Left Δ-Product Structure of Left C-Wrpp Semigroups

ZHANG Xiao Min
(Department of Mathematics, Linyi Normal University, Shandong 276005, China)
(E-mail: lygxxm@tom.com)

Abstract

We study another structure of so-called left C-wrpp semigroups. In particular, the concept of left Δ-product is extended and enriched. The aim of this paper is to give a construction of left C-wrpp semigroups by a left regular band and a strong semilattice of left- \mathcal{R} cancellative monoids. Properties of left C-wrpp semigroups endowed with left Δ-products are particularly investigated.

Keywords left C-wrpp semigroup; left regular band; left Δ-product.
Document code A
MR(2000) Subject Classification 20M10
Chinese Library Classification O152.7

1. Introduction

Clifford semigroups play an important role in the theory of regular semigroups. Many authors have extensively investigated the generalizations of Clifford semigroups and have obtained plenty of results ${ }^{[1-10]}$. Clifford semigroups have been extended to left C-semigroups by Zhu, Guo and Shum ${ }^{[1]}$, and Guo introduced the concept of left Δ-product of semigroups in paper ${ }^{[2]}$. Clifford semigroups have been extended to weakly left C-semigroups by Guo ${ }^{[3]}$ in 1996. One of the most significant generalizations of Clifford semigroups was investigated by Fountain ${ }^{[4]}$ when he introduced the concept of rpp monoids with central idempotents. The left C-rpp semigroups were studied by Guo ${ }^{[5]}$, who obtained the semi-spined product structure of left C-rpp semigroups. Cao ${ }^{[8]}$ obtained another structure of left C-rpp semigroups in terms of left Δ-product.

Tang ${ }^{[9]}$ introduced Green's ${ }^{* *}$ relations on a semigroup, and by using this new Green's relations, he defined the concepts of wrpp semigroups and C-wrpp semigroups. We have known that a C-wrpp semigroup can be expressed as a strong semilattice of a left- \mathcal{R} cancellative monoids. C-wrpp semigroups have been extended to left C-wrpp semigroups by Du and Shum ${ }^{[10]}$, and they obtained a description of curler structure of left C-wrpp semigroups.

In this paper, we generalize the concept of left Δ-product, and obtain left Δ-product structure of left C-wrpp semigroups. In Section 2, some basic results concerning left C-wrpp semigroups are recalled. In Section 3, a construction of left C-wrpp semigroups is given by a left regular band and a strong semilattice of left- \mathcal{R} cancellative monoids, and some properties of left C-wrpp semigroups endowed with left Δ-products are obtained.

Received date: 2007-01-26; Accepted date: 2007-07-13
Foundation item: the Funds of Young and Middle-Aged Academic Talents of Linyi Normal University.

2. Preliminaries

Throughout this paper, the terminologies and notations that are not defined can be found in [2] and [10].

The relation $\mathcal{L}^{* *}$ on a semigroup S is defined by the rule that $a \mathcal{L}^{* *} b$ if and only if $a x \mathcal{R} a y \Leftrightarrow$ $b x \mathcal{R} b y$ for any $x, y \in S^{1}$, where \mathcal{R} is the usual Green's \mathcal{R} relation on S. A semigroup S is called a wrpp semigroup if each $\mathcal{L}^{* *}$-class of S contains at least one idempotent.

The following results are due to Du and Shum ${ }^{[10]}$.
Definition 2.1 A semigroup S is called a quasi-strong wrpp semigroup if for all $e \in E\left(L_{a}^{* *}\right)$, we have $a=a e$, where $E\left(L_{a}^{* *}\right)$ is the set of idempotents in $L_{a}^{* *}$.

Definition 2.2 A quasi-strong wrpp semigroup S is called a strong wrpp semigroup if for all $a \in S$, there exists a unique idempotent a^{+}satisfying $a \mathcal{L}^{* *} a^{+}$and $a=a^{+} a$.

Note 2.3 It was noticed that so called strong wrpp semigroups are exactly adequate wrpp semigroups which were called by Du and Shum ${ }^{[10]}$.

Definition 2.4 A strong wrpp semigroup S satisfying $a S \subseteq L^{+}(a)$ for all $a \in S$ is called a left C-wrpp semigroup.

Definition 2.5 A monoid M is called a left-R cancellative monoid if for any $a, b, c \in M,(c a, c b) \in$ \mathcal{R} implies $(a, b) \in \mathcal{R}$. We call the direct product of a left zero I and a left- \mathcal{R} cancellative monoid M a left- \mathcal{R} cancellative stripe. We denote the left- \mathcal{R} cancellative stripe by $I \times M$.

Lemma 2.6 Let S be a strong wrpp semigroup. Then the following conditions are equivalent:

1) S is a left C-wrpp semigroup;
2) $E(S)$ is a left regular band and $\mathcal{L}^{* *}$ is a congruence on S;
3) S is semilattice of left- \mathcal{R} cancellative stripes.

