section, we assume that E is a real uniformly smooth and uniformly convex
Banach space, J : E — E* is weakly sequentially continuous, S : E — FE is nonexpansive in
the sense of Lyapunov functional and is weakly sequentially continuous, and T : E — 27" is a

maximal monotone operator with 770 (| Fix(S) # 0.
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Theorem 2.1 The sequence {x,} generated by the following scheme:

T € E,To >0

Yn = Q?n (xn + en)

Jzn = anJz, + (1 — an)Jyn

Jty = B, + (1 — Bn)J Sz

Hy,={veE:pvz) < ano(v,z,)+ (1 —an)p(v,zn +en)}
Vn = {1} € E : <P(Uvun) S 67190(”5 In) + (1 - 6")90(1)5 Zﬂ)}
Wn={2€ E:{(z—x,,Jrg— Jr,) <0}

Tn+1 = QHanannfﬂoaTL: 0,1,2,...
converges strongly to Qp-19 rix(s)®o provided
(i) {an},{Bn} C[0,1) with o, <1 — 61 and B, <1 — 9, for some 61,062 € (0,1);

(ii)) {rn} C (0,400) with inf,>or, > 0, and

(iii) the error sequence {e,} C E such that |le,| — 0, as n — oo.

Proof We split the proof into five steps.
Step 1. H,, V,, and W,, are closed and convex subsets of F.
Notice the facts that

(v, 2n) < anp(v, ) + (1 — an)p(v, T, + ) <= HanQ - aonnH2 — (I —an)||zn + enH2
<2(w,Jzn — apdan, — (1 — ap)J(x, + e,))

and

(v, un) < Brp(v,zn) + (1 = Bn)e(v, 2n)
= (1- ﬁn)l|zn”2 - ||un||2 + ﬁonnHQ > 2<U= (1 — Bn)Jzn + B Tn — Jun>7

we can easily know that H, and V,, are closed and convex subsets of F.
It is obvious that W, is also a closed and convex subset of E.
Step 2. T~'0NFix(S) C H, NV, W, for each nonnegative integer n.
To observe this, take p € T10 (N Fix(S).
From the definition of maximal monotone operator, we know that there exists yo € E such

that yo = QT (¢ + €g). It follows from Lemma 1.6 that ¢(p, o) < ¢(p, 7o + €o). Then

To

o(p, 20) < app(p,z0) + (1 — ao)p(p, yo) < aop(p, zo) + (1 — ao)e(p, zo + €o),

which implies that p € Hy. Moreover, from Definition 1.3, we know that

©(p,uo0) < Bop(p, o) + (1 — Po)e(p, Sz0) < Bow(p, zo) + (1 — Bo)w(p; 20),

which implies that p € V5. On the other hand, it is clear that p € Wy = E. Then p €
Hy (Vo [N Wo, and therefore z1 = Q g, v, | woZo is well defined.

Suppose that p € Hy,—1 (Vi1 () Wh—1 and z,, is well defined for some n > 1. Then there
exists y,, such that y, = Q;Fn (x5, + ep). Lemma 1.6 implies that ¢(p, yn) < @(p, pn, + €,). Thus

<P(p, Zn) < an‘/)(pa zn) + (1 - an)‘/)(pa yn) < an‘/)(pa In) + (1 - an)‘/)(pa Tn + en)v
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which implies that p € H,,. It can also be seen from Definition 1.3 that p € V,,. It follows from
Lemma 1.7 that:

(p—2n, Jxo — Jn) = (P~ QH,_ A Vior A W1 20, JT0 — JQH, _, Vi1 ) W1 T0) <0,

which implies that p € W,,. Hence z,11 = Q#, 0 v, nw,%o is well defined. Then by induction,
the sequence generated by (2.1) is well defined, and 70 Fix(S) C H, |V, W, for each
n > 0.

Step 3. {z,} is a bounded sequence of E.

In fact, for Vp € T710NFix(S) C H,, (Vi [ Wh, it follows from lemma 1.4 that

©o(p, Qw, xo) + ©(Qw, xo, o) < ©(p, xo).

From the definition of W,, and Lemmas 1.3 and 1.7, we know that z, = Qw, zo, which
implies that ¢(p, 2,,) + ©(zn, o) < ©(p, 2o). Therefore, {x,} is bounded.

