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Abstract In this paper, two iterative schemes for approximating common element of the set of

zero points of maximal monotone operators and the set of fixed points of a kind of generalized

nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are

proposed. Two strong convergence theorems are obtained and their applications on finding the

minimizer of a kind of convex functional are discussed, which extend some previous work.
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1. Introduction and preliminaries

During the past 20 years or so, many efforts have been done to the construction of iterative

schemes to approximate zero points of maximal monotone operators or to approximate fixed

points of nonexpansive mappings in Hilbert spaces. Can we construct iterative schemes to be

strongly convergent to both zero points of maximal monotone operators and the fixed points of

nonexpansive mappings in more general space than Hilbert spaces? We shall give an answer in

this paper, which can be regarded as an extension or complement of our previous work in [1–4].

First, we shall give a definition of generalized nonexpansive mapping in the sense of Lyapunov

functional which is reduced to nonexpansive mapping in the common sense in Hilbert spaces.

Then, we present two new iterative schemes with errors which are proved to be strongly conver-

gent to common element of the set of zero points of maximal monotone operators and the set of

fixed points of the generalized nonexpansive mappings in a real uniformly smooth and uniformly

convex Banach space. Moreover, it is shown that some results obtained by Martinez-Yanes and

Xu in [5] and Solodov and Svaiter in [6] are special cases of our results in the case of Hilbert
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spaces. Finally, the new iterative schemes are applied to find the minimizer of one kind of convex

functionals.

Now , let E be a real Banach space with norm ‖·‖, and E∗ be its dual space. The normalized

duality mapping J : E → 2E∗

is defined as follows:

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. We use “→” and “w-lim”

to denote strong and weak convergence in E or in E∗, respectively.

A multi-valued operator T : E → 2E∗

with domain D(T ) = {x ∈ E : Tx 6= ∅} and range

R(T ) =
⋃

{Tx : x ∈ D(T )} is said to be monotone if 〈x1 − x2, y1 − y2〉 ≥ 0, for ∀xi ∈ D(T ) and

yi ∈ Txi, i = 1, 2. A monotone operator T is said to be maximal monotone if R(J +rT ) = E∗, for

∀r > 0. For a monotone operator T, we denote by T−10 = {x ∈ D(T ) : 0 ∈ Tx} the set of zero

points of T . For a single-valued mapping S : E → E, we denote by Fix(S) = {x ∈ E : Sx = x}

the set of fixed points of S.

Lemma 1.1[7,8] The duality mapping J has the following properties:

(i) If E is a real reflexive and smooth Banach space, then J : E → E∗ is single-valued;

(ii) ∀x ∈ E, ∀λ ∈ R, J(λx) = λJx;

(iii) If E is a real uniformly convex and uniformly smooth Banach space, then J−1 : E∗ → E

is also a duality mapping. Moreover, both J and J−1 are uniformly continuous on each bounded

subset of E or E∗, respectively.

Lemma 1.2[8] Let E be a real smooth and uniformly convex Banach space, and T : E → 2E∗

be a maximal monotone operator. Then T−10 is a closed and convex subset of E and the

graph of T , G(T ), is demi-closed in the following sense: ∀{xn} ⊂ D(T ) with xn ⇀ x in E, and

∀yn ∈ Txnwith yn → y in E∗ imply that x ∈ D(T ) and y ∈ Tx.

Definition 1.1[1−4] Let E be a real smooth and uniformly convex Banach space and T :

E → 2E∗

be a maximal monotone operator. For ∀r > 0, define the operator QT
r : E → E by

QT
r x = (J + rT )−1Jx, for x ∈ E.

Definition 1.2[1−4] Let E be a real smooth Banach space. Then the Lyapunov functional

ϕ : E × E → R+ is defined as follows:

ϕ(x, y) = ‖x‖2 − 2〈x, j(y)〉 + ‖y‖2,

for ∀x, y ∈ E and j(y) ∈ J(y).