3. Left \triangle-product of left C-wrpp semigroups

In this section, the concept of left \triangle-product of semigroups is introduced. We shall show that the structure of a left C-wrpp semigroup can be described by the left Δ-product of semigroups.

We let Y be a semilattice and $T=\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ a strong semilattice of left- \mathcal{R} cancellative monoids T_{α}. Let I be a left regular band which is a semilattice of left zero bands I_{α}, denoted by $I=\cup_{\alpha \in Y} I_{\alpha}$. For every $\alpha \in Y$, we form the Cartesian product $S_{\alpha}=I_{\alpha} \times T_{\alpha}$.

Now, for any $\alpha, \beta \in Y$ with $\alpha \geq \beta$ and the left transformation semigroup $\mathcal{T}^{*}\left(I_{\beta}\right)$, we define a mapping

$$
\Phi_{\alpha, \beta}: S_{\alpha} \rightarrow \mathcal{T}^{*}\left(I_{\beta}\right), a \mapsto \varphi_{\alpha, \beta}^{a},
$$

where all $\Phi_{\alpha, \beta}$ satisfy the following conditions:
$\left(\mathrm{Q}_{1}\right)$ If $(i, u) \in S_{\alpha}, i^{\prime} \in I_{\alpha}$, then $\varphi_{\alpha, \alpha}^{(i, u)} i^{\prime}=i$;
$\left(\mathrm{Q}_{2}\right)$ For any $(i, u) \in S_{\alpha},(j, v) \in S_{\beta}$, we consider the following situation respectively:
(a) $\varphi_{\alpha, \alpha \beta}^{(i, u)} \varphi_{\beta, \alpha \beta}^{(j, v)}$ is a constant mapping on $I_{\alpha \beta}$ and we denote the constant value by $\left\langle\varphi_{\alpha, \alpha \beta}^{(i, u)} \varphi_{\beta, \alpha \beta}^{(j, v)}\right\rangle$;
(b) If $\alpha, \beta, \delta \in Y$ with $\alpha \beta \geq \delta$ and $\left\langle\varphi_{\alpha, \alpha \beta}^{(i, u)} \varphi_{\beta, \alpha \beta}^{(j, v)}\right\rangle=k$, then we have

$$
\varphi_{\alpha \beta, \delta}^{(k, u v)}=\varphi_{\alpha, \delta}^{(i, u)} \varphi_{\beta, \delta}^{(j, v)}
$$

where $u v$ is the product of u and v in T, i.e., $u v=u \theta_{\alpha, \alpha \beta} \cdot v \theta_{\beta, \alpha \beta}$;
(c) If $\varphi_{\gamma, \gamma \alpha}^{(g, w)} \varphi_{\alpha, \gamma \alpha}^{(i, u)}=\varphi_{\gamma, \gamma \beta}^{(g, w)} \varphi_{\beta, \gamma \beta}^{(j, v)}$ for any $(g, w) \in S_{\gamma}$, then $\varphi_{\gamma, \gamma \alpha}^{\left(g, 1_{\gamma}\right)} \varphi_{\alpha, \gamma \alpha}^{(i, u)}=\varphi_{\gamma, \gamma \beta}^{\left(g, 1_{\gamma}\right)} \varphi_{\beta, \gamma \beta}^{(j, v)}$, where 1_{γ} is the identity of the monoid T_{γ}.

We now form the set union $S=\cup_{\alpha \in Y} S_{\alpha}$ and define a multiplication " \circ " on S by

$$
\begin{equation*}
(i, u)(j, v)=\left(\left\langle\varphi_{\alpha, \alpha \beta}^{(i, u)} \varphi_{\beta, \alpha \beta}^{(j, v)}\right\rangle, u v\right) \tag{*}
\end{equation*}
$$

After straightforward verification, we can verify that the multiplication "०" satisfies the associative laws, and hence (S, \circ) is a semigroup. We denote this semigroup (S, \circ) by $S=I \triangle_{\Phi} T$ and call it the left Δ-product of the semigroups I and T with respect to Y, under the structure mapping $\Phi_{\alpha, \beta}$.

We shall establish a construction theorem for left C-wrpp semigroups.
Theorem 3.1 Let T be a C-wrpp semigroup, i.e., $T=\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ is a strong semilattice of left- \mathcal{R} cancellative monoids T_{α} with structure homomorphism $\theta_{\alpha, \beta}$. Let left regular band $I=\cup_{\alpha \in Y} I_{\alpha}$ be a semilattice decomposition of left zero bands I_{α}. Then $I \Delta_{\Phi} T$, the left Δ product of I and T, is a left C-wrpp semigroup. Conversely, any left C-wrpp semigroup can be constructed by using the left Δ-product of a left regular band and a strong semilattice of left- \mathcal{R} cancellative monoids of the above form.

