Journal of Mathematical Research & Exposition Mar., 2009, Vol. 29, No. 2, pp. 309–316 DOI:10.3770/j.issn:1000-341X.2009.02.014 Http://jmre.dlut.edu.cn

The Representation of Group Inverse with Affine Combination

SHENG Xing Ping^{1,2}, CAI Jing^{2,3}, CHEN Guo Liang²

(1. School of Mathematics and Computational Science, Fuyang Normal College, Anhui 236032, China;

2. Department of Mathematics, East China Normal University, Shanghai 200062, China;

3. School of Science, Huzhou Normal College, Zhejiang 313000, China)

(E-mail: xingpingsheng@163.com)

Abstract In this paper, we first give two equalities in the operation of determinant. Using the expression of group inverse with full-rank factorization $A_g = F(GF)^{-2}G$ and the Cramer rule of the nonsingular linear system Ax = b, we present a new method to prove the representation of group inverse with affine combination

$$A_g = \sum_{(I,J)\in\mathcal{N}(A)} \frac{1}{\nu^2} \det(A)_{IJ} \widehat{\mathrm{adj}} A_{JI}.$$

A numerical example is given to demonstrate that the formula is efficient.

Keywords group inverses; cramer rule; affine combination.

Document code A MR(2000) Subject Classification 15A09; 47A10 Chinese Library Classification 0151.21; 0177.7

1. Introduction

The generalized inverse $X \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ was defined by Penrose in 1955, which is the unique solution of the following four matrix equations. These conditions are equivalent to Moore's conditions. The unique matrix X was known as Moore-Penrose inverse (abbreviated M-P) and is denoted by A^{\dagger} .

Definition Let $A \in \mathbb{R}^{m \times n}$ be given. The M-P inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ is the unique solution of the following matrix equations

$$AXA = A,\tag{1}$$

$$XAX = X, (2)$$

$$(AX)^* = AX, (3)$$

$$(XA)^* = XA,\tag{4}$$

Received date: 2006-12-08; Accepted date: 2007-10-28

Foundation item: the Shanghai Science and Technology Committee (No. 062112065); Shanghai Priority Academic Discipline Foundation; the University Young Teacher Sciences Foundation of Anhui Province (No. 2006jq1220zd) and the PhD Program Scholarship Fund of ECNU 2007.

where * denotes "conjugate transpose".

In general, let $\phi \neq \eta \subset \{1, 2, 3, 4\}$. If X satisfies all conditions of η , then X is called a η inverse of A, denoted by $A\{\eta\}$.

Also, in the case m = n, consider the following equations:

$$A^{k+1}X = A^k,\tag{1'}$$

$$AX = XA \tag{5}$$

for a positive integer $k = ind(A) = min\{p : rank(A^{p+1}) = rank(A^p)\}.$

A matrix $X = A_d$ is said to be the Drazin inverse of A if (1'), (2) and (5) are satisfied. When $k = 1, A_d$ is called the group inverse of A and denoted by A_q .

Throughout this paper, A is an $m \times n$ real matrix of rank r, denoted by $R_r^{m \times n}$. tr(A) denotes the trace of a square matrix A. |A| or detA denotes the determinant of A. R(A) and N(A) denote the range and null space of A, respectively.

2. Preliminaries

For k = 1, 2, ..., r, the k-th compound of A, denoted by $C_k(A)$, is the $\binom{m}{k} \times \binom{n}{k}$ matrix whose elements are the $k \times k$ minors of A, i.e., the determinants of its $k \times k$ submatrices ordered lexicographically. The $r \times r$ minors of A (i.e., the elements of $C_r(A)$) are called its maximum rank minors.