Lemma 1.3[1−4] Let E be a real reflexive, strictly convex, and smooth Banach space, let C be

a nonempty closed and convex subset of E, and let x ∈ E. Then there exists a unique element

x0 ∈ C such that ϕ(x0, x) = min{ϕ(z, x) : z ∈ C}.

In this case, we can define the mapping QC of E onto C by QCx = x0, for ∀x ∈ E. And,

QC is called the generalized projection operator from E onto C. It is easy to see that QC is

coincident with the metric projection PC in a Hilbert space.
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Lemma 1.4[1−4] Let E be a real reflexive, strictly convex and smooth Banach space, let C

be a nonempty closed and convex subset of E, and let x ∈ E. Then, for ∀y ∈ C, ϕ(y, QCx) +

ϕ(QCx, x) ≤ ϕ(y, x).

Lemma 1.5[1−4] Let E be a real smooth and uniformly convex Banach space, and let {xn} and

{yn} be two sequences of E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0, as n → ∞,

then xn − yn → 0, as n → ∞.

Lemma 1.6[1−4] Let E be a real reflexive, strictly convex and smooth Banach space and

T : E → 2E∗

be a maximal monotone operator with T−10 6= ∅. Then for ∀x ∈ E, y ∈ T−10 and

r > 0, we have

ϕ(y, QT
r x) + ϕ(QT

r x, x) ≤ ϕ(y, x).

Lemma 1.7[1−4] Let E be a real smooth Banach space, let C be a convex subset of E, let x ∈ E

and x0 ∈ C. Then ϕ(x0, x) = inf{ϕ(z, x) : z ∈ C} if and only if 〈z − x0, Jx0 − Jx〉 ≥ 0, ∀z ∈ C.

Definition 1.3 Let E be a real Banach space. Then S : E → E is called a nonexpansive

mapping in the sense of Lyapunov functional if ϕ(Sx, Sy) ≤ ϕ(x, y), for ∀x, y ∈ E.

Remark 1.1 If E is reduced to a real Hilbert space H , then S is reduced to a nonexpansive

mapping in the common sense that ‖Sx − Sy‖ ≤ ‖x − y‖, for ∀x, y ∈ H .

Lemma 1.8 Let E be a real smooth and uniformly convex Banach space. If S : E → E is

defined as that in Definition 1.3, then Fix(S) is a convex and closed subset of E.

Proof In fact, we only need to prove the case that Fix(S) 6= ∅. For ∀x, y ∈ Fix(S), ∀t ∈ [0, 1],

let z = tx + (1 − t)y. Then

ϕ(z, Sz) =t(‖x‖2 − 2〈x, JSz〉 + ‖Sz‖2) + (1 − t)(‖y‖2 − 2〈y, JSz〉+ ‖Sz‖2)−

t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2

=tϕ(x, Sz) + (1 − t)ϕ(y, Sz) − t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2

≤tϕ(x, z) + (1 − t)ϕ(y, z) − t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2 = ϕ(z, z) = 0.

By using Lemma 1.5, we know that z = Sz, which implies that Fix(S) is a convex subset of E.

∀xn ∈ Fix(S) such that xn → x, we can easily see from Definition 1.3 that ϕ(Sxn, Sx) ≤

ϕ(xn, x) → 0. Then Lemma 1.5 implies that Sxn → Sx, as n → ∞. So x ∈ Fix(S). This

completes the proof. 2

2. Strong convergence of the new iterative schemes

Throughout this section, we assume that E is a real uniformly smooth and uniformly convex

Banach space, J : E → E∗ is weakly sequentially continuous, S : E → E is nonexpansive in

the sense of Lyapunov functional and is weakly sequentially continuous, and T : E → 2E∗

is a

maximal monotone operator with T−10
⋂

Fix(S) 6= ∅.
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Theorem 2.1 The sequence {xn} generated by the following scheme:






























































x0 ∈ E, r0 > 0

yn = QT
rn

(xn + en)

Jzn = αnJxn + (1 − αn)Jyn

Jun = βnJxn + (1 − βn)JSzn

Hn = {v ∈ E : ϕ(v, zn) ≤ αnϕ(v, xn) + (1 − αn)ϕ(v, xn + en)}

Vn = {v ∈ E : ϕ(v, un) ≤ βnϕ(v, xn) + (1 − βn)ϕ(v, zn)}

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}

xn+1 = QHn

⋂

Vn

⋂

Wn
x0, n = 0, 1, 2, . . .