In order to prove Theorem 3.1, we need the following lemma:
Lemma 3.2 Let $I=\cup_{\alpha \in Y} I_{\alpha}$ be a semilattice of left zero bands I_{α} and $T=\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ a strong semilattice of left- \mathcal{R} cancellative monoids T_{α}. Let $S_{\alpha}=I_{\alpha} \times T_{\alpha}, S=I \Delta_{\Phi} T$. Then the following statements hold:

1) $E(S)=\cup_{\alpha \in Y}\left(I_{\alpha} \times\left\{1_{\alpha}\right\}\right)$, where 1_{α} denotes the identity of T_{α};
2) $(i, a) \mathcal{R}(j, b)$ if and only if $a \mathcal{R} b$ and $i=j$ for any $(i, a),(j, b) \in S=\cup_{\alpha \in Y}\left(I_{\alpha} \times T_{\alpha}\right)$.

Proof 1) Let $\left(i, 1_{\alpha}\right) \in I_{\alpha} \times\left\{1_{\alpha}\right\}$. by the multiplication given in $\left({ }^{*}\right)$ and by the condition $\left(\mathrm{Q}_{1}\right)$ described in above definition, we have

$$
\left(i, 1_{\alpha}\right)\left(i, 1_{\alpha}\right)=\left(\left\langle\varphi_{\alpha, \alpha}^{\left(i, 1_{\alpha}\right)} \varphi_{\alpha, \alpha}^{\left(i, 1_{\alpha}\right)}\right\rangle, 1_{\alpha}\right)=\left(i, 1_{\alpha}\right)
$$

On the other hand, if $(i, a) \in E(S)$, then there exists $\alpha \in Y$ such that $(i, a) \in E\left(S_{\alpha}\right)$ and $a^{2}=a \in T_{\alpha}$. Since $1_{\alpha}^{2}=1_{\alpha} \in T_{\alpha}$ and T_{α} is a monoid, we have $1_{\alpha} a=a$. Therefore, $a^{2} \mathcal{R} a 1_{\alpha}$. Again, since T_{α} is a left- \mathcal{R} cancellative monoid, so $a \mathcal{R} 1_{\alpha}$. According to that \mathcal{R} is a left congruence on T, we have $1_{\alpha} a \mathcal{R} 1_{\alpha}$. Hence there exists $u \in T_{\alpha}$ such that $1_{\alpha}=1_{\alpha} a u$. So we have $a=1_{\alpha} a 1_{\alpha}=$ $1_{\alpha} a 1_{\alpha} a u=1_{\alpha} a^{2} u=1_{\alpha} a u=1_{\alpha}$. Therefore (1) holds.
2) Let $(i, a),(j, b) \in S$ such that $(i, a) \mathcal{R}(j, b)$. Then there exist $(k, u),(l, v) \in S^{1}$ such that $(i, a)=(j, b)(k, u),(j, b)=(i, a)(l, v)$. But this is equivalent to saying that there exists $\alpha \in Y$ such that $(i, a),(j, b) \in S_{\alpha}=I_{\alpha} \times T_{\alpha}$ and such that $i \mathcal{R}\left(I_{\alpha}\right) j$ and $a \mathcal{R}\left(T_{\alpha}\right) b$. The latter holds if
and only if $i=j$ and $a \mathcal{R} b$. So (2) holds.
Now we verify Theorem 3.1.
Proof We first show that the direct part of theorem. To show that $S=I \Delta_{\Phi} T$ is a left Cwrpp semigroup, according to Lemma 2.6, we need to show that S is a strong wrpp semigroup and $E(S)$ is a left regular band, and $\mathcal{L}^{* *}$ is a congruence of S. By Lemma 3.2(1), we know that $E(S)=\cup_{\alpha \in Y}\left(I_{\alpha} \times\left\{1_{\alpha}\right\}\right)$ is a left regular band. If $S_{\alpha}=I_{\alpha} \times T_{\alpha}$ is an $\mathcal{L}^{* *}$-class, then $\mathcal{L}^{* *}$ is a congruence of S. According to the multiplication of S_{α}, we have $a e_{\alpha}=a$ for any $e_{\alpha}=\left(i, 1_{\alpha}\right) \in E\left(S_{\alpha}\right),(i, a) \in S_{\alpha}$, and $\left(i, 1_{\alpha}\right)$ is a unique idempotent such that $\left(i, 1_{\alpha}\right)(i, a)=(i, a)$. Since for any $\left(k, 1_{\alpha}\right) \in E\left(S_{\alpha}\right)$, we have $\left(k, 1_{\alpha}\right)(i, a)=(k, a), k=i$ is obtained. Thus S is a strong wrpp semigroup. We can deduce that S is a left C-wrpp semigroup. For this purpose, we only prove that S_{α} is an $\mathcal{L}^{* *}$-class of S. Let $(i, a),(j, b) \in S_{\alpha}=I_{\alpha} \times T_{\alpha}$. If for any $(k, u),(l, v) \in S^{1}$, we have $(i, a)(k, u) \mathcal{R}(i, a)(l, v)$, then $\left(\left\langle\varphi_{\alpha, \alpha \gamma}^{(i, a)} \varphi_{\gamma}^{(k, u \gamma}\right\rangle, a u\right) \mathcal{R}\left(\left\langle\varphi_{\alpha, \alpha \lambda}^{(i, a)} \varphi_{\lambda, \alpha \lambda}^{(l, v)}\right\rangle, a v\right)$, and we obtain $\left\langle\varphi_{\alpha, \alpha \gamma}^{(i, a)} \varphi_{\gamma, \alpha \gamma}^{(k, u)}\right\rangle=\left\langle\varphi_{\alpha, \alpha \lambda}^{(i, a)} \varphi_{\lambda, \alpha \lambda}^{(l, v)}\right\rangle$ and $a u \mathcal{R} a v$. Since $T=\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ is a C-wrpp semigroup, T_{α} is an $\mathcal{L}^{* *}$-class. Now, au $\mathcal{R} a v$ if and only if $b u \mathcal{R} b v$. Again by condition (c) of $\left(\mathrm{Q}_{2}\right)$, we can deduce that $\left\langle\varphi_{\alpha, \alpha \gamma}^{(j, b)} \varphi_{\gamma, \alpha \gamma}^{(k, u)}\right\rangle=\left\langle\varphi_{\alpha, \alpha \lambda}^{(j, b)} \varphi_{\lambda, \alpha \lambda}^{(l, v)}\right\rangle$. Consequently, we have $(j, b)(k, u) \mathcal{R}(j, b)(l, v)$. From this result and its dual, we immediately obtain $(i, a) \mathcal{L}^{* *}(j, b)$. On the other hand, if for any $(i, a) \in S_{\alpha},(j, b) \in S_{\beta}$, and such that $(i, a) \mathcal{L}^{* *}(j, b)$, then we have $(j, b)\left(i, 1_{\alpha}\right) \mathcal{R}(j, b)$ since $(i, a)\left(i, 1_{\alpha}\right)=(i, a)$. So $\left\langle\varphi_{\beta, \beta \alpha}^{(j, b)} \varphi_{\alpha, \beta \alpha}^{(i, a)}\right\rangle=j$. Thus we get $\alpha \geq \beta$. Similarly, we also can show that $\alpha \leq \beta$. Consequently, $\alpha=\beta$. Hence, S_{α} is an $\mathcal{L}^{* *}$-class of S. Therefore, according to Lemma $2.6, S$ is a left C-wrpp semigroup.

