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Abstract The spectrum of weighted graphs are often used to solve the problems in the design

of networks and electronic circuits. In this paper, we derive the sharp upper bound of spectral

radius of all weighted trees on given order and edge independence number, and obtain all such

trees that their spectral radius reach the upper bound.
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1. Introduction

In this paper, we only consider simple connected graphs with positive weights. Let G be

a weighted graph on vertex set V (G) = {v1, v2, . . . , vn}, edge set E(G) 6= ∅ and weight set

W (G) = {wj > 0 : j = 1, 2, . . . , |E(G)|}, where |E(G)| is the number of edges in E(G). The

function wG : E(G) → W (G) is called a weight function of G. It is obvious that each weighted

graph corresponds to a weight function. The adjacency matrix of G is defined to be the n × n

matrix A(G) = (aij), where aij = wG(vivj) if vivj ∈ E(G), and aij = 0 otherwise. The

characteristic polynomial of G is just det(λIn −A(G)), denoted by φ(G, λ) or φ(G). Since A(G)

is a nonnegative symmetric matrix, its eigenvalues are all real numbers and its largest eigenvalue

is a positive number. The largest eigenvalue of A(G) is called the spectral radius of G and

denoted by ρ(G).

The degree of a vertex v of a weighted graph G, denoted by dG(v), is the number of edges

being incident to v in G. Let H and G be two weighted graphs. If H is a subgraph of G and

wH(e) = wG(e) for each e ∈ E(H), then H is called a weighted subgraph of G. Let H be a

weighted subgraph of G. If V (H) 6= V (G) or E(H) 6= E(G), then H is called a weighted proper

subgraph of G. If V (H) = V (G), then H is called a weighted spanning subgraph of G.

Since graphs of the design of networks and electronic circuits are usually weighted, the spec-

trum of weighted graphs is often used to solve problems. On the other hand, a graph may be

regarded as a weighted graph with weight 1 of each edge. Therefore, it is significant and nec-

essary to investigate the spectrum of weighted graphs. Fiedler M had introduced the following
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question: What is the optimal distribution of nonnegative weights (with total sum 1) among

the edges of a given graph, so that the spectral radius of the resulting matrix is minimum? He

himself showed that the optimum solution is achieved and Poljak presented a polynomial time

algorithm which finds such optimum solution[1]. Yang et al. gave an upper bound of spectral

radius of weighted trees with fixed weight set[2]. Yuan and Shu gave the second largest value

of spectral radius of weighted trees with fixed weight set[3]. In this paper, we derive the sharp

upper bound of spectral radius of weighted trees with fixed weight set on given order and edge

independence number, and obtain all such trees that their spectral radius reach the upper bound.

Lemma 1.1[3] Let u, v be two vertices of a weighted connected graph G with n vertices and

positive weights. Suppose that v1, v2, . . . , vs (vj 6= u) are some vertices of NG(v)\NG(u) (1 ≤ s ≤

dG(v)) and (x1, x2, . . . , xn)t is the Perron vector of A(G), where Bt denotes the transpose of a ma-

trix B and xi corresponds to the vertex vi (i = 1, 2, . . . , n). Let G∗ be the graph obtained from G

by deleting the edge vvi and adding the edge uvi such that wG∗(uvi) = wG(vvi) (i = 1, 2, . . . , s),

respectively. If xu ≥ xv, then ρ(G) < ρ(G∗).

Let A be a nonnegative irreducible matrix of order n. By Perron-Frobenius Theorem, the

maximal eigenvalue of B is smaller than the maximal eigenvalue of A if B ≥ 0, A − B ≥ 0

and A 6= B (see, e.g. [4, Theorem 0.7]). It is well known that the maximal eigenvalue of every

principal submatrix of order less than n of A is smaller than the maximal eigenvalue of A (see,

e.g. [4, Theorem 0.6]). Note that the adjacency matrix of a weighted connected graph with

positive weights is irreducible. Therefore, it follows that the following is true.