Let $Q_{k,m} = \{\alpha : \alpha = \{\alpha_1, \alpha_2, \dots, \alpha_k\}, 1 \leq \alpha_1 < \alpha_2 < \dots < \alpha_k \leq m\}$ denote the strictly increasing sequence of k elements from $1, 2, \dots, m, A \in \mathbb{R}^{m \times n}$. For $\alpha \in Q_{k,n}, \beta \in Q_{k,m}, A[\alpha, \beta]$ denotes the submatrix of A with row indices α and column indices β , and $A[\alpha', \beta']$ denotes the submatrix obtained from A by deleting rows indexed α and columns indexed β . For simplicity, we write A[I, J] as A_{IJ} for any index sets I and J, and let A_{I*} and A_{*J} denote the submatrices of A lying in rows indexed by I and in columns indexed by J, respectively. Denote

$$\mathcal{I}(A) = \{I \in Q_{r,m} : \operatorname{rank}(A_{I*}) = r\},$$

$$\mathcal{J}(A) = \{J \in Q_{r,n} : \operatorname{rank}(A_{*J}) = r\},$$

$$\mathcal{N}(A) = \{(I, J) \in Q_{rm} \times Q_{rn} : \operatorname{rank}(A_{IJ}) = r\}$$

By [3], we have $\mathcal{N}(A) = \mathcal{I}(A) \times \mathcal{J}(A)$.

Let $A(i \leftarrow b)$ denote the matrix obtained by replacing the *i*th column of A with vector b and adj(A) denote the adjoint of A.

The volume of A, denoted by Vol(A), is zero if rank(A) = 0, otherwise

$$\operatorname{Vol} A = \sqrt{\sum_{(I,J)\in\mathcal{N}(A)} \det^2 A_{IJ}}.$$

The following two formulae will be used repeatedly in the following sections.

1) Laplace's formula

The representation of group inverse with affine combination

Let A be a square matrix with order n, and $\alpha, \beta \in Q_{l,n}$. Then

$$\sum_{\substack{\in Q_{l,n}}} (-1)^{s(\alpha)+s(\gamma)} \det A[\alpha,\gamma] \det A[\beta',\gamma'] = \begin{cases} 0, & \alpha \neq \beta, \\ \det A, & \alpha = \beta. \end{cases}$$
(6)

 $\gamma \in Q_{l,n}$ 2) Cauchy-Binet formula

Let $A \in C^{m \times p}$, $B \in C^{p \times n}$, $l \le \min\{m, p, n\}$ and $\alpha \in Q_{l,m}$, $\beta \in Q_{l,n}$. Then

$$\det AB[\alpha,\beta] = \sum_{\gamma \in Q_{l,p}} \det A[\alpha,\gamma] \det B[\gamma,\beta].$$
(7)

Berg^[2] showed that the Moore-Penrose inverse A^{\dagger} is a convex combination of ordinary inverse $\{A_{II}^{-1}: (I, J) \in \mathcal{N}(A)\}$

$$A^{\dagger} = \frac{1}{\text{Vol}^2 A} \sum_{(I,J) \in \mathcal{N}(A)} |\det A_{IJ}|^2 \widehat{A_{IJ}^{-1}},$$
(8)

where A_{IJ}^{-1} is an $n \times m$ matrix with the inverse of the (I, J)th submatix of A in position (J, I) and zeros elsewhere.

In 2002, the second author first gave the combination representation of $A\{1,5\}$, then draw an affine combination representation of A_g in [4]. But in this paper we will use the full-rank factorization $A_g = F(GF)^{-2}G$ and the Cramer rule of the nonsingular linear system Ax = b to give a new method to prove the affine combination representation of A_g , and point to that the representation in paper [4] is incomplete. As an application, we use an example to demonstrate that this representation is correct.

Lemma 2.1^[4] Let $A \in C^{n \times n}$ be of rank r. Then A has a group inverse if and only if

$$\sum_{I} \mid A_{II} \mid \neq 0,$$

where I runs over all r-element subsets of $\{1, 2, \ldots, n\}$.

Lemma 2.2 Let
$$A \in C^{n \times n}$$
 be of rank r and $A = FG$ be the full-rank factorization. Then

- 1) $A_g = F(GF)^{-2}G;$
- 2) $\nu = |GF| = \sum_{I} |A_{II}|,$

where I is the same as in Lemma 2.1.

Proof The first equality can be found in [1] and we omit its proof here.

2) By Cauchy-Binet formula

$$|GF| = \sum_{I \in \mathcal{I}(F)} |G_{*I}|| F_{I*} = \sum_{I \in \mathcal{I}(F)} |F_{I*}|| G_{*I} = \sum_{I \in \mathcal{I}(F)} |(FG)_{II}| = \sum_{I} |A_{II}|.$$

This implies $\nu = |GF| = \sum_{I} |A_{II}|$.