Next we show the converse part of this theorem. We first assume that S is an arbitrary left Cwrpp semigroup and what we will do is to construct a left Δ-product $I \Delta_{\Phi} T$ which is isomorphic to S. In fact, by Lemma 2.6(3), there exists a semilattice Y of semigroups $S_{\alpha}=I_{\alpha} \times T_{\alpha}$, where I_{α} is a left zero band and T_{α} is a left- \mathcal{R} cancellative monoid. Let $I=\cup_{\alpha \in Y} I_{\alpha}$ and $T=\cup_{\alpha \in Y} T_{\alpha}$.

In order to prove that left Δ-product $I \Delta_{\Phi} T$ is isomorphic to S, we have to go through the following steps:

Firstly, we verify that I is a left regular band. For this purpose, we shall show that I is isomorphic to $E(S)$ which is the set of all idempotents of S. Now, we define an operation "०" as follows:

For any $i \in I_{\alpha}, j \in I_{\beta}$,

$$
\begin{equation*}
i j=k \text { if and only if }\left(i, 1_{\alpha}\right) \circ\left(j, 1_{\beta}\right)=\left(k, 1_{\alpha \beta}\right) \tag{1}
\end{equation*}
$$

where $\left(i, 1_{\alpha}\right) \in I_{\alpha} \times T_{\alpha}$ and 1_{α} is the identity of T_{α}. Thus, I forms a regular band with respect to the above operation. Since S is a left C-wrpp semigroup, the mapping $\eta: E(S) \rightarrow I=\cup_{\alpha \in Y} I_{\alpha}$ defined by $\left(i, 1_{\alpha}\right) \mapsto i$ is clearly bijective. Then, we easily see that I is isomorphic to $E(S)$, and hence, I is a semilattice of left zero bands I_{α}. We call I the left regular band component of the left C-wrpp semigroup S.

Next, we shall claim that T is a strong semilattice of left- \mathcal{R} cancellative monoids T_{α}.
(i) $\left(j, 1_{\beta}\right)\left(i, 1_{\alpha}\right)$, for $\alpha \geq \beta$.

