Graded and Nongraded Properties of Partial Tilting Modules and Tilting Modules

ZHENG Min, CHEN Qing Hua

(School of Mathematics and Computer Science, Fujian Normal University, Fujian 350007, China) (E-mail: woshizhengmin20@163.com; cqhmath@fjnu.edu.cn)

Abstract This paper gives the relationships among partial tilting objects (tilting objects) of categories of graded left A-modules of type G, left A-modules, left A_e -modules and $A \sharp G$ -modules, and then proves that for graded partial tilting modules, there exist the Bongartz complements in the category of graded A-modules.

Keywords tilting module; partial tilting module; graded module; smash product.

Document code A MR(2000) Subject Classification 16G10; 16G99; 16W50 Chinese Library Classification 0153.3

1. Introduction and preliminaries

In 1970's, arising from the quivers of hereditary algebras, Berstein, Gel'fand and Ponomarev introduced the notion of a reflection functor, and proved the BGP-theorem. Basing on it, they gave a new proof to the famous Gabriel theorem, turned on a new orientation of the development of the Morita theory, and brought a new research field—tilting theory^[1]. Later, tilting theory was generalized well by Auslander, Platzek, Reiten, Bernner, Butler, Bongartz, et al. Eventually Happel and Ringel presented the notion of tilting modules with the form of axiom^[2–5]. During the later twenty years, tilting theory developed well, which made algebraic representation theory progress quite well and promoted the developments of many research fields related with tilting theory^[6,7]. Lately, Kleiner introduced a new grading on the preprojective algebra of a quiver^[8], which provided us with a tool for our research. Combining with graded ring theory and smash product theory, this paper discusses the relationships among partial tilting objects (tilting objects) of categories of graded left A-modules, left A-modules, left A_e - modules and $A \sharp G$ -modules, and then proves that for graded partial tilting modules, there exist the Bongartz complements in the category of graded A-modules.

Throughout this paper, let G be a multiplicative group with identity element e, k be an algebraically closed field, and A be a finite dimensional associative graded k-algebra of type G. The category A-gr consists of graded A-modules of type G and the morphisms are taken to be

Received date: 2007-01-20; Accepted date: 2008-07-06

Foundation item: the National Natural Science Foundation of China (Nos. 10371101; 10671161); the Natural Science Foundation of Fujian Province (Nos. Z0511022) and the Foundation of the Education Committee of Fujian Province (Nos. JA050206; JA06008; JB04215).

graded morphisms of degree e. We can define the restriction functor $(-)_e : A - \operatorname{gr} \longrightarrow A_e$ -Mod by putting $(M)_e = M_e$ while a morphism $f : M \longrightarrow N$ in A-gr restricts to $(f)_e = f_e : (M)_e \longrightarrow (N)_e$. Consider $M, N \in A$ -gr. Let $\operatorname{HOM}_A(M, N)_g$ be an additive subgroup of $\operatorname{Hom}_A(M, N)$ composed of graded morphisms of degree g and $\operatorname{HOM}_A(M, N) = \bigoplus_{g \in G} \operatorname{HOM}_A(M, N)_g$. The 1st derived functors of the functors $\operatorname{HOM}_A(-, -)_g$, $\operatorname{HOM}_A(-, -)$ and $\operatorname{Hom}_A - \operatorname{gr}(-, -)$ are denoted by $\operatorname{EXT}_A(-, -)_g$, $\operatorname{EXT}_A(-, -)$ and $\operatorname{Ext}_A - \operatorname{gr}(-, -)$ respectively. It is easy to show that $\operatorname{Ext}_A - \operatorname{gr}(M, N) = \operatorname{EXT}_A(M, N)_e$ and $\operatorname{EXT}_A(M, N) = \bigoplus_{g \in G} \operatorname{EXT}_A(M, N)_g$ for $M, N \in A$ -gr. Without special explanation, all our A-modules will be finitely generated left A-modules. Hence $\operatorname{HOM}_A(M, N) = \operatorname{Hom}_A(M, N)$ and for every $n \ge 0$ it follows that $\operatorname{EXT}_A^n(M, N) = \operatorname{Ext}_A^n(M, N)$, $\operatorname{HOM}_A(M, N) = \operatorname{HOM}_A(M(g), N(h))$ and $\operatorname{EXT}_A(M, N) = \operatorname{EXT}_A(M(g), N(h))$ where $g, h \in G$. We denote by $K_0(\operatorname{f.g}_A - \operatorname{gr}\mathfrak{M})$ the K_0 -group of $\operatorname{f.g}_A - \operatorname{gr}\mathfrak{M}$ which is an additive full subcategory of A-gr composed of finitely generated graded modules. If the K_0 -groups of rings (resp.exact categories) are free, then let $\operatorname{rank} K_0(-)$ be the rank of K_0 -group.

For convenience, let us recall some notions and properties (the other related notions can be seen in [7, 9-11]).

Definition 1.1 Let A be a G-graded ring. Define the smash product $A \sharp G$ as the free A-module $\bigoplus_{g \in G} AP_g$ with multiplication as follows:

$$(aP_h)(bP_g) = ab_{hg^{-1}}P_g$$
, for $g, h \in G$ and $a, b \in A$.

It is clear that $A \sharp G$ is a ring.

Definition 1.2 Let A be a G-graded ring and $M \in A$ -gr. Define $M \sharp G$ as $\bigoplus_{g \in G} M P_g$ where P_g is just a symbol indexed by g and the elements of $\bigoplus_{g \in G} M P_g$ are the finite formal sums of $m_g P_g$ for $m_g \in M$ and $g \in G$. $M \sharp G$ is an $A \sharp G$ -module with its addition and $A \sharp G$ -modular multiplication as follows:

$$\Sigma_{g\in G}m_gP_g + \Sigma_{g\in G}m'_gP_g = \Sigma_{g\in G}(m_g + m'_g)P_g, \quad (a_xP_h)(m_yP_g) = \begin{cases} (a_xm_y)P_g, & h = yg, \\ 0, & h \neq yg, \end{cases}$$

where $a_x \in A_x$ and $m_y \in M_y$. We call $M \sharp G$ the smash product of M by G.

Proposition 1.3 The functor $\sharp G: A \text{-} gr \longrightarrow A \sharp G \text{-} Mod$,

$$M \longmapsto M \sharp G$$
$$f: M \longrightarrow N \longmapsto f \sharp G: M \sharp G \longrightarrow N \sharp G$$
$$m_x P_h \longmapsto f(m_x) P_h, m_x \in M_x$$

is a covariant exact functor and preserves the direct sum.

Proposition 1.4 Let A be a G-graded ring. Then there is an equivalence of categories A-gr $\simeq A \ddagger G$ -Mod by the equivalent functors:

 $()^*: A\text{-}gr \longrightarrow A \sharp G\text{-}Mod$

 $M = \bigoplus_{g \in G} M_g \longmapsto M^* = (M_e, M_g \cdots M_h \dots)'$ and the invertible functor: $()_* : A \ddagger G \operatorname{-Mod} \longrightarrow A \operatorname{-gr}$ $N=(e_{_{(e,e)}}N,e_{_{(h,h)}}N,\ldots,e_{_{(g,g)}}N,\ldots)'\longmapsto N_*=\oplus_{g\in G}e_{_{(g,g)}}N,$ where $e_{_{(g,g)}}=1_eP_g.$

2. Graded partial tilting modules and the Bongartz-complement

In this section, we introduce the notion of partial tilting objects and strongly partial tilting objects in A-gr, discuss whether the functor $(-)_e$ and $-\sharp G$ can preserve partial tilting objects, and then prove that for graded partial tilting modules, there exist the Bongartz-complements in the category of graded A-modules. Note that the projective dimension of M in A-gr will be denoted by gr.pd_AM.

Definition 2.1 Assume $M \in A$ -gr. Then M is called graded partial tilting module if it satisfies the following conditions:

- (1) $\operatorname{gr.pd}_A M \leq 1;$
- (2) $\operatorname{Ext}_{A-\operatorname{gr}}(M, M) = 0.$

Obviously, if a graded module is a partial tilting module, then it is certainly a graded partial tilting module. Conversely, it is always not true.

Example 2.2 Consider the path algebra $A = k \overrightarrow{Q_A}$, where $\overrightarrow{Q_A}$: $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$. Assume $G = \mathbb{Z}_3$. Then A is turned to be a graded k-algebra of type G according to the lengths of paths (this graded structure for a path algebra is natural). It is easy to prove that $A \sharp G = k \overrightarrow{Q_A} \sharp \overrightarrow{G}$ where $\overrightarrow{Q_A} \sharp \overrightarrow{G}$ is given by:

Hence $Ae_3 = k\{e_3\}$, $Ae_2 = k\{e_2, \beta\}$ and $Ae_1 = k\{e_1, \alpha, \beta\alpha\}$ are A-graded modules respectively with graded structures as follows:

$$(Ae_{3})_{\overline{i}} = \begin{cases} k\{e_{3}\}, & \overline{i} = \overline{0} \\ 0, & \overline{i} \neq \overline{0} \end{cases}, \quad (Ae_{2})_{\overline{i}} = \begin{cases} k\{e_{2}\}, & i = 0 \\ k\{\beta\}, & \overline{i} = \overline{1} \\ 0, & \overline{i} = \overline{2} \end{cases}$$
$$(Ae_{1})_{\overline{i}} = \begin{cases} k\{e_{1}\}, & \overline{i} = \overline{0} \\ k\{\alpha\}, & \overline{i} = \overline{1} \\ k\{\beta\alpha\}, & \overline{i} = \overline{2} \end{cases}$$

Let $M \triangleq \tau^{-1}Ae_3$. Obviously, M is graded with $(\tau^{-1}Ae_3)_{\overline{i}} = \begin{cases} k\{\beta^*\}, & \overline{i} = \overline{0} \\ 0, & \overline{i} \neq \overline{0} \end{cases}$. In fact, owing to [8], if we consider the case when $a(\gamma) = b(\gamma) = 1$ for $\forall \gamma \in Q_1$, then the (a, b)-preprojective algebra of the quiver $\overrightarrow{Q_A}$ is turned out to be $A' = (k\overrightarrow{Q'})/I$ where $\overrightarrow{Q'}$ is given by:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and the two-sided ideal $I = \langle \{\alpha^* \alpha, \beta^* \beta - \alpha \alpha^*, -\beta \beta^* \} \rangle$. It follows that $M \triangleq \tau^{-1} A e_3 = V_1^{e_3} = k\{\beta^*\}$, which can be a *G*-graded *A*-module with $M_{\overline{i}} = \begin{cases} k\{\beta^*\}, & \overline{i} = \overline{0} \\ 0, & \overline{i} \neq \overline{0} \end{cases}$.

We claim that graded module $M \oplus Ae_3$ is a graded partial tilting module but not partial tilting module. Actually, $A \sharp G$ -module MP_0 and Ae_3P_0 can be represented by their dimension vectors as follows:

0	\longrightarrow	0	\longrightarrow	0	0	\longrightarrow	0	\longrightarrow	0
0	\longrightarrow	0	\longrightarrow	0 ,	0	\longrightarrow	0	\longrightarrow	1.
0	\longrightarrow	1	\longrightarrow	0	0	\longrightarrow	0	\longrightarrow	0

And it is easy to check that $B \triangleq MP_{\overline{0}} \oplus Ae_3P_{\overline{0}}$ is a partial tilting $A \sharp G$ -module. Applying the Proposition 1.4, we prove that $B_* = M \oplus Ae_3$ is a graded partial tilting module where M and Ae_3 are graded modules. However, since $\operatorname{Ext}_A(M, Ae_3) \neq 0$, we have $\operatorname{Ext}_A(B_*, B_*) \neq 0$. Hence A-module B_* is not a partial tilting module.

From [9], we know that for $\forall g \in G$ the translational functor $T_g : A \text{-gr} \longrightarrow A \text{-gr}$ is an equivalent functor and if the ring A is a strongly graded ring of type G, then $()_e : A \text{-gr} \oiint A_e \text{-Mod}: A \otimes_{A_e} \text{-are mutually equivalent functors. We get}$

Proposition 2.3 Let A be a strongly graded ring of type G and $M = \bigoplus_{g \in G} M_g$ be a graded A-module. Then the followings are equivalent:

- (1) M is a graded partial tilting A-module;
- (2) M_e is a partial tilting A_e -module;
- (3) There is $g \in G$ such that M_g is a partial tilting A_e -module;
- (4) M_g is a partial tilting A_e -module for $\forall g \in G$.

Because of the difference between the derived functor $\text{EXT}_A(M, N)$ and $\text{Ext}_{A-\text{gr}}(M, N)$, we introduce the notion of graded strongly partial tilting module, that is,

Definition 2.4 $M \in A$ -gr is called graded strongly partial tilting module if it satisfies the following conditons

- (1) gr.pd_A $M \leq 1$;
- (2) $EXT_A(M, M) = 0.$

Clearly, graded module M is a graded strongly partial tilting module if and only if M is a partial tilting module. In addition, graded strongly partial tilting modules are graded partial tilting modules. Conversely, it is not always true, as shown in Example 2.2.

Proposition 2.5 Assume the multiplicative group G is finite. Then M is a graded strongly partial tilting module if and only if $M \sharp G$ is a partial tilting $A \sharp G$ -module.

Proof Since $()^* : A \text{-gr} \longrightarrow A \sharp G$ -Mod is an equivalent functor and $M \sharp G \cong (\bigoplus_{g \in G} (M(g)))^*$, we

have

$$pd_{A\sharp G}M\sharp G = pd_{A\sharp G}(\oplus_{g\in G}(M(g)))^* = gr.pd_A(\oplus_{g\in G}(M(g)))$$
$$= pd_A(\oplus_{g\in G}(M(g))) = \sup_{g\in G}\{pd_AM(g)\} = pd_AM = gr.pd_AM.$$

 $\text{So } \operatorname{gr.pd}_AM \leqslant 1 \Longleftrightarrow \operatorname{pd}_{{}_{A \sharp G}}M \sharp G \leqslant 1.$

Moreover, it is easy to show that

$$\operatorname{Ext}_{A \sharp G}(M \sharp G, M \sharp G) = \operatorname{Ext}_{A \sharp G}((\bigoplus_{g \in G}(M(g)))^*, (\bigoplus_{g \in G}(M(g)))^*)$$
$$= \operatorname{Ext}_{A \operatorname{-gr}}(\bigoplus_{g \in G}(M(g)), \bigoplus_{g \in G}(M(g)))$$
$$= \bigoplus_{g \in G} \bigoplus_{h \in G} \operatorname{Ext}_{A \operatorname{-gr}}(M(g), M(h)) = \bigoplus_{g \in G} \bigoplus_{h \in G} \operatorname{Ext}_{A \operatorname{-gr}}(M, M(g^{-1}h))$$
$$= \bigoplus_{g \in G} (\bigoplus_{h \in G} (\operatorname{EXT}_A(M, M))_{g^{-1}h}) = \bigoplus_{g \in G} \operatorname{EXT}_A(M, M).$$

Thus $\operatorname{Ext}_{A\sharp G}(M\sharp G, M\sharp G) = 0 \iff \operatorname{EXT}_A(M, M) = 0.$

Next let us discuss the existence of the Bongartz-complement in A-gr. For convenience, we introduce the notion of the graded tilting module firstly.

Definition 2.6 $M \in A$ -gr is called graded tilting module if it satisfies the following conditions:

- (T_1) gr.pd_A $M \leq 1$;
- (T_2) Ext_{A-gr}(M, M) = 0;

 (T_3) There exists a short exact sequence $0 \longrightarrow A \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ with M' and M'' direct sums of direct summands of M in A-gr, that is, M' and $M'' \in \operatorname{add}_{A-\operatorname{gr}}(M)$.

Remark 2.7 It is well known that one of conditions in the definition of the tilting module, similar to (T_3) above, can be replaced by (T_3) ': the number of mutually non-isomorphic indecomposable summands of M equals to rank $K_0(A)$. But this case is not true for graded tilting modules.

Example 2.8 For Example 2.2, it is clear that $A = \bigoplus_{i=1}^{3} Ae_i$ is a graded tilting module and Ae_1 , Ae_2 and Ae_3 are mutually non-isomorphic and indecomposable in A-gr. But the number of mutually non-isomorphic indecomposable summands of A 3 does not equal to rank $K_0(\text{f.g}_{A-\text{gr}}\mathfrak{M})$. In fact, rank $K_0(\text{f.g}_{A-\text{gr}}\mathfrak{M}) = \text{rank}K_0(A\sharp G) = |G| \text{rank}K_0(A) = 9 \neq 3$.

Now we show the existence of Bongartz-complements of graded partial tilting modules in categories of graded modules.

Theorem 2.9 Let T be a graded partial tilting A-module. Then there exists a graded A-module X such that $T \oplus X$ is a graded tilting A-module.

Proof It is not hard to prove that for $\forall A', B \in A$ -gr it follows that $e_{A-\text{gr}}(B, A') \cong \text{Ext}_{A-\text{gr}}(B, A')$ where $e_{A-\text{gr}}(B, A') = \{$ short exact sequences $0 \longrightarrow A' \longrightarrow C \longrightarrow B \longrightarrow 0$ in A-gr $|A', B, C \in A$ -gr}.

Let e_1, e_2, \ldots, e_d be a basis of the k-vector space $\operatorname{Ext}_{A-\operatorname{gr}}(T, A)$, and consider the exact sequence

$$0 \longrightarrow A \xrightarrow{g_1} X \longrightarrow T^{(d)} \longrightarrow 0 - - - (*)$$

defined as the push out in A-gr along the graded morphism $f: A^{(d)} \longrightarrow A:(a_1, a_2, \ldots, a_d) \longmapsto \Sigma_{i=1}^d a_i$ of the exact sequence $\bigoplus_{i=1}^d e_i$, that is,

Since $pd_A T = gr.pd_A T \leq 1$, $pd_A A = 0$ and (*) is exact in the A-modules category, we have $pd_A X \leq 1$. Hence $gr.pd_A(T \oplus X) = pd_A(T \oplus X) \leq 1$.

Applying the functor $\operatorname{Hom}_{A-\operatorname{gr}}(T, -)$ to (*) gives a long exact sequence:

$$\operatorname{Hom}_{A-\operatorname{gr}}(T, T^{(d)}) \xrightarrow{\varphi} \operatorname{Ext}_{A-\operatorname{gr}}(T, A) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(T, X) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(T, T^{(d)}) = 0.$$

By construction, φ is surjective. Hence $\operatorname{Ext}_{A-\operatorname{gr}}(T, X) = 0$.

Moreover, applying $\operatorname{Hom}_{A-\operatorname{gr}}(-,T)$ to (*) yields:

$$0 = \operatorname{Ext}_{A-\operatorname{gr}}(T^{(d)}, T) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(X, T) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(A, T) = (\operatorname{EXT}_{A}(A, T))_{e} = 0.$$

Thus $\operatorname{Ext}_{A-\operatorname{gr}}(X,T) = 0.$

And applying $\operatorname{Hom}_{A-\operatorname{gr}}(-, X)$ to (*) yields:

$$0 = \operatorname{Ext}_{A-\operatorname{gr}}(T^{(d)}, X) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(X, X) \longrightarrow \operatorname{Ext}_{A-\operatorname{gr}}(A, X) = (\operatorname{EXT}_{A}(A, X))_{e} = 0.$$

It follows that $\operatorname{Ext}_{A-\operatorname{gr}}(X, X) = 0.$

Hence $\operatorname{Ext}_{A-\operatorname{gr}}(T \oplus X, T \oplus X) = 0$. Since (*) is the sequence of (T3), $T \oplus X$ is indeed a graded tilting module.

3. Tilting modules $M \sharp G$

Assume G is a finite multiplicative group. And in this section we mainly talk about how the functor-#G can preserve tilting modules. Note that according to the A#G-modular multiplication of M#G, MP_g is an A#G-submodule of M#G for $\forall g \in G$. So we have

Theorem 3.1 If the partial tilting graded A-module M in A-gr has an indecomposable decomposition $M = \bigoplus_{i=1}^{n} T_i$, where $n = \operatorname{rank} K_0(A)$, T_i are mutually non-isomorphic and $T_i \ncong T_j(g)$ $(\forall g \in G, g \neq e; i, j = 1, ..., n)$ in A-gr, then the A \sharp G-module $M\sharp$ G is the tilting module.

Proof Since $()^* : A \operatorname{-gr} \longrightarrow A \sharp G$ -Mod is an equivalent functor and $M \sharp G \cong (\bigoplus_{g \in G} (M(g)))^*$, we have

$$\begin{aligned} \mathrm{pd}_{{}_{A\sharp G}}M\sharp G &= \mathrm{pd}_{{}_{A\sharp G}}(\oplus_{g\in G}(M(g)))^* = \mathrm{gr.pd}_A(\oplus_{g\in G}(M(g))) \\ &= \mathrm{pd}_A(\oplus_{g\in G}(M(g))) = \sup_{g\in G}\{\mathrm{pd}_AM(g)\} = \mathrm{pd}_AM \leqslant 1 \end{aligned}$$

and

$$\operatorname{Ext}_{A\sharp G}(M\sharp G, M\sharp G) = \operatorname{Ext}_{A\sharp G}((\oplus_{g\in G}(M(g)))^*, (\oplus_{g\in G}(M(g)))^*)$$
$$= \operatorname{Ext}_{A-\operatorname{gr}}(\oplus_{g\in G}(M(g)), \oplus_{g\in G}(M(g)))$$

$$= (\mathrm{EXT}_A((\oplus_{g \in G}(M(g)), (\oplus_{g \in G}(M(g)))))_e.$$

It is easy to show that

$$\operatorname{EXT}_{A}(\oplus_{g \in G} M(g), \oplus_{g \in G} M(g)) = \operatorname{Ext}_{A}(\oplus_{g \in G} M(g), \oplus_{g \in G} M(g))$$
$$= \oplus_{g \in G} \oplus_{g \in G} \operatorname{Ext}_{A}(M(g), M(h))$$
$$= \oplus_{g \in G} \oplus_{g \in G} \operatorname{Ext}_{A}(M, M) = 0.$$

Thus $\operatorname{Ext}_{A \sharp G}(M \sharp G, M \sharp G) = (\operatorname{EXT}_A(\bigoplus_{g \in G} M(g), \bigoplus_{g \in G} M(g)))_e = 0.$

By conditions, there exists an A #G-modular decomposition

$$M \sharp G = (\bigoplus_{i=1}^{n} T_i) \sharp G = \bigoplus_{i=1}^{n} (T_i \sharp G) = \bigoplus_{i=1}^{n} \bigoplus_{g \in G} T_i P_g.$$

And we claim that T_iP_g are indecomposable $A \sharp G$ -modules and mutually non-isomorphic. In fact, assume T_iP_g are decomposable, i.e., $T_iP_g = D \oplus B$. Since $D \oplus B = T_iP_g \cong (T_i(g^{-1}))^*$ and $()_*:$ $A \sharp G$ -Mod $\longrightarrow A$ -gr is equivalent, we have $T_i(g^{-1}) \cong D_* \oplus B_*$, that is, T_i are decomposable, a contradiction.

Next let us divide into three steps to prove that $T_i P_g (\forall g \in G, i = 1, ..., n)$ are mutually nonisomorphic. If $T_i P_g \cong T_j P_g$ where $i \neq j$, then $(T_i(g^{-1}))^* \cong (T_j(g^{-1}))^*$. Thus $T_i(g^{-1}) \cong T_j(g^{-1})$. Hence $T_i \cong T_j$, a contradiction; if $T_i P_g \cong T_i P_h$ where $g \neq h$, then it is similar to prove that $T_i(g^{-1})) \cong T_i(h^{-1})$. And since the translational functors are equivalent functors, $T_i \cong T_i(gh^{-1})$, a contradiction; if $T_i P_g \cong T_j P_h$ with $g \neq h$ and $i \neq j$, then from $(T_i(g^{-1}))^* \cong T_i P_g \cong T_j P_h \cong$ $(T_j(h^{-1}))^*$ it follows that there exists a graded isomorphism $T_i \cong T_j(gh^{-1})$, a contradiction.

To sum up the above-mentioned, the theorem is proved.

Corollary 3.2 If graded A-module M is a tilting module and in A-gr has an indecomposable decomposition $M = \bigoplus_{i=1}^{n} T_i$ where $T_i \ncong T_i(g)$ ($\forall g \in G$ and $g \neq e$), then $A \ddagger G$ -module $M \ddagger G$ is a tilting module.

Example 3.3 For Example 2.2, it is obvious that BB(APR)-tilting module $T = Ae_1 \oplus Ae_2 \oplus \tau^{-1}Ae_3$ satisfies the conditions of the Theorem 3.1. Hence $T \sharp G$ is a tilting $A \sharp G$ -module.

In fact, for $\forall i \in \mathbb{Z}_3$, it follows that $Ae_1P_{\overline{i}} = (A \sharp G)e_1P_{\overline{i}}, Ae_2P_{\overline{i}} = (A \sharp G)e_2P_{\overline{i}}$. Clearly, $A \sharp G$ -module $MP_{\overline{0}}, MP_{\overline{1}}$ and $MP_{\overline{2}}$ can be represented respectively by the dimension vectors as follows:

Then according to the definition of the tilting module, it is proved directly that $T \sharp G$ is an $A \sharp G$ tilting module. On the other hand, although T is a BB(APR)-tilting module, $T \sharp G$ is not so. Thus $-\sharp G$ does not preserve the BB(APR)-tilting module.

Definition 3.4 $M \in A$ -gr is called graded strongly tilting module if it satisfies the following conditions:

(1) gr.pd_A $M \leq 1$;

(2) $EXT_A(M, M) = 0;$

(3) There exists a short exact sequence $0 \longrightarrow A \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ with M' and M'' direct sums of direct summands of M in A-gr, that is, M' and $M'' \in \operatorname{add}_{A-\operatorname{gr}}(M)$.

Obviously, graded strongly tilting modules are graded tilting modules. Conversely, it is not always true.

Example 3.5 For example 2.2, it follows that $Ae_1P_i = (A \sharp G)e_1P_i$, $Ae_2P_i = (A \sharp G)e_2P_i$ and $Ae_3P_i = (A \sharp G)e_3P_i$ are all indecomposable $A \sharp G$ -projective modules for $\forall i \in \mathbb{Z}_3$. It is easy to prove that $A \sharp G$ -module

$$C \triangleq MP_{\overline{0}} \oplus Ae_2P_{\overline{0}} \oplus Ae_1P_{\overline{2}} \oplus Ae_1P_{\overline{0}} \oplus Ae_2P_{\overline{1}} \oplus Ae_3P_{\overline{2}} \oplus Ae_1P_{\overline{1}} \oplus Ae_2P_{\overline{2}} \oplus Ae_3P_{\overline{0}}$$

is an $A \sharp G$ -tilting module. Applying the Proposition 1.4 yields that C_* is a graded tilting module. But since $\operatorname{Ext}_A(M, Ae_3) \neq 0$, $\operatorname{EXT}_A(C_*, C_*) = \operatorname{Ext}_A(C_*, C_*) \neq 0$. Hence C_* is a graded tilting module but not graded strongly tilting module.

Applying the Proposition 2.5 and the exactness of the functor $-\sharp G$, we have

Proposition 3.6 If M is a graded strongly tilting A-module, then M # G is an A # G-tilting module.

4. A_e -tilting modules

In this section, we discuss the relationships among tilting objects (partial tilting objects) of categories A-gr, A-Mod and A_e -Mod.

From [9], we know that for $\forall g \in G$ the translational functor $T_g : A\text{-gr} \longrightarrow A\text{-gr}$ is an equivalent functor and if the ring A is a strongly graded ring of type G, then $()_e : A\text{-gr} \rightleftharpoons A_e\text{-Mod} : A \otimes_{A_e}\text{-are mutually equivalent functors. We have$

Proposition 4.1 Let A be a strongly graded ring of type G and $M = \bigoplus_{g \in G} M_g$ be a graded A-module. Then the followings are equivalent:

- (1) M is a graded tilting A-module;
- (2) M_e is a tilting A_e -module;
- (3) There exists $g \in G$ such that M_g is a tilting A_e -module;
- (4) M_g is a tilting A_e -module for $\forall g \in G$.

Theorem 4.2 Let A be a strongly graded ring of type G. If the partial tilting graded Amodule M in A-gr has an indecomposable decomposition $M = \bigoplus_{i=1}^{n} N_i^{k_i}$ where $n = \operatorname{rank} K_0(A_e)$, $k_i \in \mathbb{Z}^+$ and N_i are mutually non-isomorphic, then M_g is a tilting A_e -module for $\forall g \in G$ (M_g is g-component of M).

Proof Since A is a strongly graded ring of type G, then $()_e : A \cdot \operatorname{gr} \rightleftharpoons A_e \cdot \operatorname{Mod} : A \otimes_{A_e} \cdot \operatorname{are mutu-}$ ally equivalent functors. Thus $\operatorname{pd} M_g \leq 1$. Observe that $\operatorname{Ext}_{A_e}(M_g, M_g) \cong \operatorname{Ext}_{A_e}((M(g))_e, (M(g))_e)$ $\cong \operatorname{Ext}_{A \cdot \operatorname{gr}}(M(g), M(g)) = (\operatorname{EXT}_A(M(g), M(g)))_e = 0.$

Next, we claim that N_i is a strongly graded module. Since A is a strongly graded ring

of type G, we have $(N_i)_g \neq 0$. In addition, applying the functor $(T_g(-))_e$ to $M = \bigoplus_{i=1}^n N_i^{k_i}$ yields $(M(g))_e = \bigoplus_{i=1}^n (N_i(g))_e^{k_i}$, that is, $M_g = \bigoplus_{i=1}^n (N_i)_g^{k_i}$. Since N_i is indecomposable in Agr, $(N_i)_g$ is also indecomposable in A-gr. (If not, then there is a decomposition of A_e -modules $(N_i)_g = B \oplus D$, which leads to that $N_i(g) \cong A \otimes_{A_e} (N_i)_g = A \otimes_{A_e} B \oplus A \otimes_{A_e} D$, that is, N_i is decomposable in A-gr. It yields the contradiction). Then since $N_i \ncong N_j (i \neq j)$, it is easy to prove that $(N_i)_g \ncong (N_j)_g$. So the number of mutually non-isomorphic indecomposable summands of M_q equals to rank $K_0(A_e)$.

Remark 4.3 The condition that A is a strongly graded ring of type G in Theorem 4.2 cannot be lost but is not necessary.

Example 4.4 For example 2.2, A is not a strongly graded ring of type G and $M \triangleq \tau^{-1}Ae_3 = V_1^{e_3} = k\{\beta^*\}$ is a graded A-module with

$$(\tau^{-1}Ae_3)_{\overline{i}} = \begin{cases} k\{\beta^*\}, & \overline{i} = \overline{1} \\ 0, & \overline{i} \neq \overline{1} \end{cases}$$

Then it is easy to show that $T = Ae_1 \oplus Ae_2 \oplus M$ is a graded A-module and tilting module and $T_e = k\{e_1\} \oplus k\{e_2\} \oplus 0$. But the number of mutually non-isomorphic indecomposable summands of T_e does not equal to rank $K_0(A_e) = 3$. Hence it is not a tilting A_e -module.

Example 4.5 Consider the path algebra $A = k\overrightarrow{Q_A}$, where $\overrightarrow{Q_A}$: $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$. It is seen from [8] that if we consider the case when $a(\gamma) = b(\gamma) = 1$ for $\forall \gamma \in Q_1$, then the (a, b)-preprojective algebra of the quiver $\overrightarrow{Q_A}$ is turned out to be $A' = (k\overrightarrow{Q'})/I$, where $\overrightarrow{Q'}$ is given by:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and the two-sided ideal $I = \langle \{\alpha^* \alpha, \beta^* \beta - \alpha \alpha^*, -\beta \beta^* \} \rangle$. Then the preprojective algebra is turned into a graded k-algebra of type \mathbb{Z}_3 by the degrees of pathes. Obviously, it is not strongly graded.

We can prove that $A'e_1 = k\{e_1, \alpha, \beta\alpha\}$, $A'e_2 = k\{e_2, \beta, \beta^*\beta, \alpha^*\}$ and $A'e_3 = k\{e_3, \beta^*, \alpha^*\beta^*\}$ are graded A'-modules respectively with their graded structures as follows:

$$(A'e_{1})_{\overline{i}} = \begin{cases} k\{e_{1}, \alpha, \beta\alpha\}, & \overline{i} = \overline{0} \\ 0, & \overline{i} \neq \overline{0} \end{cases}, \quad (A'e_{2})_{\overline{i}} = \begin{cases} k\{e_{2}, \beta\}, & \overline{i} = \overline{0} \\ k\{\beta^{*}\beta, \alpha^{*}\}, & \overline{i} = \overline{1} \\ 0, & \overline{i} = \overline{2} \end{cases},$$
$$(A'e_{3})_{\overline{i}} = \begin{cases} k\{e_{3}\}, & \overline{i} = \overline{0} \\ k\{\beta^{*}\}, & \overline{i} = \overline{1} \\ k\{\alpha^{*}\beta^{*}\}, & \overline{i} = \overline{2} \end{cases}.$$

It is clear that $A' = (k\overrightarrow{Q'_A})/I = A'e_1 \oplus A'e_2 \oplus A'e_3$ is a tilting A'-module and $(A')_{\overline{0}} = (A'e_1)_{\overline{0}} \oplus (A'e_2)_{\overline{0}} \oplus (A'e_3)_{\overline{0}} = k\{e_1, \alpha, \beta\alpha\} \oplus k\{e_2, \beta\} \oplus k\{e_3\} = Ae_1 \oplus Ae_2 \oplus Ae_3$ is also a tilting $A'_{\overline{0}} = A$ -module.

References

- BERNSTEIN I N, GELFAND I M, PONOMAREV V A. Coxeter functors, and Gabriel's theorem [J]. Uspehi Mat. Nauk, 1973, 28(2): 19–33. (in Russian)
- [2] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functors without diagrams [J]. Trans. Amer. Math. Soc., 1979, 250: 1–46.
- BRENNER S, BULTER M. Generalizations of the Bernstein-Gelfand-Ponomarev Reflection Functor [M]. Springer, Berlin-New York, 1980.
- [4] HAPPEL D, RINGEL C M. Tilted algebras [J]. Trans. Amer. Math. Soc, 1982, 274(2): 399-443.
- [5] BONGARTZ K. Tilted Algebra [M]. Springer, Berlin-New York, 1981.
- [6] HAPPEL D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras [M]. Cambridge University Press, Cambridge, 1988.
- [7] ASSEM I. Tilting theory–An introduction [J]. Topics in Algebra, 1990, 26(1): 127–179.
- [8] KLEINER M. The Graded Preprojective algebra of a quiver [J]. Bull. London Math. Soc., 2004, 36(1): 13–22.
- [9] NÂSTÂSESCU C, VAN O F. Methods of Graded Rings [M]. Springer-Verlag, Berlin, 2004.
- [10] CRAWLEY-BOEVEY W. Lectures on Representations of Quivers [C]. A Graduate Course Given at Oxford University, 1992.
- [11] LIU Shaoxue, VAN O F. Group Graded Rings, Smash Products and Additive Categories [M]. Kluwer Acad. Publ., Dordrecht, 1988.