(2.1)

converges strongly to QT−10
⋂

Fix(S)x0 provided

(i) {αn}, {βn} ⊂ [0, 1) with αn ≤ 1 − δ1 and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1);

(ii) {rn} ⊂ (0, +∞) with infn≥0rn > 0, and

(iii) the error sequence {en} ⊂ E such that ‖en‖ → 0, as n → ∞.

Proof We split the proof into five steps.

Step 1. Hn, Vn and Wn are closed and convex subsets of E.

Notice the facts that

ϕ(v, zn) ≤ αnϕ(v, xn) + (1 − αn)ϕ(v, xn + en) ⇐⇒ ‖zn‖
2 − αn‖xn‖

2 − (1 − αn)‖xn + en‖
2

≤ 2〈v, Jzn − αnJxn − (1 − αn)J(xn + en)〉

and

ϕ(v, un) ≤ βnϕ(v, xn) + (1 − βn)ϕ(v, zn)

⇐⇒ (1 − βn)‖zn‖
2 − ‖un‖

2 + βn‖xn‖
2 ≥ 2〈v, (1 − βn)Jzn + βnJxn − Jun〉,

we can easily know that Hn and Vn are closed and convex subsets of E.

It is obvious that Wn is also a closed and convex subset of E.

Step 2. T−10
⋂

Fix(S) ⊂ Hn

⋂

Vn

⋂

Wn for each nonnegative integer n.

To observe this, take p ∈ T−10
⋂

Fix(S).

From the definition of maximal monotone operator, we know that there exists y0 ∈ E such

that y0 = QT
r0

(x0 + e0). It follows from Lemma 1.6 that ϕ(p, y0) ≤ ϕ(p, x0 + e0). Then

ϕ(p, z0) ≤ α0ϕ(p, x0) + (1 − α0)ϕ(p, y0) ≤ α0ϕ(p, x0) + (1 − α0)ϕ(p, x0 + e0),

which implies that p ∈ H0. Moreover, from Definition 1.3, we know that

ϕ(p, u0) ≤ β0ϕ(p, x0) + (1 − β0)ϕ(p, Sz0) ≤ β0ϕ(p, x0) + (1 − β0)ϕ(p, z0),

which implies that p ∈ V0. On the other hand, it is clear that p ∈ W0 = E. Then p ∈

H0

⋂

V0

⋂

W0, and therefore x1 = QH0

⋂

V0

⋂

W0
x0 is well defined.

Suppose that p ∈ Hn−1

⋂

Vn−1

⋂

Wn−1 and xn is well defined for some n ≥ 1. Then there

exists yn such that yn = QT
rn

(xn + en). Lemma 1.6 implies that ϕ(p, yn) ≤ ϕ(p, xn + en). Thus

ϕ(p, zn) ≤ αnϕ(p, xn) + (1 − αn)ϕ(p, yn) ≤ αnϕ(p, xn) + (1 − αn)ϕ(p, xn + en),
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which implies that p ∈ Hn. It can also be seen from Definition 1.3 that p ∈ Vn. It follows from

Lemma 1.7 that:

〈p − xn, Jx0 − Jxn〉 = 〈p − QHn−1

⋂

Vn−1

⋂

Wn−1
x0, Jx0 − JQHn−1

⋂

Vn−1

⋂

Wn−1
x0〉 ≤ 0,

which implies that p ∈ Wn. Hence xn+1 = QHn

⋂

Vn

⋂

Wn
x0 is well defined. Then by induction,

the sequence generated by (2.1) is well defined, and T−10
⋂

Fix(S) ⊂ Hn

⋂

Vn

⋂

Wn for each

n ≥ 0.