Notice that $\alpha \geq \beta$ and I_{β} is a left zero band, by Eq.(1), we have

$$
\begin{aligned}
\left(j i, 1_{\beta}\right) & =\left(j, 1_{\beta}\right)\left(1,1_{\alpha}\right)=\left[\left(j, 1_{\beta}\right)\left(j, 1_{\beta}\right)\right]\left(i, 1_{\alpha}\right) \\
& =\left(j, 1_{\beta}\right)\left(j i, 1_{\beta}\right)=\left(j, 1_{\beta}\right) .
\end{aligned}
$$

So, for any $\alpha, \beta \in Y$ with $i \in I_{\alpha}, j \in I_{\beta}$, we have

$$
\begin{equation*}
\left(j, 1_{\beta}\right)\left(i, 1_{\alpha}\right)=\left(j, 1_{\beta}\right) \tag{2}
\end{equation*}
$$

(ii) $\left(j, 1_{\beta}\right)(1, a)$, where $\alpha \geq \beta$ and $(i, a) \in I_{\alpha} \times T_{\alpha}$.

Let $\left(j, 1_{\beta}\right)(i, a)=\left(j_{1}, a_{i j}^{*}\right)$. Notice that $\left(j, 1_{\beta}\right)\left[\left(j, 1_{\beta}\right)(i, a)\right]=\left(j, 1_{\beta}\right)(i, a), I_{\beta}$ is a left zero band and $I_{\beta} \times T_{\beta}$ is a direct product. We obtain $j_{1}=j$ and

$$
\begin{aligned}
\left(j^{\prime}, a_{i j}^{*}\right) & =\left(j^{\prime}, 1_{\beta}\right)(i, a)=\left[\left(j^{\prime}, 1_{\beta}\right)\left(j, 1_{\beta}\right)\right](i, a) \\
& =\left(j^{\prime}, 1_{\beta}\right)\left(j, a_{i j}^{*}\right)=\left(j^{\prime}, a_{i j}^{*}\right) .
\end{aligned}
$$

This shows that $a_{i j}^{*}$ does not depend on the choice of j in I_{β}. Also, by Eq.(2), we have

$$
\begin{aligned}
\left(j, a_{i j}^{*}\right) & =\left(j, 1_{\beta}\right)\left(i^{\prime}, a\right)=\left(j, 1_{\beta}\right)\left[\left(i^{\prime}, 1_{\alpha}\right)(i, a)\right] \\
& =\left(j, 1_{\beta}\right)(i, a)=\left(j, a_{i j}^{*}\right)
\end{aligned}
$$

Therefore, $a_{i j}^{*}$ does not depend on the choice of i in I_{α} either. So, for any $\alpha, \beta \in Y$ with $\alpha \geq \beta$ and $i \in I_{\alpha}, j \in I_{\beta}$, we have

$$
\begin{equation*}
\left(j, 1_{\beta}\right)(i, a)=\left(j, a^{*}\right) \tag{3}
\end{equation*}
$$

By Eq.(3), we define a mapping

$$
\theta_{\alpha, \beta}: T_{\alpha} \rightarrow T_{\beta}, a \mapsto a^{*}=a \theta_{\alpha, \beta},(\alpha \geq \beta)
$$

By routing checking, all the mapping

$$
\left\{\theta_{\alpha, \beta} \mid \alpha, \beta \in Y, \alpha \geq \beta\right\}
$$

are indeed the structure homomorphisms of a strong semilattice Y of monoids. Thus, $T=$ $\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ is a strong semilattice of T_{α}.

Finally, we show that the mapping $\Phi_{\alpha, \beta}$ for left Δ-product satisfies the conditions $\left(\mathrm{Q}_{1}\right)$ and $\left(\mathrm{Q}_{2}\right)$ as stated above so that $I \Delta_{\Phi} T$ is the required left Δ-product. For this purpose, we let $\alpha, \beta \in Y$ with $\alpha \geq \beta$. Then for any $(i, a) \in S_{\alpha}=I_{\alpha} \times T_{\alpha},\left(j, 1_{\beta}\right) \in E\left(S_{\beta}\right)$, we have $(i, a)\left(j, 1_{\beta}\right)=\left(k, a^{\prime}\right)$ for some $a^{\prime} \in T_{\beta}$ and $k \in I_{\beta}$. This leads to

$$
\left(k, 1_{\beta}\right)(i, a)\left(j, 1_{\beta}\right)=\left(k, a \theta_{\alpha, \beta}\right)\left(j, 1_{\beta}\right)=\left(k, a \theta_{\alpha, \beta}\right)
$$

and hence, we have

$$
\begin{equation*}
(i, a)\left(j, 1_{\beta}\right)=\left(k, a \theta_{\alpha, \beta}\right) \in S_{\beta} \tag{4}
\end{equation*}
$$