Lemma 2.3 Let $A \in C^{n \times n}$ be of rank r with indA = 1. Then the restricted linear system

$$Ax = b, \ b \in R(A), \ x \in R(A) \tag{9}$$

has a unique $x = A_g b$.

Proof By the condition ind(A) = 1, we have

$$R(A) \oplus N(A) = R^n \quad \text{and} \quad R(A^2) = R(A). \tag{10}$$

From which and $b \in R(A)$, we know that there exists a vector $y_0 \in R^n$, such that $b = A^2 y_0$. Denote $x_0 = Ay_0$. Then we have $x_0 \in R(A)$ and $b = Ax_0$. This implies that the restricted linear system (9) has a solution $x_0 \in R(A)$.

Let the general solution of (9) be $x = x_0 + y \in R(A)$, where $y \in N(A)$. Then $y = x - x_0 \in R(A)$. Since $R(A) \oplus N(A) = R^n$, we have y = 0.

Therefore, (9) has a unique solution $x = x_0 \in R(A)$.

3. Main results

Theorem 3.1 Let both A and C be $n \times n$ nonsingular matrices, and $b = (b_1, b_2, \dots, b_n)^T$ be a column vector with order n. Let $c = \operatorname{adj}(A)b$. Then

1) $A^*b = (|A(1 \leftarrow b)|, |A(2 \leftarrow b)|, \dots, |A(n \leftarrow b)|)^{\mathrm{T}};$ 2) $|C(i \leftarrow c)| = |AC(i \leftarrow b)|.$

Proof By Laplace's formula, we have the following equality

$$A^{*}b = A^{*} (b_{1} \ b_{2} \ \dots \ b_{n})^{\mathrm{T}}$$

= $\left(\sum_{i=1}^{n} A_{i1}b_{1}, \sum_{i=1}^{n} A_{i2}b_{2}, \dots, \sum_{i=1}^{n} A_{in}b_{n}\right)^{\mathrm{T}}$
= $\left(|A(1 \leftarrow b)|, |A(2 \leftarrow b)|, \dots, |A(n \leftarrow b)|\right)^{\mathrm{T}}$.

This means that the first equality holds. Now let $A = (a_1, a_2, \ldots, a_n)$, $C = (c_1, c_2, \ldots, c_n)$, where a_i and c_i are the *i*-th column vectors of matrices A and C, respectively. Then we have

$$|AC(i \leftarrow b)| = |(Ac_1, Ac_2, \dots, Ac_{i-1}, b, Ac_{i+1}, \dots, Ac_n)|$$

= |A|| (c_1, c_2, \dots, c_{i-1}, A^{-1}b, c_{i+1}, \dots, c_n) |
= |(c_1, c_2, \dots, c_{i-1}, |A||A^{-1}b, c_{i+1}, \dots, c_n)|
= |C(i \leftarrow A^*b) |= |C(i \leftarrow c)|.

This shows the second equality holds.

Theorem 3.2 Let $A \in C^{n \times n}$ be of rank r with indA = 1 and let A = FG be an arbitrary full-decomposition of A. Then

$$A_g = \frac{1}{\nu^2} \sum_{(IJ) \in \mathcal{N}(\mathcal{A})} |A_{IJ}| \widehat{\operatorname{adj}A_{IJ}},$$

where $\nu = \sum_{I \in \mathcal{I}(A)} |A_{II}| = \det(GF)$ and I is the same as in Lemma 2.1.

Proof From Lemmas 2.2 and 2.3, we know that the unique solution of restricted linear equations

The representation of group inverse with affine combination

(9) is as follows

$$x = A_g b = F(GF)^{-2}Gb.$$

$$\tag{11}$$

Hence the solution (11) of the restricted linear equations (9) splits up into

$$x = F(GF)^{-1}y, \quad y = (GF)^{-1}Gb.$$
 (12)

From the expression $y = (GF)^{-1}Gb$, we find in view of $(GF)(i \leftarrow Gb) = G[F(i \leftarrow b)]$ and Cramer's rule

$$y_{i} = \frac{|(GF)[i \leftarrow Gb]|}{|GF|} = \frac{1}{\nu} |G(F(i \leftarrow b))|.$$
(13)