Step 3. {xn} is a bounded sequence of E.

In fact, for ∀p ∈ T−10
⋂

Fix(S) ⊂ Hn

⋂

Vn

⋂

Wn, it follows from lemma 1.4 that

ϕ(p, QWn
x0) + ϕ(QWn

x0, x0) ≤ ϕ(p, x0).

From the definition of Wn and Lemmas 1.3 and 1.7, we know that xn = QWn
x0, which

implies that ϕ(p, xn) + ϕ(xn, x0) ≤ ϕ(p, x0). Therefore, {xn} is bounded.

Step 4. ω(xn) ⊂ T−10
⋂

Fix(S), where ω(xn) denotes the set consisting all of the weak limit

points of {xn}.

From the facts that xn = QWn
x0, xn+1 ∈ Wn and Lemma 1.4, we have

ϕ(xn+1, xn) + ϕ(xn, x0) ≤ ϕ(xn+1, x0).

Therefore, limn→∞ ϕ(xn, x0) exists. Then ϕ(xn+1, xn) → 0, which implies from lemma 1.5 that

xn+1 − xn → 0, as n → ∞. Since xn+1 ∈ Hn, then

ϕ(xn+1, zn) ≤ αnϕ(xn+1, xn) + (1 − αn)ϕ(xn+1, xn + en). (2.2)

Notice that

ϕ(xn+1, xn + en) − ϕ(xn+1, xn) = ‖xn + en‖
2 − ‖xn‖

2 + 2〈xn+1, Jxn − J(xn + en)〉. (2.3)

Since J : E → E∗ is uniformly continuous on each bounded subset of E and ‖en‖ → 0, we know

from equality (2.3) that ϕ(xn+1, xn + en) → 0, which implies that ϕ(xn+1, zn) → 0 by (2.2).

Since xn+1 ∈ Vn, we have

ϕ(xn+1, un) ≤ βnϕ(xn+1, xn) + (1 − βn)ϕ(xn+1, zn). (2.4)

Therefore, ϕ(xn+1, un) → 0, as n → ∞. Using Lemma 1.5, we know that xn+1 − zn → 0,

xn+1 − un → 0, as n → ∞. Since both J : E → E∗ and J−1 : E∗ → E are uniformly continuous

on bounded subsets, we have xn − yn → 0, as n → ∞.

From Step 3, we know that ω(xn) 6= ∅. Then ∀q ∈ ω(xn), there exists a subsequence of {xn},

for simplicity we still denote it by {xn} , such that xn ⇀ q, as n → ∞. Therefore un ⇀ q,

zn ⇀ q and yn ⇀ q, as n → ∞.

Since both J and S are weakly continuous, q = Sq. From iterative scheme (2.1), we know

that there exists vn ∈ Tyn such that rnvn = J(xn +en)−Jyn. Then vn → 0, as n → ∞. Lemma

1.2 implies that q ∈ T−10.

Step 5. xn → q∗ = QT−10
⋂

Fix(S)x0, as n → ∞.
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Let {xni
} be any subsequence of {xn} which is weakly convergent to q ∈ T−10

⋂

Fix(S).

Since xn+1 = QHn

⋂

Vn

⋂

Wn
x0 and q∗ ∈ T−10

⋂

Fix(S) ⊂ Hn

⋂

Vn

⋂

Wn, we have ϕ(xn+1, x0) ≤

ϕ(q∗, x0). Then

ϕ(xn, q∗) = ϕ(xn, x0) + ϕ(x0, q
∗) − 2〈xn − x0, Jq∗ − Jx0〉

≤ ϕ(q∗, x0) + ϕ(x0, q
∗) − 2〈xn − x0, Jq∗ − Jx0〉,

which yields

lim sup
n→∞

ϕ(xni
, q∗) ≤ ϕ(q∗, x0) + ϕ(x0, q

∗) − 2〈q − x0, Jq∗ − Jx0〉

= 2〈q∗ − q, Jq∗ − Jx0〉 ≤ 0.

Hence ϕ(xni
, q∗) → 0, as i → ∞. It follows from Lemma 1.5 that xni

→ q∗, as i → ∞. This

means that the whole sequence {xn} converges weakly to q∗ and that each weakly convergent

subsequence of {xn} converges strongly to q∗. Therefore, xn → q∗ = QT−10
⋂

Fix(S)x0, as n → ∞.

This completes the proof. 2

Remark 2.1 If E is reduced to a real Hilbert space H , then QT
rn

equals to JT
rn

= (I + rnT )−1.

If, moreover, βn ≡ 0 and S ≡ I, then iterative scheme (2.1) is reduced to the following one which

is introduced by Yanes and Xu in [5]:































x0 ∈ H chosen arbitrarily,

yn = αnxn + (1 − αn)JT
rn

(xn + en)

Hn = {v ∈ H : ‖yn − v‖2 ≤ ‖xn − v‖2 + 2(1 − αn)〈xn − v, en〉 + ‖en‖
2}, n ≥ 0

Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0}, n ≥ 0

xn+1 = PHn

⋂

Wn
x0, n ≥ 0.

(2.5)

They proved that if T−10 6= ∅, then the sequence {xn} generated by (2.5) converges strongly to

PT−10x0 provided (i) αn ≤ 1 − δ for some δ ∈ (0, 1), (ii) infn rn > 0 , and (iii) ‖en‖ → 0.

Remark 2.2 If E is reduced to a real Hilbert space H , αn ≡ 0, βn ≡ 0, en ≡ 0 and S ≡ I, then

(2.1) includes the following iterative scheme introduced by Solodov and Svaiter in [6]:



































x0 ∈ H,

0 = vn +
1

rn

(yn − xn), vn ∈ Tyn

Hn = {z ∈ H : 〈z − yn, vn〉 ≤ 0}

Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0}, n ≥ 0

xn+1 = PHn

⋂

Wn
x0, n = 0, 1, 2, . . . .

(2.6)

They proved that if T−10 6= ∅ and lim infn→∞ rn > 0, then the sequence {xn} generated by (2.6)

converges strongly to PT−10x0.

Corollary 2.1 Suppose E and S are the same as those in Theorem 2.1. For i = 1, 2, . . . , m,

let Ti : E → 2E∗

be maximal monotone operators. Denote by D :=
⋂m

i=1 T−1
i 0

⋂

Fix(S) and
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suppose that D 6= ∅. Then the sequence {xn} generated by scheme:


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
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
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
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





























































x0 ∈ E, r0,i > 0, i = 1, 2, . . . , m

yn,i = QTi

rn,i
(xn + en), i = 1, 2, . . . , m

Jzn,i = αn,iJxn + (1 − αn,i)Jyn,i, i = 1, 2, . . . , m

Jun,i = βn,iJxn + (1 − βn,i)JSzn,i, i = 1, 2, . . . , m

Hn,i = {v ∈ E : ϕ(v, zn,i) ≤ αn,iϕ(v, xn) + (1 − αn,i)ϕ(v, xn + en)}, i = 1, 2, . . . , m

Vn,i = {v ∈ E : ϕ(v, un,i) ≤ βn,iϕ(v, xn) + (1 − βn,i)ϕ(v, zn,i)}, i = 1, 2, . . . , m

Hn :=
m
⋂

i=1

Hn,i

⋂

Vn,i

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}

xn+1 = QHn

⋂

Vn

⋂

Wn
x0, n = 0, 1, 2, . . .

(2.7)

converges strongly to QDx0 provided

(i) {αn,i}, {βn,i} ⊂ [0, 1) with αn,i ≤ 1 − δ1 and βn,i ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), i =

1, 2, . . . , m and n = 0, 1, 2, . . .;

(ii) {rn,i} ⊂ (0, +∞) with infn≥0 rn,i > 0, i = 1, 2, . . . , m; and

(iii) ‖en‖ → 0, as n → ∞.

Similar to the proof of Theorem 2.1, we have the following result:

Theorem 2.2 The sequence {xn} generated by the following scheme:































































x0 ∈ E, r0 > 0

yn = QT
rn

(xn + en)

Jzn = αnJx0 + (1 − αn)Jyn

Jun = βnJx0 + (1 − βn)JSzn

Hn = {v ∈ E : ϕ(v, zn) ≤ αnϕ(v, x0) + (1 − αn)ϕ(v, xn + en)}

Vn = {v ∈ E : ϕ(v, un) ≤ βnϕ(v, x0) + (1 − βn)ϕ(v, zn)}

Wn = {z ∈ E :< z − xn, Jx0 − Jxn >≤ 0}

xn+1 = QHn

⋂

Vn

⋂

Wn
x0, n = 0, 1, 2, . . .

(2.8)

converges strongly to QT−10
⋂

Fix(S)x0 provided

(i) {αn}, {βn} ⊂ [0, 1) such that αn → 0, βn → 0, as n → ∞,

(ii) infn≥0 rn > 0, and

(iii) ‖en‖ → 0, as n → ∞.

Remark 2.3 If E is reduced to a real Hilbert space H , βn ≡ 0 and S ≡ I, then (2.8) is reduced
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to the following one which is similar to that in [5]:






































x0 ∈ H chosen arbitrarily,

yn = αnx0 + (1 − αn)JT
rn

(xn + en)

Hn = {v ∈ H : ‖yn − v‖2 ≤ ‖xn − v‖2 + αn(‖x0‖
2 + 2〈xn − x0, v〉)

+2(1 − αn)〈xn − v, en〉 + (1 − αn)‖en‖
2 − αn‖xn‖

2}

Wn = {v ∈ H : 〈xn − v, xn − x0〉 ≤ 0}, n ≥ 0

xn+1 = PHn

⋂

Wn
x0, n ≥ 0.

(2.9)

Moreover, if T−10 6= ∅, then the sequence {xn} generated by (2.9) converges strongly to

PT−10x0 provided

(i) αn → 0, as n → ∞,

(ii) infn rn > 0, and

(iii) ‖en‖ → 0, as n → ∞.

Corollary 2.2 Suppose E, S, Ti and D are the same as those in Corollary 2.1. If D 6= ∅, then

the sequence {xn} generated by scheme:


















































































x0 ∈ E, r0,i > 0, i = 1, 2, . . . , m

yn,i = QTi

rn,i
(xn + en), i = 1, 2, . . . , m

Jzn,i = αn,iJx0 + (1 − αn,i)Jyn,i, i = 1, 2, . . . , m

Jun,i = βn,iJx0 + (1 − βn,i)JSzn,i, i = 1, 2, . . . , m

Hn,i = {v ∈ E : ϕ(v, zn,i) ≤ αn,iϕ(v, x0) + (1 − αn,i)ϕ(v, xn + en)}, i = 1, 2, . . . , m

Vn,i = {v ∈ E : ϕ(v, un,i) ≤ βn,iϕ(v, x0) + (1 − βn,i)ϕ(v, zn,i)}, i = 1, 2, . . . , m

Hn :=

m
⋂

i=1

Hn,i

⋂

Vn,i

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}

xn+1 = QHn

⋂

Wn
x0, n = 0, 1, 2, . . .

(2.10)

converges strongly to QDx0 provided

(i) {αn,i}, {βn,i} ⊂ [0, 1) such that αn,i → 0 and βn,i → 0, for i = 1, 2, . . . , m, as n → ∞;

(ii) {rn,i} ⊂ (0, +∞) with infn≥0 rn,i > 0, i = 1, 2, . . . , m; and

(iii) ‖en‖ → 0, as n → ∞.