Step 4. w(xy,) C T7'0NFix(S), where w(x,) denotes the set consisting all of the weak limit
points of {z,}.

From the facts that x, = Qw, z0, Tn+1 € W, and Lemma 1.4, we have

@(InJrl; In) + @(Inv xO) S @(InJrlv .I()).

Therefore, lim,, o ©(Tn,xo) exists. Then ¢(zy41,x,) — 0, which implies from lemma 1.5 that

Tpt1 — Tn, — 0, as 1 — o00. Since x,41 € H,, then

O(Tnt1s2n) < n@(@nt1,2n) + (1 — an)@(Tnt1, Tn + €5). (2.2)

Notice that
O(Tnt1,Tn + en) — P(Tnt1,Tn) = [|[Tn + en||2 - HanQ + 2(znt1, Jrn — J(T0 + €n))- (2.3)

Since J : F — E* is uniformly continuous on each bounded subset of F and ||e,| — 0, we know
from equality (2.3) that (241, 2, + €,) — 0, which implies that ¢(@,41,2,) — 0 by (2.2).

Since 11 € V,,, we have

@(InJrly un) S 6n§0($n+17 xn) + (1 - 671)90(In+17 Zn) (24)

Therefore, p(zp41,un) — 0, as n — oo. Using Lemma 1.5, we know that 2,11 — 2z, — 0,
Tpt1 — Up — 0, as n — oo. Since both J: F — E* and J~1: E* = E are uniformly continuous
on bounded subsets, we have x, —y, — 0, as n — oco.

From Step 3, we know that w(z,,) # 0. Then Vq € w(x,,), there exists a subsequence of {z,,},
for simplicity we still denote it by {z,} , such that x,, — ¢, as n — oo. Therefore u, — g,
zn — qand y, — ¢, as n — Q0.

Since both J and S are weakly continuous, ¢ = Sq. From iterative scheme (2.1), we know
that there exists v,, € Ty, such that r,v, = J(z, +e,) — Jyn. Then v, — 0, as n — co. Lemma
1.2 implies that ¢ € T710.

Step 5. xn — ¢" = Q110 Fix(5)T0, &S N — 00.
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Let {z,,} be any subsequence of {x,} which is weakly convergent to ¢ € T—10(Fix(S).
Since rp11 = Q,, v, N W, Zo and ¢* € TN Fix(S) C Hp Vi N Wa, we have o(z,41,70) <
w(q*, o). Then

©(xn, q") = @(zn, z0) + ©(x0,q") — 2(xn — x0, J¢* — Jx0)
S QO(Q*,CCQ) + 90(550761*) - 2<xn — X, Jq* - JLL'0>,

which yields

hmsup @(Inzvq*) < Sﬁ(q*a IO) =+ @(I07 q*) - 2<q — X0, ']q* - J$0>
=2(¢* —q,J¢* — Jxg) < 0.

Hence ¢(xp,,q*) — 0, as i — oo. It follows from Lemma 1.5 that z,, — ¢*, as i — oco. This
means that the whole sequence {x,} converges weakly to ¢* and that each weakly convergent
subsequence of {z,,} converges strongly to ¢*. Therefore, x,, — ¢* = Q1100 Fiz(s)T0, aS N — 00.

This completes the proof. O

Remark 2.1 If F is reduced to a real Hilbert space H, then an equals to JTTn = +r,T) L.
If, moreover, 8, = 0 and S = I, then iterative scheme (2.1) is reduced to the following one which

is introduced by Yanes and Xu in [5]:

xo € H chosen arbitrarily,
Yn = QnZpn + (1 — an)JTTn (Tn +en)
Hy,={veH: |y, — UH2 < lzn — U||2 +2(1 —an)(zn —v,en) + ||enH2},n >0 (2.5)
Won={2€H:{z—x,,x0—2,) <0},n>0
Tn+1 = P, nw,To,n > 0.
They proved that if 7710 # (), then the sequence {z,,} generated by (2.5) converges strongly to
Pr-1gz¢ provided (i) oy, <1 — 6 for some 6 € (0,1), (ii) inf,, r, > 0, and (iii) ||e,|| — O.