Lemma 1.2 Let H be a weighted proper subgraph of a connected graph G with positive weights.

Then ρ(H) < ρ(G).

2. Results and proofs

Lemma 2.1 Let G be the weighted graph obtained from two weighted graphs G1 and G2 by

joining a vertex v of G1 to a vertex u of G2 with a new edge e = vu. Then

φ(G, λ) = φ(G1, λ)φ(G2, λ) − w2
G(e)φ(G1 − v, λ)φ(G2 − u, λ).

Proof Let V (G1) = {v, v1, v2, . . . , vm}, V (G2) = {u, u1, u2, . . . , un}. Assume

NG1
(v) = {v1, v2, . . . , vk}, NG2

(u) = {u1, u2, . . . , ul}.

Write wG1
(vvi) = ai, wG2

(uuj) = bj , wG(e) = c, i = 1, 2, . . . , k; j = 1, 2, . . . , l. Let

a = (a1, a2, . . . , ak, 0, . . . , 0)1×m, b = (b1, b2, . . . , bl, 0 . . . , 0)1×n.

Then

φ(G, λ) =

∣∣∣∣∣∣∣∣∣∣

λ −a −c 0

−at λIm − A(G1 − v) 0 0

−c 0 λ −b

0 0 −bt λIn − A(G2 − u)

∣∣∣∣∣∣∣∣∣∣

.
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By applying Laplace expansion theorem to the first m + 1 rows of the determinant, we obtain

the three types of subdeterminant of order m + 1 as follows.

(I) The subdeterminant |λIm+1−A(G1)| = φ(G1, λ), which contains the first m+1 columns.

This subdeterminant corresponds to the algebraic cofactor |λIn+1 − A(G2)| = φ(G2, λ).

(II) The subdeterminant ∆, which contains the 2nd to the (m + 2)th columns. It is easy to

compute ∆ = (−1)m+1c · |λIm −A(G1 − v)| = (−1)m+1c · φ(G1 − v, λ) and its algebraic cofactor

is equal to (−1)m+2c · |λIn − A(G2 − u)| = (−1)m+2c · φ(G2 − u, λ).

(III) The other subdeterminants apart from (I) and (II). Each such subdeterminant or its

algebraic cofactor always contains a zero column. Thus at least one of each such subdeterminant

and its algebraic cofactor is equal to 0.

The result is obtained by combining (I), (II) and (III), and applying Laplace expansion

theorem. 2

Lemma 2.2 Let H be a weighted proper spanning subgraph of a weighted tree T with positive

weights. Then for λ ≥ ρ(T ), we have φ(H, λ) > φ(T, λ).

Proof Let E(T )\E(H) = {v1u1, v2u2, . . . , vsus}, where s ≥ 1. Write T0 = T and

Ti = Ti−1 − viui, i = 1, 2, . . . , s.

Then Ts = H . From Lemma 1.2, we have

ρ(T ) > ρ(T1) ≥ · · · ≥ ρ(Ts).

Since Ti−1 − vi − ui is a weighted proper subgraph of Ti−1, by Lemma 1.2, we have

ρ(T ) > ρ(T0 − v1 − u1),

and for i = 2, 3, . . . , s,

ρ(Ti−1) ≥ ρ(Ti−1 − vi − ui).

Therefore, for λ ≥ ρ(T ), we have φ(Ti−1 − vi − ui) > 0 (i = 1, 2, . . . , s). So by Lemma 2.1, for

λ ≥ ρ(T ), when i = 1, 2, . . . , s, we have

φ(Ti−1, λ) = φ(Ti, λ) − w2
Ti

(viui)φ(Ti−1 − vi − ui, λ) < φ(Ti, λ).

Therefore, the required result follows. 2

Lemma 2.3 Let v be a vertex of a weighted tree T with positive weights and at least four

vertices. Suppose that there exists a path vuz of T such that u has degree 2 and z has degree 1.

Let T ∗ be the weighted tree obtained from T by deleting the edge uz and adding the new edge

vz such that wT∗(vz) = wT (uz). Then ρ(T ) < ρ(T ∗).

Proof By Lemma 2.1, we have

φ(T, λ) = φ(T − uz, λ) − w2
T (uz)φ(T − u − z)

= λφ(T − z, λ) − w2
T (uz)φ(T − u − z),

φ(T ∗, λ) = φ(T ∗ − vz, λ) − w2
T∗(vz)φ(T ∗ − v − z)
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= λφ(T − z, λ) − w2
T (uz)φ(T ∗ − v − z).

Therefore, we have

φ(T, λ) − φ(T ∗, λ) = w2
T (uz)[φ(T ∗ − v − z, λ) − φ(T − u − z, λ)].

It is obvious that T − u − z is a weighted tree with positive weights. Since T ∗ − v − z is

a weighted proper spanning subgraph of T − u − z, by Lemma 2.2, for λ ≥ ρ(T − u − z), we

have φ(T ∗ − v − z, λ) > φ(T − u − z, λ). Note that T − u − z is a weighted proper subgraph

of T ∗, so by Lemma 1.2, we have ρ(T ∗) > ρ(T − u − z). Hence for λ ≥ ρ(T ∗), we have

φ(T ∗ − v − z, λ) > φ(T − u − z, λ), i.e., φ(T, λ) > φ(T ∗, λ). This implies the desired result. 2
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Figure 1 The special weighted tree
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Figure 2 The extreme weighted tree

Let w1 ≥ w2 ≥ · · · ≥ wn−1 > 0. For a permutation k1k2 · · · kn−1 of 12 · · · (n − 1), let

Ti(k1, k2, . . . , kn−1) = G be the weighted tree with order n and edge independence number i

shown in Figure 1. Put

∆ = λn−2i ·
i−1∏

j=1

(λ2 − w2
kn−i+j

); Jl = {av1, av2, . . . , avl}, l = 1, 2, . . . , i − 1.

By Lemma 2.1, we have

φ(G) = φ(G − av1) − w2
k1

φ(G − a − v1)

= φ(G − J1) −
w2

k1

λ2 − w2
kn−i+1

· λ2∆

= φ(G − J1 − av2) − w2
k2

φ(G − J1 − a − v2) −
w2

k1

λ2 − w2
kn−i+1

· λ2∆

= φ(G − J2) − λ2∆ ·
2∑

j=1

w2
kj

λ2 − w2
kn−i+j

= · · ·

= φ(G − Ji−1) − λ2∆ ·
i−1∑

j=1

w2
kj

λ2 − w2
kn−i+j

= · · ·

= λ2∆ − ∆ ·
n−2i∑

j=0

w2
kn−i−j

− λ2∆ ·
i−1∑

j=1

w2
kj

λ2 − w2
kn−i+j

= λn−2i

i−1∏

j=1

(λ2 − w2
kn−i+j

) · f(λ, k1, k2, . . . , kn−1).
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Where

f(λ, k1, k2, . . . , kn−1) = λ2 −
n−i∑

j=i

w2
kj

−
i−1∑

j=1

λ2w2
ki−j

λ2 − w2
kn−j

. (1)

Since each edge of Ti(k1, k2, . . . , kn−1) is a weighted proper subgraph of Ti(k1, k2, . . . , kn−1),

by Lemma 1.2, we have

ρ(Ti(k1, k2, . . . , kn−1)) > max{wkj
: j = 1, 2, . . . , n − 1}.

Therefore, ρ(Ti(k1, k2, . . . , kn−1)) is the largest root of f(λ, k1, k2, . . . , kn−1) = 0 on λ.

To p, l (1 ≤ p < l ≤ n−1), let T̃i(kl, kp) denote the weighted tree obtained from Ti(k1,k2,. . .,kn−1)

by exchanging wkp
and wkl

, and making the weights of other edges not changed. Let f(λ, kl, kp)

denote the function corresponding to Equation (1) in φ(T̃i(kl, kp)).

Lemma 2.4 Suppose that two integers p, l satisfy one of the following conditions.

(i) 1 ≤ p ≤ i − 1 < l ≤ n − i and wkl
> wkp

.

(ii) i ≤ p ≤ n − i < l ≤ n − 1 and wkl
> wkp

.

(iii) n − i + 1 ≤ p < l ≤ n − 1, wkl
> wkp

and wki+l−n
< wki+p−n

.

Then ρ(Ti(k1, k2, . . . , kn−1)) < ρ(T̃i(kl, kp)).

Proof (i) Suppose that the condition (i) holds. From Equation (1), we have

f(λ, k1, k2, . . . , kn−1) − f(λ, kl, kp) =
(w2

kl
− w2

kp
)w2

kn−i+p

λ2 − w2
kn−i+p

.

Therefore, for λ ≥ ρ(T̃i(kl, kp)), we always have f(λ, k1, k2, . . . , kn−1) > f(λ, kl, kp), i.e., φ(Ti(k1, k2,

. . . , kn−1)) > φ(T̃i(kl, kp)). This implies the desired result.

(ii) Suppose that the condition (ii) holds. From Equation (1), we have

f(λ, k1, k2, . . . , kn−1) − f(λ, kl, kp) =
λ4 − (w2

kl
+ w2

kp
+ w2

ki+l−n
)λ2 + w2

kl
w2

kp

(w2
kl
− w2

kp
)−1(λ2 − w2

kl
)(λ2 − w2

kp
)

.

Since the path P4 = up−i+1avi+l−nbi+l−n with weights

wP4
(up−i+1a) = wkl

, wP4
(avi+l−n) = wki+l−n

, wP4
(vi+l−nbi+l−n) = wkp

is a weighted proper subgraph of T̃i(kl, kp), by Lemma 1.2, we have ρ(T̃i(kl, kp)) > ρ(P4). By

Lemma 2.1, we easily obtain

φ(P4) = λ4 − (w2
kl

+ w2
kp

+ w2
ki+l−n

)λ2 + w2
kl

w2
kp

.

Therefore, for λ ≥ ρ(T̃i(kl, kp)), we always have f(λ, k1, k2, . . . , kn−1) > f(λ, kl, kp), i.e., φ(Ti(k1, k2,

. . . , kn−1)) > φ(T̃i(kl, kp)). This implies the desired result.

(iii) Suppose that the condition (iii) holds. From Equation (1), we have

f(λ, k1, k2, . . . , kn−1) − f(λ, kl, kp) =
λ2(w2

kl
− w2

kp
)(w2

ki+p−n
− w2

ki+l−n
)

(λ2 − w2
kl

)(λ2 − w2
kp

)
.

Therefore, for λ ≥ ρ(T̃i(kl, kp)), we always have f(λ, k1, k2, . . . , kn−1) > f(λ, kl, kp), i.e., φ(Ti(k1, k2,

. . . , kn−1)) > φ(T̃i(kl, kp)). This implies the desired result. 2
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Lemma 2.5 Let Ti(1, 2, . . . , n − 1) be the weighted tree of order n with weights w1 ≥ w2 ≥

· · · ≥ wn−1 > 0 and edge independence number i shown in Figure 2. Then

ρ(Ti(k1, k2, . . . , kn−1)) ≤ ρ(Ti(1, 2, . . . , n − 1)),

with equality if and only if Ti(k1, k2, . . . , kn−1) = Ti(1, 2, . . . , n − 1).

Proof If w1 = wn−1, then Ti(k1, k2, . . . , kn−1) = Ti(1, 2, . . . , n − 1), so the results hold. Next

assume w1 > wn−1. We prove the results by the following steps.

Step 1. Suppose that max{wki
, wki+1

, . . . , wkn−i
} > min{wk1

, wk2
, . . . , wki−1

}. Without loss

of generality, assume

wk1
≥ wk2

≥ · · · ≥ wki−1
, wki

≥ wki+1
≥ · · · ≥ wkn−i

.

So wki
> wki−1

. Write Ti(l1, l2, . . . , ln−1) = T̃i(ki, ki−1). To Ti(l1, l2, . . . , ln−1), repeat the above

procedure until we obtain a weighted tree Ti(s1, s2, . . . , sn−1) such that

ws1
≥ ws2

≥ · · · ≥ wsi−1
≥ wsi

≥ wsi+1
≥ · · · ≥ wsn−i

.

By Lemma 2.4 (i), we have ρ(Ti(k1, k2, . . . , kn−1)) < ρ(Ti(s1, s2, . . . , sn−1)).

Step 2. Suppose that max{wsn−i+1
, wsn−i+2

, . . . , wsn−1
} > wsn−i

. Let

wsn−i+j
= max{wsn−i+1

, wsn−i+2
, . . . , wsn−1

}.

Write Ti(t1, t2, . . . , tn−1) = T̃i(sn−i+j , sn−i). To Ti(t1, t2, . . . , tn−1), repeat the above procedure

until we obtain a weighted tree Ti(p1, p2, . . . , pn−1) such that

wpi
≥ wpi+1

≥ · · · ≥ wpn−i
≥ max{wpn−i+1

, wpn−i+2
, . . . , wpn−1

}.

By Lemma 2.4 (ii), we have ρ(Ti(s1, s2, . . . , sn−1)) < ρ(Ti(p1, p2, . . . , pn−1)).

Step 3. To Ti(p1, p2, . . . , pn−1), repeat the procedures of step 1 until we obtain a weighted

tree Ti(q1, q2, . . . , qn−1) such that

wq1
≥ · · · ≥ wqi−1

≥ wqi
≥ · · · ≥ wqn−i

≥ max{wqn−i+1
, wqn−i+2

, . . . , wqn−1
}.

By Lemma 2.4 (i), we have ρ(Ti(p1, p2, . . . , pn−1)) ≤ ρ(Ti(q1, q2, . . . , qn−1)).

Step 4. If there are α, β(1 ≤ α < β ≤ i − 1) such that wqn−i+β
> wqn−i+α

, then write

Ti(δ1, δ2, . . . , δn−1) = T̃i(qn−i+β , qn−i+α). To Ti(δ1, δ2, . . . , δn−1), repeat the above procedure

until we obtain a weighted tree Ti(m1, m2, . . . , mn−1) such that

wm1
≥ · · · ≥ wmi−1

≥ wmi
≥ · · · ≥ wmn−i

≥ wmn−i+1
≥ · · · ≥ wmn−1

.

By Lemma 2.4 (iii), we have ρ(Ti(q1, q2, . . . , qn−1)) < ρ(Ti(m1, m2, . . . , mn−1)).

Note that Ti(m1, m2, . . . , mn−1) = Ti(1, 2, . . . , n− 1) and the procedures in step 1, step 2 or

step 4 carry out at least once when Ti(k1, k2, . . . , kn−1) 6= Ti(1, 2, . . . , n − 1). So by Steps 1–4,

the desired results follow. 2

Let Ks
t be the tree obtained from K1,s+t by adding a pendent edge for each of s vertices of

degree 1. The center of K1,s+t is called the center of Ks
t . Let G be a weighted connected graph.

A path v0v1v2 · · · vk of G is called a pendent path of length k at v0 if dG(vk) = 1, dG(v0) ≥ 2
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and dG(vi) = 2 for 1 ≤ i ≤ k − 1. In particular, a pendent path of length 1 is called a pendent

edge. A vertex v of G is called an end-branch vertex if there are two non-negative integers s and

t such that G − v = sP1

⋃
tP2

⋃
W , where W is a connected subgraph of G with at least three

vertices, t 6= 0, or t = 0 and s ≥ 2. Next let S(G) denote the set of all end-branch vertices of G

and in(G) denote the edge independence number of G.

Lemma 2.6 Let T be a weighted tree and S(T ) denote the set of all end-branch vertices in T .

(i) If S(T ) = ∅, then there are two non-negative integers s, t such that T = Ks
t .

(ii) If S(T ) 6= ∅, then |S(T )| ≥ 2.

Proof (i) Let d be the diameter of T and v1v2v3 · · · vdvd+1 be a longest path of T . Suppose that

d ≥ 5, NT (v3) = {v4, u0, u1, u2, . . . , um}, where u0 = v2. If a vertex uj (0 ≤ j ≤ m) has at least

two pendent edges, then uj is an end-branch vertex of T ; if each of u0, u1, u2, . . . , um has at most

a pendent edge, then v3 is an end-branch vertex of T . The above results are in contradiction

with assumption. Therefore, d ≤ 4.

When d ≤ 3, T is a star or a double star obtained by joining the centers of two stars with an

edge. It is obvious that there are non-negative integers t and 0 ≤ s ≤ 1 such that T = Ks
t .

When d = 4, T can be obtained by joining the center zj of K1,pj
(j = 1, 2, . . . , k) and the

center of K1,q with an edge. From d = 4, we have k ≥ 2. If pj ≥ 2, then zj is an end-branch

vertex of T , this is in contradiction with assumption. Therefore, p1 = p2 = · · · = pk = 1, so

T = Kk
q .

(ii) Let v be an end-branch vertex of T , and H denote the unique component of T − v with

at least three vertices. Then it is easy to see that H contains at least an end-branch vertex of

T . 2

Theorem 2.7 Let T be a weighted tree of order n with weights w1 ≥ w2 ≥ · · · ≥ wn−1 > 0 and

edge independence number i. Then

ρ(T ) ≤ ρ(Ti(1, 2, . . . , n − 1)),

with equality if and only if T = Ti(1, 2, . . . , n − 1).

Proof Let V (T ) = {v1, v2, . . . , vn}. We distinguish the following two cases.

Case 1 Suppose that S(T ) = ∅.

By Lemma 2.6(i), there are two non-negative integers s, t such that T = Ks
t , and s = i−1 or

s = i. Let v be the center of Ks
t and vvjuj(j = 1, 2, . . . , s) be all pendent paths of length 2 at v.

Case 1.1 Suppose that s = i − 1.

It is obvious that T is a weighted tree with the form shown in Figure 1. Hence there exists

a permutation k1k2 · · · kn−1 of 12 · · · (n− 1) such that T = Ti(k1, k2, . . . , kn−1). So from Lemma

2.5, we have ρ(T ) = ρ(Ti(k1, k2, . . . , kn−1)) ≤ ρ(Ti(1, 2, . . . , n−1)), and with equality if and only

if T = Ti(1, 2, . . . , n − 1).
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Case 1.2 Suppose that s = i.

It is obvious that t = 0. Let T ′ = Ks
t −v1u1+vu1. Then by Lemma 2.3, we have ρ(T ) < ρ(T ′).

Since T ′ satisfies the condition of Case 1.1, by the result of Case 1.1, we have ρ(T ) < ρ(T ′) ≤

ρ(Ti(1, 2, . . . , n − 1)).

Case 2 Suppose that S(T ) 6= ∅.

By Lemma 2.6(ii), we have |S(T )| ≥ 2. Let (xv1
, xv2

, . . . , xvn
)t be the Perron vector of

A(T ), where xvj
corresponds to the vertex vj (j = 1, 2, . . . , n). Take v, u ∈ S(T ), and with-

out loss of generality, assume xu ≥ xv. Let vv1, vv2, . . . , vvs be all pendent edges at v, and

vv′1v
′′

1 , vv′2v
′′

2 , . . . , vv′tv
′′

t be all pendent paths of length 2 at v.

If s 6= 0, then set

T 1 =T − vv1 − vv2 − · · · − vvs−1 − vv′1 − vv′2 − · · · − vv′t+

uv1 + uv2 + · · · + uvs−1 + uv′1 + uv′2 + · · · + uv′t,

where wT 1(uvj) = wT (vvj)(j = 1, 2, . . . , s − 1) and wT 1(uv′j) = wT (vv′j)(j = 1, 2, . . . , t).

If s = 0, then set

T 1 = T − vv′1 − vv′2 − · · · − vv′t + uv′1 + uv′2 + · · · + uv′t,

where wT 1(uv′j) = wT (vv′j)(j = 1, 2, . . . , t).

It is obvious that in(T ) ≤ in(T 1), and from Lemma 1.1, we have ρ(T ) < ρ(T 1). If S(T 1) 6= ∅,

then repeat the above steps to T 1 until we obtain a weighted tree T r with S(T r) = ∅. So we get

trees T, T 1, . . . , T r such that

i = in(T ) ≤ in(T 1) ≤ · · · ≤ in(T r),

ρ(T ) < ρ(T 1) < · · · < ρ(T r). (2)

By Lemma 2.6(i), there are two non-negative integers s, t such that T r = Ks
t . Let v be the

center of Ks
t and vvjuj (j = 1, 2, . . . , s) be all pendent paths of length 2 at v. If in(T r) > i, then

set T ∗ = Ks
t − vsus + vus. It is obvious that in(T ∗) = in(T r) if t = 0, in(T ∗) = in(T r) − 1 if

t 6= 0, and by Lemma 2.3, we have ρ(T r) < ρ(T ∗). If in(T ∗) > i, then repeat the above steps to

T ∗ until we obtain a weighted tree T ∗∗ with in(T ∗∗) = i. So we get trees T r, T ∗, . . . , T ∗∗ such

that

ρ(T r) < ρ(T ∗) < · · · < ρ(T ∗∗). (3)

Since S(T ∗∗) = S(T r) = ∅, by Equations (2), (3) and the results of Case 1, we have

ρ(T ) < ρ(T r) ≤ ρ(T ∗∗) ≤ ρ(Ti(1, 2, . . . , n − 1)).

By the above two cases, the proof is completed.

From Lemmas 2.3 and 2.5, when i ≥ 2, there exists a permutation k1k2 · · · kn−1 of 12 · · · (n−1)

such that

ρ(Ti(1, 2, . . . , n − 1)) < ρ(Ti−1(k1, k2, . . . , kn−1)) ≤ ρ(Ti−1(1, 2, . . . , n − 1)).
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On the other hand, in(K1,n−1) = 1 and in(T ) ≥ 2 if T 6= K1,n−1. So by Theorem 2.7, we

immediately obtain the following two corollaries.

Corollary 2.8[2] Let T be a weighted tree with order n and weights w1 ≥ w2 ≥ · · · ≥ wn−1 > 0.

Then ρ(T ) ≤ ρ(K1,n−1), with equality if and only if T = K1,n−1.

Corollary 2.9[3] Let T 6= K1,n−1 be a weighted tree with order n and weights w1 ≥ w2 ≥ · · · ≥

wn−1 > 0. Then ρ(T ) ≤ ρ(T2(1, 2, . . . , n−1)), with equality if and only if T = T2(1, 2, . . . , n−1).

A tree may be regarded as a weighted tree with weight 1 of each edge. Let Tn,i = Ti(1, 2, . . . , n−

1) for w1 = w2 = · · · = wn−1 = 1. So from Theorem 2.7, we have

Corollary 2.10[5] Let T be a tree with order n and edge independence number i. Then

ρ(T ) ≤ ρ(Tn,i), with equality if and only if T = Tn,i.
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