Remark 2.4 From Theorems 2.1 and 2.2, we can see that the iterative schemes (2.1) and (2.8)

are not only strongly convergent to zero point of maximal monotone operator T , but also strongly

convergent to fixed point of the generalized nonexpansive mapping S.

3. Applications

Definition 3.1 Let f : E → (−∞, +∞] be a proper convex and lower semi-continuous function.

Then the subdifferential ∂f of f is defined by:

∂f(z) = {v ∈ E∗ : f(y) ≥ f(z) + 〈y − z, v〉, ∀y ∈ E},

for ∀z ∈ E.
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Theorem 3.1 Let E, S, {αn}, {βn}, {rn} and {en} be the same as those in Theorem2.1. Let

f : E → (−∞, +∞] be a proper convex and lower semi-continuous function. Let {xn} be the

sequence generated by the following scheme:


































































x0 ∈ E, r0 > 0

yn = argminz∈E{f(z) +
1

2rn

‖zn‖
2 −

1

rn

〈z, J(xn + en)〉}

Jzn = αnJxn + (1 − αn)Jyn

Jun = βnJxn + (1 − βn)JSzn

Hn = {v ∈ E : ϕ(v, zn) ≤ αnϕ(v, xn) + (1 − αn)ϕ(v, xn + en)}

Vn = {v ∈ E : ϕ(v, un) ≤ βnϕ(v, xn) + (1 − βn)ϕ(v, zn)}

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}

xn+1 = QHn

⋂

Vn

⋂

Wn
x0, n = 0, 1, 2, . . . .

(3.1)

If (∂f)−10
⋂

Fix(S) 6= ∅, then {xn} converges strongly to Q(∂f)−10
⋂

Fix(S)x0.

Proof Since f : E → (−∞, +∞] is a proper convex and lower semi-continuous function, the

subdifferential ∂f of f is a maximal monotone operator form E into E∗. We also know that

yn = argminz∈E{f(z) +
1

2rn

‖zn‖
2 −

1

rn

〈z, J(xn + en)〉}

is equivalent to

0 ∈ ∂f(yn) +
1

rn

Jyn −
1

rn

J(xn + en).

Thus we have yn = Q∂f
rn

(xn + en). Theorem 2.1 implies that {xn} strongly converges to

Q(∂f)−10
⋂

Fix(S)x0, as n → ∞. This completes the proof. 2

Similarly, we have:

Theorem 3.2 Let E, S, {αn}, {βn}, {rn} and {en} be the same as those in Theorem 2.2. Let

f : E → (−∞, +∞] be a proper convex and lower semi-continuous function. Let {xn} be the

sequence generated by the following scheme:


































































x0 ∈ E, r0 > 0

yn = argminz∈E{f(z) +
1

2rn

‖zn‖
2 −

1

rn

〈z, J(xn + en)〉}

Jzn = αnJx0 + (1 − αn)Jyn

Jun = βnJx0 + (1 − βn)JSzn

Hn = {v ∈ E : ϕ(v, zn) ≤ αnϕ(v, x0) + (1 − αn)ϕ(v, xn + en)}

Vn = {v ∈ E : ϕ(v, un) ≤ βnϕ(v, x0) + (1 − βn)ϕ(v, zn)}

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}

xn+1 = QHn

⋂

Vn

⋂

Wn
x0, n = 0, 1, 2, . . . .

(3.2)

If (∂f)−10
⋂

Fix(S) 6= ∅, then the result of Theorem 3.1 is still true.

Remark 3.1 Theorems 3.1 and 3.2 are extensions of Theorem 2 in [2] and Theorem 4.1 in [4]

in the sense that the sequences defined by (3.1) and (3.2) are not only strongly convergent to
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the minimizer of f , but also strongly convergent to a fixed point of a generalized nonexpansive

mapping.
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