Remark 2.2 If F is reduced to a real Hilbert space H, o, = 0,3, =0,¢e, =0 and S = I, then
(2.1) includes the following iterative scheme introduced by Solodov and Svaiter in [6]:
xo € H,
1
0=wv, + T_(yn - In)vvn € TYn

H,={z€ H:{(z—yn,vn) <0} (2.6)
Wy,={2€H:(z—xp,x0—xn) <0},n>0

Tn+1 :PHnﬂWn{E(),TLZO,l,Q,... .

They proved that if 7710 # ) and lim inf, . r, > 0, then the sequence {x,} generated by (2.6)

converges strongly to Ppr-1¢xg.

Corollary 2.1 Suppose E and S are the same as those in Theorem 2.1. Fori =1,2,...,m,
let T; : E — 2F" be maximal monotone operators. Denote by D := (", T, '0(Fix(S) and
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suppose that D # (). Then the sequence {z,} generated by scheme:

20 € E,rg; >0,0=1,2,...,m

Yn,i = Q;:F:L(xn +en),i=1,2,....m

Jzni=nidtn + (1 —ani)JYnii=1,2,....m

JUn i = Bnidtn + (1 — Pni)ISznii=1,2,...,m

Hyi={veE:puzn) < anipz,) +(1—an)p,x, +en)}i=1,2,...,m

Vn,i = {U e E: QD(’U, un,i) < ﬁn,i‘p(vaxn) + (1 - ﬁn,i)(p(va Zn,i)}ui = 17 27 e,

Hn = ﬁ Hn,i m Vn,i
i=1

Wn={2€E:{(z—x,,Jrg— Jx,) <0}

Toy1 = Qu, O v.Ow,To,n =0,1,2,...

(2.7)

converges strongly to Qpxo provided

(i) {an,i}t,{Bni} C[0,1) with a,,; < 1— 6y and B, ; < 1 — 82, for some 61,05 € (0,1),1 =
1,2,....mandn=0,1,2,...;

(ii)) {rn.} C (0,4+00) with inf,>¢7n,; > 0,i=1,2,...,m; and
(iii) |len]] — 0, as n — oo.
Similar to the proof of Theorem 2.1, we have the following result:

Theorem 2.2 The sequence {x,} generated by the following scheme:

zog € E,rg >0

Yn = Q?n (xn + en)

Jzn = andJzo + (1 — an)JyYn

Jup = BnJao+ (1 — 5n)J Sz,

H,={veE:puz) <anp,z9)+ (1 —an)pv,z, +e,)}
Vi ={ve E:p,un) < Bnp(v,z0) + (1 = Bn)p(v, 20)}
Wo={z2€ F:<z—uxy,,Jrg— Jax, >< 0}

Tn+1 :QHnnVnanfL'Q,n:O,l,2,...

converges strongly to Qr-19n Fiz(s)To provided
(i) {an},{Bn} C[0,1) such that o, — 0,3, — 0, as n — oo,
(ii) inf,>or, > 0, and
(iii) |len]] — 0, as n — oo.

Remark 2.3 If E is reduced to a real Hilbert space H, 8, = 0 and S = I, then (2.8) is reduced
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to the following one which is similar to that in [5]:

x9 € H chosen arbitrarily,

Yn = anzo + (1 — an)JTTn (X +en)

Hy={veH: |yn—vl* < llzn —vl* + an(zol* + 2(zn — 20,))
+2(1 — an){@n — v, ) + (1 — O‘n)HenHQ - aonnHQ}
Wp={veH: {(xy,—v,z, —39) <0},n>0

(2.9)

Tnt+1 = Py, nw,zo,n > 0.

Moreover, if T710 # (), then the sequence {x,} generated by (2.9) converges strongly to
Pr-1gx provided

(i) a, —0,asn — oo,

(ii) inf,r, >0, and

(iii) |len|| — 0, as n — oo.

Corollary 2.2 Suppose E, S, T; and D are the same as those in Corollary 2.1. If D # (), then
the sequence {x,} generated by scheme:

0 € E,rg; >0,1=1,2,...,m

Yn,i = TTM(:EH +en),i=1,2,...,m

Jzni = onidxo+ (1 — ani)Jyni i =1,2,...,m

Juni = PnidJro+ (1 — Bni)JSznii=1,2,...,m

Hy,;={veFE:owzn) <anip,20) + (1 —ansi)pv,2n +en)}ti=1,2,...,m

Vn,i — {U e E: @(Uaun,i) S ﬁn,i@(vu :EO) + (1 - ﬁn,i)@(vu Zn,i)}7i = 17 27 o,

Hn = ﬁ Hn,i mVn,z
i=1

W,={2z€ FE:{(z—xpn,Jrg— Ja,) <0}

Tnt1 = Qu, A w,To,n=0,1,2,...

(2.10)

converges strongly to Qpxo provided
(1) {an,i},{Bn,i} C[0,1) such that o, ; — 0 and B, ; — 0, for i =1,2,...,m, as n — oo;
(ii) {rn.:} C (0,400) with inf, >0 7p; > 0,i=1,2,...,m; and
(iii) |len]| — 0, as n — oo.

Remark 2.4 From Theorems 2.1 and 2.2, we can see that the iterative schemes (2.1) and (2.8)

are not only strongly convergent to zero point of maximal monotone operator 7', but also strongly

convergent to fixed point of the generalized nonexpansive mapping S.

3. Applications

Definition 3.1 Let f : E — (—o0, +00] be a proper convex and lower semi-continuous function.
Then the subdifferential f of f is defined by:

of(z) ={veE": fy) = f(z) +{y—2,v), Vy€E}
forVz € E.
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Theorem 3.1 Let E, S, {an},{6n},{rn} and {e,} be the same as those in Theorem2.1. Let
f: E — (—o00,+00] be a proper convex and lower semi-continuous function. Let {x,} be the

sequence generated by the following scheme:

zog € E,rg >0

o = argmincp/(2) + 5 zall = - (2 T o + e}

Jzn = andx, + (1 — an)Jyn

Juy = B, + (1 — Bn)J Sz (3.1)
H,={veE:puz) <anp,z,) + (1 —an)pv,z, +e,)}

Vn = {1} € E : <P(Uvun) S 57180(”,%1) + (1 - 671)90(”5271)}
Wo={2€FE:{(z—zy,,Jxg— Jx,) <0}

Tnt+1 = QHnﬂVnﬂanmn: 0,1,2,... .
If (0f) 'O N Fix(S) # 0, then {x,,} converges strongly to Qs p)~100) Fix(s)Zo0-

Proof Since f : E — (—o00,400] is a proper convex and lower semi-continuous function, the

subdifferential f of f is a maximal monotone operator form E into E*. We also know that

. 1 1
o = axgmin ¢ o{1(2) + 5 —llznl = =2, T (n + en))}
is equivalent to

1 1
0€0f(yn) + —Jyn — T—J(xn +en).

Tn
Thus we have vy, = Q?f (, + €n). Theorem 2.1 implies that {z,} strongly converges to
Qa5)-10n Fix(s)To, as n — oo. This completes the proof. O

Similarly, we have:

Theorem 3.2 Let E, S, {an},{6n}, {rn} and {e,} be the same as those in Theorem 2.2. Let
f: E — (—o00,+00| be a proper convex and lower semi-continuous function. Let {x,} be the

sequence generated by the following scheme:

LL‘QEE,T‘0>O

. 1 1
o = argmin () + g llenl = (2, T+ )}
Jzn = andJzo + (1 — an)JyYn

Hy, ={v e E:p )< anp(v,z0) + (1 —an)p(v,z, +en)}
Vn = {1} € E : <P(Uvun) S 67190(”5 IO) + (1 - 6")90(1)5 Zﬂ)}
Wo={z2€ FE:{(z—uzy,,Jxg— Jx,) <0}

Tn+1 = QHnﬂVnﬂan07n: 071727"' .
If (8f)~*0 N Fix(S) # 0, then the result of Theorem 3.1 is still true.

Remark 3.1 Theorems 3.1 and 3.2 are extensions of Theorem 2 in [2] and Theorem 4.1 in [4]

in the sense that the sequences defined by (3.1) and (3.2) are not only strongly convergent to
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the minimizer of f, but also strongly convergent to a fixed point of a generalized nonexpansive

mapping.
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