According to Cauchy-Binet formula (7), we have

$$y_{i} = \frac{1}{\nu} | G(F(i \leftarrow b)) | = \frac{1}{\nu} \sum_{I \in \mathcal{J}(A)} | G_{*I} || (F(i \leftarrow b))_{I*} |$$

$$= \frac{1}{\nu} \sum_{I \in \mathcal{J}(A)} | G_{*I} || F_{I*}(i \leftarrow b_{I}) |$$

$$= \frac{1}{\nu} \sum_{I \in \mathcal{J}(A)} | G_{*I} || F_{I*} | \frac{| F_{I*}(i \leftarrow b_{I}) |}{| F_{I*} |}.$$

From which we obtain

$$y = \frac{1}{\nu} \sum_{I \in \mathcal{J}(A)} |G_{*I}|| F_{I*} |\widehat{F_{I*}^{-1}}b.$$
(14)

In view of $x = F(GF)^{-1}y$, we find out the *i*th component $x_i = f_i(GF)^{-1}y$, where f_i denotes the vector of the *i*th row of F. Applying the identity of Magnus^[8], we obtain

$$x_i = -\frac{1}{|GF|} \begin{vmatrix} 0 & f_i \\ y & GF \end{vmatrix} = -\frac{1}{\nu} \begin{vmatrix} 0 & f_i \\ y & GF \end{vmatrix}.$$
(15)

Using Cauchy-Binet formula (7) again changes the right side of formula (15) into

$$\begin{vmatrix} 0 & f_i \\ y & GF \end{vmatrix} = \begin{vmatrix} 0 & \delta_i \\ y & G \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & F \end{vmatrix} = \sum_{J^0} \begin{vmatrix} \left(\begin{array}{c} 0 & \delta_i \\ y & G \end{array} \right)_{*J^0} \end{vmatrix} \begin{vmatrix} \left(\begin{array}{c} 1 & 0 \\ 0 & F \end{array} \right)_{J^0*} \end{vmatrix}$$
(16)

where $J^0 = (j_0, j_1, j_2, \dots, j_r), 0 \le j_0 < j_1 < \dots < j_r \le m$, and δ_i denotes the *i*th row of the *r*-dimensional unit matrix. In this case $j_0 = 0$, we have

$$\det \left(\begin{array}{cc} 1 & 0\\ 0 & F \end{array}\right)_{J^0*} = \mid F_{J*} \mid .$$

$$(17)$$

Otherwise the determinant on the left-hand side vanishes. In the case $j_0 = 0$ and $i \in J^0$, we have

$$\det \begin{pmatrix} 0 & \delta_i \\ y & G \end{pmatrix}_{*J^0} = - \mid G_{*J}(i \leftarrow y) \mid,$$
(18)

whereas in the case $i \notin J^0$ the matrix on the left-hand side vanishes. Hence we obtain the result

$$x_{i} = \frac{1}{\nu} \sum_{J \in \mathcal{I}(A)} |G_{*J}(i \leftarrow y)|| F_{J*}|.$$
(19)

Substitute (14) into (19) and introduce the vector b^I with the components $|F_{I*}(i \leftarrow b_I)|$ for $i = 1, 2, \ldots, r$. It is obvious that $b^I = |F_{I*}| \operatorname{adj}(F_{I*})b$. We obtain

$$x_{i} = \frac{1}{\nu^{2}} \sum_{I \in \mathcal{J}(A)} \sum_{J \in \mathcal{I}(A)} |G_{*I}|| G_{*J}(i \leftarrow b^{I}) || F_{J*} |$$

= $\frac{1}{\nu^{2}} \sum_{(J,I) \in \mathcal{N}(A)} |A_{JI}|| G_{*J}(i \leftarrow b^{I}) |.$

By Theorem 3.1, $|G_{*J}(i \leftarrow b^I)| = |(FG)_{IJ}(i \leftarrow b_I)| = |A_{IJ}(i \leftarrow b_I)|$, then we have

$$x_{i} = \frac{1}{\nu^{2}} \sum_{(J,I) \in \mathcal{N}(A)} |A_{JI}|| A_{IJ}(i \leftarrow b_{I})|$$
(20)

We devide the above equality into two sides:

Case 1 If det $A_{IJ} \neq 0$, then (20) becomes

$$x_{i} = \frac{1}{\nu^{2}} \sum_{(J,I)\in\mathcal{N}(A)} |A_{JI}|| A_{IJ} |\frac{|A_{IJ}(i\leftarrow b_{I})|}{|A_{IJ}|}$$
(21)

Case 2 If det $A_{IJ} = 0$. Using the condition of Lemma 2.3, we know that $b_I \in R(A_{IJ})$, this implies that $|A_{IJ}(i \leftarrow b_I)| = 0$. Further, we can easy prove that $\operatorname{adj} A_{IJ} b_I = 0$, in this case we can rewrite the (20) into

$$x_i = \frac{1}{\nu^2} \sum_{(J,I)\in\mathcal{N}(A)} |A_{JI}| \operatorname{adj} A_{IJ} b_I$$
(22)

From (21) and (22), we know that

$$x = A_g b = \frac{1}{\nu^2} \sum_{(I,J) \in \mathcal{N}(A)} |A_{JI}| \widehat{\operatorname{adj}A_{IJ}}b$$
(23)

Because the equalities (9) and (23) hold for any $b \in R(A)$ and $x \in R(A)$, this implies

$$A_g = \frac{1}{\nu^2} \sum_{(I,J)\in\mathcal{N}(A)} |A_{IJ}| \widehat{\mathrm{adj}A_{JI}}$$
(24)

Remark When $\det A_{JI} \neq 0$, there is $\widehat{\operatorname{adj}A_{JI}} = \det A_{JI}\widehat{A_{JI}}^{-1}$, so the equality (24) becomes

$$A_g = \frac{1}{\nu^2} \sum_{(I,J)\in\mathcal{N}(A)} \det A_{IJ} \det(A)_{JI} \widehat{A_{JI}^{-1}}.$$
(25)

Then we have

$$\sum_{(I,J)\in\mathcal{N}(A)} |A_{IJ}|| A_{JI}| = \sum_{(I,J)\in\mathcal{N}(A)} |A_{II}|| A_{JJ}|$$
$$= \sum_{J\in\mathcal{J}(A)} (\sum_{I\in\mathcal{I}(A)} A_{II}) A_{JJ} = \nu^2$$

In this case, the representation is called affine combination of A_g , which could be found in paper [4]. But det $A_{IJ} = 0$, the representation of A_g should be as (24), which can not be included in paper [4].

Theorem 3.2 Under the condition of Lemma 2.3, the *i*th component of the unique solution $x = A_g b$ of (9) is given by

$$x_i = \frac{1}{\nu^2} \sum_{(J,I) \in \mathcal{N}(A)} |A_{JI}|| A_{IJ}(i \leftarrow b_I)|.$$

In the next section, we will use a numerical example to show that the representation in Theorem 3.2 is correct.

4. Numerical example

Example Take

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & 0 & 1 \end{array} \right).$$

By computing, we know $A \in R_2^{3 \times 3}$ and

$$A^{2} = \begin{pmatrix} 3 & 3 & 6\\ 2 & 4 & 6\\ 2 & 1 & 3 \end{pmatrix} \in R_{2}^{3 \times 3}.$$

This shows A_g exists. We make a list of all minors with order two, which are not equal to zero.