Now by Eq.(4), we can easily deduce a mapping $\Phi_{\alpha, \beta}$ which maps S_{α} to the left transformation semigroup $\mathcal{T}^{*}\left(I_{\beta}\right)$, say,

$$
\Phi_{\alpha, \beta}:(i, a) \mapsto \varphi_{\alpha, \beta}^{(i, a)}
$$

where $\varphi_{\alpha, \beta}^{(i, a)}$ is defined by

$$
\begin{equation*}
(i, a)\left(j, 1_{\beta}\right)=\left(\varphi_{\alpha, \beta}^{(i, a)} j, a \theta_{\alpha, \beta}\right) \tag{5}
\end{equation*}
$$

We now verify that the conditions $\left(\mathrm{Q}_{1}\right)$ and $\left(\mathrm{Q}_{2}\right)$ for left Δ-product are satisfied. We consider the following cases:
(i) To show that $\Phi_{\alpha, \beta}$ satisfies the condition $\left(\mathrm{Q}_{1}\right)$ in above definition of left Δ-product, we let $(i, a) \in S_{\alpha}$ and $i^{\prime} \in I_{\alpha}$. Then, by Eq.(5), we have

$$
(i, a)\left(i^{\prime}, 1_{\alpha}\right)=\left(\varphi_{\alpha, \alpha}^{(i, a)} i^{\prime}, a\right)
$$

Since $S_{\alpha}=I_{\alpha} \times T_{\alpha}$ and I_{α} is a left zero band, we have $(i, a)\left(i^{\prime}, 1_{\alpha}\right)=(i, a)$. This implies that $\varphi_{\alpha, \alpha}^{(i, a)} i^{\prime}=i$. Therefore, the condition $\left(\mathrm{Q}_{1}\right)$ is satisfied.
(ii) To show that $\Phi_{\alpha, \beta}$ satisfies the condition $\left(\mathrm{Q}_{2}\right)$, we let $(i, a) \in S_{\alpha}$ and $(j, b) \in S_{\beta}$ for any $\alpha, \beta \in Y$. Then, by Eq. (5), for any $\left(\lambda, 1_{\alpha \beta}\right) \in E\left(S_{\alpha \beta}\right)$, we have

$$
\begin{align*}
(i, a)\left[(j, b)\left(\lambda, 1_{\alpha \beta}\right)\right] & =(i, a)\left(\varphi_{\beta, \alpha \beta}^{(j, b)} \lambda, b \theta_{\beta, \alpha \beta}\right) \\
& =(i, a)\left(\varphi_{\beta, \alpha \beta}^{(,, b)} \lambda, 1_{\alpha \beta}\right)\left(\varphi_{\beta, \alpha \beta}^{(j, b)} \lambda, b \theta_{\beta, \alpha \beta}\right) \\
& =\left(\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)} \lambda, a \theta_{\beta, \alpha \beta}\right)\left(\varphi_{\beta, \alpha \beta}^{(j, b)} \lambda, b \theta_{\beta, \alpha \beta}\right) \\
& =\left(\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)} \lambda, a \theta_{\alpha, \alpha \beta} b \theta_{\beta, \alpha \beta}\right) . \tag{6}
\end{align*}
$$

On the other hand, we also have

$$
\begin{equation*}
[(i, a)(j, b)]\left(\lambda, 1_{\alpha \beta}\right)=(\bar{k}, \bar{a})\left(\lambda, 1_{\alpha \beta}\right)=(\bar{k}, \bar{a}) \tag{7}
\end{equation*}
$$

By comparing Eq.(6) with (7), we have

$$
\bar{k}=\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)} \lambda,
$$

which implies that $\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)}$ is a constant value mapping on $I_{\alpha \beta}$. Thus, condition (a) of $\left(\mathrm{Q}_{2}\right)$ is satisfied. By using similar arguments, we can also show that (b) of $\left(\mathrm{Q}_{2}\right)$ is satisfied.

To see that $\Phi_{\alpha, \beta}$ satisfies condition (c) of $\left(\mathrm{Q}_{2}\right)$, we recall that S is a left C-wrpp semigroup. Thus, if $a x \mathcal{R} a y$ for any $a \in S$ and $x, y \in S^{1}$, then there exists an idempotent $e \in S$ such that ex Rey and $a=a e$. By writing $a=(i, u) \in S_{\alpha}$ and $e=\left(i, 1_{\alpha}\right) \in E(S)$, we can verify that $\Phi_{\alpha, \beta}$ satisfies condition (c) of $\left(\mathrm{Q}_{2}\right)$.

Therefore, $I \Delta_{\Phi} T$ is indeed a left Δ-product of I and T.
It remains to show that the left C-wrpp semigroup S is isomorphic to $I \Delta_{\Phi} T$. To this end, it suffices to prove that the multiplication on S is compatible with the multiplication on $I \Delta_{\Phi} T$. Since for any $(i, a) \in S_{\alpha},(j, b) \in S_{\beta}$, we clearly have

$$
(i, a)(j, b)=(\bar{k}, \bar{a}) \in S_{\alpha \beta}
$$

Hence, for any $\left(k, 1_{\alpha \beta}\right) \in E\left(S_{\alpha \beta}\right)$, we have

$$
(i, a)(j, b)=(i, a)(j, b)\left(k, 1_{\alpha \beta}\right)
$$

Then, by using the same arguments as step (ii) which are used to verify that the conditions $\left(\mathrm{Q}_{1}\right)$
and $\left(\mathrm{Q}_{2}\right)$ are satisfied for left Δ-product, we have

$$
(i, a)(j, b)=\left(\left\langle\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)}\right\rangle, a b\right)
$$

This shows that multiplication on S coincides with the multiplication on the left Δ-product $I \Delta_{\Phi} T$. Therefore, $S \cong I \Delta_{\Phi} T$. The proof is completed.

In what follows, we give some properties on left C-wrpp semigroups endowed with left Δ product structure.

Theorem 3.3 Let $S=I \Delta_{\Phi} T=\cup_{\alpha \in Y}\left(I_{\alpha} \times T_{\alpha}\right)$ be a left C-wrpp semigroup, where $I=\cup_{\alpha \in Y} I_{\alpha}$ is the semilattice decomposition of the left regular band I into the left zero bands I_{α} on the semilattice Y, and $T=\left[Y ; T_{\alpha}, \theta_{\alpha, \beta}\right]$ is a strong semilattice of the left- \mathcal{R} cancellative monoids T_{α}. Then $x \mathcal{L}_{S}^{* *} y$ if and only if $\alpha=\beta$ for any $x=(i, a) \in S_{\alpha}$ and $y=(j, b) \in S_{\beta}$.

Proof It is easy to see that the result holds since each S_{α} is an $\mathcal{L}^{* *}$-class of the semigroup S.
Theorem 3.4 Let $S=I \Delta_{\Phi} T$ be a left C-wrpp semigroup. Then the following statements are equivalent:

1) If $(i, a) \in S_{\alpha}$, and $(j, b) \in S_{\beta}$ for $\alpha, \beta \in Y$ and $\alpha \geq \beta$, then $\left\langle\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)}\right\rangle=i j$;
2) $I \Delta_{\Phi} T$ and the spined product of the semigroup $I=\cup_{\alpha \in Y} I_{\alpha}$ and the semigroup $T=$ $\cup_{\alpha \in Y} T_{\alpha}$ are equivalent.

Proof Let $S=I \Delta_{\Phi} T$ be a left C-wrpp semigroup. Recall the definition of $\Phi_{\alpha, \beta}$, we define multiplication operation "०" as follows:

$$
\forall(i, a) \in I_{\alpha} \times T_{\alpha},(j, b) \in I_{\beta} \times T_{\beta},(i, a) \circ(j, b)=\left(\left\langle\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)}\right\rangle, a \theta_{\alpha, \alpha \beta} b \theta_{\beta, \alpha \beta}\right)
$$

Then above left Δ-product of semigroup is a spined product if and only if for any $\alpha, \beta \in Y,(i, a) \in$ $I_{\alpha} \times T_{\alpha},(j, b) \in I_{\beta} \times T_{\beta}$ and $\alpha \geq \beta$, we have $\left\langle\varphi_{\alpha, \alpha \beta}^{(i, a)} \varphi_{\beta, \alpha \beta}^{(j, b)}\right\rangle=i j$. So 1), 2) are equivalent.

Theorem 3.5 Let $S=I \Delta_{\Phi} T=\cup_{\alpha \in Y}\left(I_{\alpha} \times T_{\alpha}\right)$ be a left Δ-product. Then the following statements are equivalent:

1) S is a strong semilattice of the semigroups $I_{\alpha} \times T_{\alpha}$;
2) For any $a \in T_{\alpha}, \alpha, \beta \in Y$, if $\alpha \geq \beta$, then $\varphi_{\alpha, \beta}^{a}$ is constant;
3) $E(S)$ is a left normal band of S.

Proof 1$) \Leftrightarrow 3$) is similar to the proof of [5, Theroem 4.2], and we omit it. Next we only show that 1$) \Leftrightarrow 2$).
$1) \Rightarrow 2)$ If $S=\left[Y ; S_{\alpha}, \psi_{\alpha, \beta}\right]$ is a strong semilattice of left- \mathcal{R} cancellative semigroups $I_{\alpha} \times T_{\alpha}$ with structure homomorphisms $\psi_{\alpha, \beta}$, for any $\alpha, \beta \in Y, \alpha \geq \beta$, and $a=(i, u) \in S_{\alpha},\left(j, 1_{\beta}\right) \in$ $S_{\beta} \cap E$, we have $(i, u) \psi_{\alpha, \beta} \in S_{\beta}$, written as (k, v), and

$$
(i, u)\left(j, 1_{\beta}\right)=(i, u) \psi_{\alpha, \beta}\left(j, 1_{\beta}\right) \psi_{\alpha, \beta}=(k, v)\left(j, 1_{\beta}\right)=(k, v)
$$

But

$$
(i, u)\left(j, 1_{\beta}\right)=\left(\varphi_{\alpha, \beta}^{(i, u)} j, u \theta_{\alpha, \beta}\right)
$$

So $\varphi_{\alpha, \beta}^{(i, u)} j=k$ for any $j \in I_{\beta}$. Thus $\varphi_{\alpha, \beta}^{a}$ is a constant mapping.
2) $\Rightarrow 1$) Let $\alpha, \beta \in Y$ with $\alpha \geq \beta$, and $a=(i, u) \in S_{\alpha}$. If $\varphi_{\alpha, \beta}^{(i, u)}$ is constant, for any $\left(j, 1_{\beta}\right) \in S_{\beta} \cap E(S)$, then $\Psi_{\alpha, \beta}$ is defined by the following rule:

$$
\left.\Psi_{\alpha, \beta}: \quad I_{\alpha} \times T_{\alpha} \rightarrow I_{\beta} \times T_{\beta}, \quad(i, u) \mapsto(i, u) \Psi_{\alpha, \beta}=(i, u)(j), 1_{\beta}\right)=\left(\varphi_{\alpha, \beta}^{(i, u)} j, u \theta_{\alpha, \beta}\right)
$$

$\Psi_{\alpha, \beta}$ is clearly a semigroup homomorphism.
If $\alpha=\beta$, and $(i, u) \in S_{\alpha},\left(i^{\prime}, 1_{\alpha}\right) \in S_{\alpha} \cap E(S)$, then

$$
(i, u) \Psi_{\alpha, \alpha}=(i, u)\left(i^{\prime}, 1_{\alpha}\right)=(i, u)
$$

Thus each $\Psi_{\alpha, \alpha}$ is an identity mapping on $I_{\alpha} \times T_{\alpha}$.
If $\alpha, \beta, \gamma \in Y$ with $\alpha \geq \beta \geq \gamma$, and $(i, u) \in S_{\alpha}$, for any $\left(j, 1_{\beta}\right) \in S_{\beta} \cap E(S),\left(k, 1_{\gamma}\right) \in S_{\gamma} \cap E(S)$, we have

$$
\begin{aligned}
(i, u) \Psi_{\alpha, \beta} \Psi_{\beta, \gamma} & =\left[(i, u)\left(j, 1_{\beta}\right)\right]\left(k, 1_{\gamma}\right)=(i, u)\left[\left(j, 1_{\beta}\right)\left(k, 1_{\gamma}\right)\right] \\
& =(i, u)\left(\bar{k}, 1_{\gamma}\right)=(i, u) \Psi_{\alpha, \gamma}
\end{aligned}
$$

since $\left(j, 1_{\beta}\right)\left(k, 1_{\gamma}\right)=\left(\bar{k}, 1_{\gamma}\right)$. So $S=\left[Y ; I_{\alpha} \times T_{\alpha}, \Psi_{\alpha, \beta}\right]$ forms a strong semilattice of $I_{\alpha} \times T_{\alpha}$.

References

[1] ZHU Pinyu, GUO Yuqi, SHUM K P. Structure and characteristics of left Clifford semigroups [J]. Sci. China Ser. A, 1992, 35(7): 791-805.
[2] GUO Yuqi, REN Xueming, SHUM K P. Another structure on left C-semigroups [J]. Adv. in Math. (China), 1995, 24(1): 39-43. (Chinese)
[3] GUO Yuqi. Structure of the weakly left C-semigroups [J]. Chinese Sci. Bull., 1996, 41(6): 462-467.
[4] FOUNTAIN J. Right PP monoids with central idempotents [J]. Semigroup Forum, 1976/77, 13(3): 229-237.
[5] GUO Yuqi, SHUM K P, ZHU Pinyu. The structure of left C-rpp semigroups [J]. Semigroup Forum, 1995, 50(1): 9-23.
[6] REN Xueming, SHUM K P. Structure theorems for right pp-semi-groups with left central idempotents [J]. Discuss. Math. Gen. Algebra Appl., 2000, 20(1): 63-75.
[7] SHUM K P, REN X M. Abundant semigroups with left central idempotents [J]. Pure Math. Appl., 1999, 10(1): 109-113.
[8] CAO Yonglin. The left Δ-product of left C-rpp semigroups [J]. J. Qinhai Normal University, 1998, 3: 31-36.
[9] TANG Xiangdong. On a theorem of C-wrpp semigroups [J]. Comm. Algebra, 1997, 25(5): 1499-1504.
[10] DU Lan, SHUM K P. On left C-wrpp semigroups [J]. Semigroup Forum, 2003, 67(3): 373-387.
[11] HOWIE J M. An Introduction to Semigroup Theory [M]. