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Abstract In this paper, we first give two equalities in the operation of determinant. Using the

expression of group inverse with full-rank factorization Ag = F (GF )−2
G and the Cramer rule

of the nonsingular linear system Ax = b, we present a new method to prove the representation

of group inverse with affine combination

Ag =
∑

(I,J)∈N (A)

1

ν2
det(A)IJ âdjAJI .

A numerical example is given to demonstrate that the formula is efficient.
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1. Introduction

The generalized inverse X ∈ Rn×m of a matrix A ∈ Rm×n was defined by Penrose in

1955, which is the unique solution of the following four matrix equations. These conditions are

equivalent to Moore’s conditions. The unique matrix X was known as Moore-Penrose inverse

(abbreviated M-P) and is denoted by A†.

Definition Let A ∈ Rm×n be given. The M-P inverse A† ∈ Rn×m is the unique solution of the

following matrix equations

AXA = A, (1)

XAX = X, (2)

(AX)∗ = AX, (3)

(XA)∗ = XA, (4)
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where ∗ denotes “conjugate transpose”.

In general, let φ 6= η ⊂ {1, 2, 3, 4}. If X satisfies all conditions of η, then X is called a η

inverse of A, denoted by A{η}.

Also, in the case m = n, consider the following equations:

Ak+1X = Ak, (1’)

AX = XA (5)

for a positive integer k = ind(A) = min{p : rank(Ap+1) = rank(Ap)}.

A matrix X = Ad is said to be the Drazin inverse of A if (1′), (2) and (5) are satisfied. When

k = 1, Ad is called the group inverse of A and denoted by Ag.

Throughout this paper, A is an m×n real matrix of rank r, denoted by Rm×n
r . tr(A) denotes

the trace of a square matrix A. |A| or detA denotes the determinant of A. R(A) and N(A) denote

the range and null space of A, respectively.

2. Preliminaries

For k = 1, 2, . . . , r, the k-th compound of A, denoted by Ck(A), is the
(
m
k

)
×
(
n
k

)
matrix

whose elements are the k× k minors of A, i.e., the determinants of its k× k submatrices ordered

lexicographically. The r × r minors of A (i.e., the elements of Cr(A)) are called its maximum

rank minors.

Let Qk,m = {α : α = {α1, α2, . . . , αk}, 1 ≤ α1 < α2 < · · · < αk ≤ m} denote the strictly

increasing sequence of k elements from 1, 2, . . . , m, A ∈ Rm×n. For α ∈ Qk,n, β ∈ Qk,m, A[α, β]

denotes the submatrix of A with row indices α and column indices β, and A[α′, β′] denotes the

submatrix obtained from A by deleting rows indexed α and columns indexed β. For simplicity,

we write A[I, J ] as AIJ for any index sets I and J , and let AI∗ and A∗J denote the submatrices

of A lying in rows indexed by I and in columns indexed by J , respectively. Denote

I(A) = {I ∈ Qr,m : rank(AI∗) = r},

J (A) = {J ∈ Qr,n : rank(A∗J ) = r},

N (A) = {(I, J) ∈ Qrm ×Qrn : rank(AIJ) = r}.

By [3], we have N (A) = I(A) × J (A).

Let A(i← b) denote the matrix obtained by replacing the ith column of A with vector b and

adj(A) denote the adjoint of A.

The volume of A, denoted by Vol(A), is zero if rank(A) = 0, otherwise

VolA =

√ ∑

(I,J)∈N (A)

det2AIJ .

The following two formulae will be used repeatedly in the following sections.

1) Laplace’s formula
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Let A be a square matrix with order n, and α, β ∈ Ql,n. Then

∑

γ∈Ql,n

(−1)s(α)+s(γ)detA[α, γ]detA[β′, γ′] =

{
0, α 6= β,

detA, α = β.
(6)

2) Cauchy-Binet formula

Let A ∈ Cm×p, B ∈ Cp×n, l ≤ min{m, p, n} and α ∈ Ql,m, β ∈ Ql,n. Then

detAB[α, β] =
∑

γ∈Ql,p

detA[α, γ]detB[γ, β]. (7)

Berg[2] showed that the Moore-Penrose inverse A† is a convex combination of ordinary inverse

{A−1
IJ : (I, J) ∈ N (A)}

A† =
1

Vol2A

∑

(I,J)∈N (A)

| detAIJ |
2 Â−1

IJ , (8)

where Â−1
IJ is an n ×m matrix with the inverse of the (I, J)th submatix of A in position (J, I)

and zeros elsewhere.

In 2002, the second author first gave the combination representation of A{1, 5}, then draw

an affine combination representation of Ag in [4]. But in this paper we will use the full-rank

factorization Ag = F (GF )−2G and the Cramer rule of the nonsingular linear system Ax = b to

give a new method to prove the affine combination representation of Ag, and point to that the

representation in paper [4] is incomplete. As an application, we use an example to demonstrate

that this representation is correct.

Lemma 2.1[4] Let A ∈ Cn×n be of rank r. Then A has a group inverse if and only if
∑

I

| AII |6= 0,

where I runs over all r-element subsets of {1, 2, . . . , n}.

Lemma 2.2 Let A ∈ Cn×n be of rank r and A = FG be the full-rank factorization. Then

1) Ag = F (GF )−2G;

2) ν =| GF |=
∑

I | AII |,

where I is the same as in Lemma 2.1.

Proof The first equality can be found in [1] and we omit its proof here.

2) By Cauchy-Binet formula

| GF | =
∑

I∈I(F )

| G∗I || FI∗ |=
∑

I∈I(F )

| FI∗ || G∗I |

=
∑

I∈I(F )

| (FG)II |=
∑

I

| AII | .

This implies ν =| GF |=
∑

I | AII | .

Lemma 2.3 Let A ∈ Cn×n be of rank r with indA = 1. Then the restricted linear system

Ax = b, b ∈ R(A), x ∈ R(A) (9)
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has a unique x = Agb.

Proof By the condition ind(A) = 1, we have

R(A)⊕N(A) = Rn and R(A2) = R(A). (10)

From which and b ∈ R(A), we know that there exists a vector y0 ∈ Rn, such that b = A2y0.

Denote x0 = Ay0. Then we have x0 ∈ R(A) and b = Ax0. This implies that the restricted linear

system (9) has a solution x0 ∈ R(A).

Let the general solution of (9) be x = x0 + y ∈ R(A), where y ∈ N(A). Then y = x − x0 ∈

R(A). Since R(A)⊕N(A) = Rn, we have y = 0.

Therefore, (9) has a unique solution x = x0 ∈ R(A).

3. Main results

Theorem 3.1 Let both A and C be n× n nonsingular matrices, and b = (b1, b2, . . . , bn)T be a

column vector with order n. Let c = adj(A)b. Then

1) A∗b = (| A(1← b) |, | A(2← b) |, . . . , | A(n← b) |)T;

2) | C(i← c) |=| AC(i← b) |.

Proof By Laplace’s formula, we have the following equality

A∗b = A∗ (b1 b2 . . . bn)
T

=

(
n∑

i=1

Ai1b1,

n∑

i=1

Ai2b2, . . . ,

n∑

i=1

Ainbn

)T

= (| A(1← b) |, | A(2← b) |, . . . , | A(n← b) |)T .

This means that the first equality holds. Now let A = (a1, a2, . . . , an), C = (c1, c2, . . . , cn),

where ai and ci are the i-th column vectors of matrices A and C, respectively. Then we have

| AC(i← b) | =| (Ac1, Ac2, . . . , Aci−1, b, Aci+1, . . . , Acn) |

=| A ||
(
c1, c2, . . . , ci−1, A

−1b, ci+1, . . . , cn

)
|

=|
(
c1, c2, . . . , ci−1, | A | A

−1b, ci+1, . . . , cn

)
|

=| C(i← A∗b) |=| C(i← c) | .

This shows the second equality holds. 2

Theorem 3.2 Let A ∈ Cn×n be of rank r with indA = 1 and let A = FG be an arbitrary

full-decomposition of A. Then

Ag =
1

ν2

∑

(IJ)∈N (A)

| AIJ | âdjAIJ ,

where ν =
∑

I∈I(A) | AII |= det(GF ) and I is the same as in Lemma 2.1.

Proof From Lemmas 2.2 and 2.3, we know that the unique solution of restricted linear equations
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(9) is as follows

x = Agb = F (GF )−2Gb. (11)

Hence the solution (11) of the restricted linear equations (9) splits up into

x = F (GF )−1y, y = (GF )−1Gb. (12)

From the expression y = (GF )−1Gb, we find in view of (GF )(i ← Gb) = G[F (i ← b)] and

Cramer’s rule

yi =
| (GF )[i← Gb] |

| GF |
=

1

ν
| G(F (i← b)) | . (13)

According to Cauchy-Binet formula (7), we have

yi =
1

ν
| G(F (i← b)) |=

1

ν

∑

I∈J (A)

| G∗I || (F (i← b))I∗ |

=
1

ν

∑

I∈J (A)

| G∗I || FI∗(i← bI) |

=
1

ν

∑

I∈J (A)

| G∗I || FI∗ |
| FI∗(i← bI) |

| FI∗ |
.

From which we obtain

y =
1

ν

∑

I∈J (A)

| G∗I || FI∗ | F̂
−1
I∗ b. (14)

In view of x = F (GF )−1y, we find out the ith component xi = fi(GF )−1y, where fi denotes

the vector of the ith row of F . Applying the identity of Magnus[8], we obtain

xi = −
1

| GF |

∣∣∣∣∣
0 fi

y GF

∣∣∣∣∣ = −
1

ν

∣∣∣∣∣
0 fi

y GF

∣∣∣∣∣ . (15)

Using Cauchy-Binet formula (7) again changes the right side of formula (15) into
∣∣∣∣∣

0 fi

y GF

∣∣∣∣∣ =

∣∣∣∣∣
0 δi

y G

∣∣∣∣∣

∣∣∣∣∣
1 0

0 F

∣∣∣∣∣ =
∑

J0

∣∣∣∣∣

(
0 δi

y G

)

∗J0

∣∣∣∣∣

∣∣∣∣∣

(
1 0

0 F

)

J0∗

∣∣∣∣∣ (16)

where J0 = (j0, j1, j2, . . . , jr), 0 ≤ j0 < j1 < · · · < jr ≤ m, and δi denotes the ith row of the

r-dimensional unit matrix. In this case j0 = 0, we have

det

(
1 0

0 F

)

J0∗

=| FJ∗ | . (17)

Otherwise the determinant on the left-hand side vanishes. In the case j0 = 0 and i ∈ J0, we

have

det

(
0 δi

y G

)

∗J0

= − | G∗J (i← y) |, (18)

whereas in the case i /∈ J0 the matrix on the left-hand side vanishes. Hence we obtain the result

xi =
1

ν

∑

J∈I(A)

| G∗J(i← y) || FJ∗ | . (19)
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Substitute (14) into (19) and introduce the vector bI with the components | FI∗(i ← bI) | for

i = 1, 2, . . . , r. It is obvious that bI =| FI∗ | adj(FI∗)b. We obtain

xi =
1

ν2

∑

I∈J (A)

∑

J∈I(A)

| G∗I || G∗J(i← bI) || FJ∗ |

=
1

ν2

∑

(J,I)∈N (A)

| AJI || G∗J (i← bI) | .

By Theorem 3.1, | G∗J (i← bI) |=| (FG)IJ (i← bI) |=| AIJ (i← bI) |, then we have

xi =
1

ν2

∑

(J,I)∈N (A)

| AJI || AIJ(i← bI) | (20)

We devide the above equality into two sides:

Case 1 If detAIJ 6= 0, then (20) becomes

xi =
1

ν2

∑

(J,I)∈N (A)

| AJI || AIJ |
| AIJ (i← bI) |

| AIJ |
(21)

Case 2 If detAIJ = 0. Using the condition of Lemma 2.3, we know that bI ∈ R(AIJ ), this

implies that | AIJ(i ← bI) |= 0. Further, we can easy prove that adjAIJbI = 0, in this case we

can rewrite the (20) into

xi =
1

ν2

∑

(J,I)∈N (A)

| AJI | adjAIJbI (22)

From (21) and (22), we know that

x = Agb =
1

ν2

∑

(I,J)∈N (A)

| AJI | âdjAIJb (23)

Because the equalities (9) and (23) hold for any b ∈ R(A) and x ∈ R(A), this implies

Ag =
1

ν2

∑

(I,J)∈N (A)

| AIJ | âdjAJI (24)

Remark When detAJI 6= 0, there is âdjAJI = detAJIÂ
−1
JI , so the equality (24) becomes

Ag =
1

ν2

∑

(I,J)∈N (A)

detAIJdet(A)JI Â
−1
JI . (25)

Then we have
∑

(I,J)∈N (A)

| AIJ || AJI | =
∑

(I,J)∈N (A)

| AII || AJJ |

=
∑

J∈J (A)

(
∑

I∈I(A)

AII)AJJ = ν2

In this case, the representation is called affine combination of Ag, which could be found in paper

[4]. But detAIJ = 0, the representation of Ag should be as (24), which can not be included in

paper [4].
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Theorem 3.2 Under the condition of Lemma 2.3, the ith component of the unique solution

x = Agb of (9) is given by

xi =
1

ν2

∑

(J,I)∈N (A)

| AJI || AIJ (i← bI) | .

In the next section, we will use a numerical example to show that the representation in Theorem

3.2 is correct.

4. Numerical example

Example Take

A =




1 1 2

0 2 2

1 0 1


 .

By computing, we know A ∈ R3×3
2 and

A2 =




3 3 6

2 4 6

2 1 3


 ∈ R3×3

2 .

This shows Ag exists. We make a list of all minors with order two, which are not equal to zero.

I J AIJ detAIJ A−1
IJ Â−1

IJ

{1, 2} {1, 2}

(
1 1

0 2

)
2 1

2

(
2 −1

0 1

)
1
2




2 −1 0

0 1 0

0 0 0




{1, 3} {1, 3}

(
1 2

1 1

)
−1

(
−1 2

1 −1

) 

−1 0 2

0 0 0

1 0 −1




{2, 3} {2, 3}

(
2 2

0 1

)
2 1

2

(
1 −2

0 2

)
1
2




0 0 0

0 1 −2

0 0 2




{1, 2} {1, 3}

(
1 2

0 2

)
2 1

2

(
2 −2

0 1

)
1
2




2 −2 0

0 0 0

0 1 0




{1, 3} {1, 2}

(
1 1

1 0

)
−1

(
0 1

1 −1

) 


0 0 1

1 0 −1

0 0 0




{1, 2} {2, 3}

(
1 2

2 2

)
−2 − 1

2

(
2 −2

−2 1

)
− 1

2




0 0 0

2 −2 0

−2 1 0




Table 1 All minors with order two, which are not equal to zero
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I J AIJ detAIJ A−1
IJ Â−1

IJ

{2, 3} {1, 2}

(
0 2

1 0

)
−2 1

2

(
0 2

1 0

)
1
2




0 0 2

0 1 0

0 0 0




{1, 3} {2, 3}

(
1 2

0 1

)
1

(
1 −2

0 1

) 


0 0 0

1 0 −2

0 0 1




{2, 3} {1, 3}

(
0 2

1 1

)
−2 1

2

(
−1 2

1 0

)
1
2




0 −1 2

0 0 0

0 1 0




Table 2 All minors with order two, which are not equal to zero

From the above table, we have

ν =
∑

I

| AII |= 2− 1 + 2 = 3.

Hence

Ag =
1

ν2

∑

(I,J)∈N (A)

| AIJ || AJI | Â
−1
IJ =

1

9




1 1 2

−8 10 2

5 −4 1


 .
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