Ι	J	A_{IJ}	$\det A_{IJ}$	A_{IJ}^{-1}	$\widehat{A_{IJ}^{-1}}$
$\{1, 2\}$	$\{1, 2\}$	$\left(\begin{array}{rrr}1&1\\0&2\end{array}\right)$	2	$\frac{1}{2} \left(\begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array} \right)$	$\frac{1}{2} \left(\begin{array}{ccc} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$
$\{1,3\}$	$\{1,3\}$	$\left(\begin{array}{rrr}1&2\\1&1\end{array}\right)$	-1	$\left(\begin{array}{rr} -1 & 2\\ 1 & -1 \end{array}\right)$	$\left(\begin{array}{rrrr} -1 & 0 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{array}\right)$
{2,3}	$\{2,3\}$	$\left(\begin{array}{cc} 2 & 2 \\ 0 & 1 \end{array}\right)$	2	$\frac{1}{2}\left(\begin{array}{cc}1 & -2\\0 & 2\end{array}\right)$	$\frac{1}{2} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{array} \right)$
{1,2}	$\{1,3\}$	$\left(\begin{array}{rrr}1&2\\0&2\end{array}\right)$	2	$\frac{1}{2}\left(\begin{array}{cc}2&-2\\0&1\end{array}\right)$	$\frac{1}{2} \left(\begin{array}{ccc} 2 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$
{1,3}	$\{1, 2\}$	$\left(\begin{array}{rrr}1&1\\1&0\end{array}\right)$	-1	$\left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right)$	$\left(\begin{array}{rrrr} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right)$
{1,2}	$\{2,3\}$	$\left(\begin{array}{rrr}1&2\\2&2\end{array}\right)$	-2	$-\frac{1}{2}\left(\begin{array}{cc}2&-2\\-2&1\end{array}\right)$	$-\frac{1}{2}\left(\begin{array}{rrrr} 0 & 0 & 0\\ 2 & -2 & 0\\ -2 & 1 & 0 \end{array}\right)$

Table 1 All minors with order two, which are not equal to zero

Ι	J	A_{IJ}	$\det A_{IJ}$	A_{IJ}^{-1}	$\widehat{A_{IJ}^{-1}}$
$\{2,3\}$	$\{1, 2\}$	$\left(\begin{array}{cc} 0 & 2 \\ 1 & 0 \end{array}\right)$	-2	$\frac{1}{2}\left(\begin{array}{cc} 0 & 2\\ 1 & 0 \end{array}\right)$	$\frac{1}{2} \left(\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$
{1,3}	$\{2,3\}$	$\left(\begin{array}{cc}1&2\\0&1\end{array}\right)$	1	$\left(\begin{array}{rrr}1 & -2\\0 & 1\end{array}\right)$	$\left(\begin{array}{rrrr} 0 & 0 & 0 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{array}\right)$
$\{2,3\}$	$\{1, 3\}$	$\left(\begin{array}{cc} 0 & 2 \\ 1 & 1 \end{array}\right)$	-2	$\frac{1}{2}\left(\begin{array}{cc} -1 & 2\\ 1 & 0 \end{array}\right)$	$\frac{1}{2} \left(\begin{array}{ccc} 0 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$

Table 2 All minors with order two, which are not equal to zero

From the above table, we have

$$\nu = \sum_{I} |A_{II}| = 2 - 1 + 2 = 3.$$

Hence

$$A_g = \frac{1}{\nu^2} \sum_{(I,J) \in \mathcal{N}(A)} |A_{IJ}|| A_{JI} |\widehat{A_{IJ}}| = \frac{1}{9} \begin{pmatrix} 1 & 1 & 2\\ -8 & 10 & 2\\ 5 & -4 & 1 \end{pmatrix}$$

References

- BEN-ISRAEL A, GREVILLE T N E. Generalized Inverse: Theory and Applications [M]. 2nd Edition, Springer-Verlag, New York, 2003.
- [2] BERG L. Three results in connection with inverse matrices [J]. Linear Algebra Appl., 1986, 84: 63–77.
- [3] BEN-ISRAEL A. A volumn associated with $m \times n$ matrices [J]. Linear Algerbra Appl., 1992, 67: 87–111.
- [4] CAI Jing. On determinantal representation for the generalized inverse and the generalization of Cramer rule [D]. The Master Dissertation of East China Normal University, 2002.
- [5] CAI Jing, CHEN Guoliang. On the representation of A[†], A[†]_{MN} and its applications [J]. Numer. Math. J. Chinese Univ., 2002, 24(4): 320–326. (in Chinese)
- [6] BREZINSKI C. Some Determinatal Identities in a Vector Space with Applications [M]. Lecture Notes in Math., 1071, Springer, Berlin, 1984.
- [7] RICHARD A, Brualdi, Hans Schneider. Determinal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley[J]. Linear Algebra Appl., 52/53(1983), 769-791.
- [8] SHENG Xingping, CHEN Guoliang. A finite iterative computing formula for M-P inverse and weighted M-P inverse [J]. Math. Appl. (Wuhan), 2007, 20(2): 336–344.
- [9] WANG Guorong. Generalized Inverses: Theory and Computations [M]. Beijing: Beijing Science Press, 2004.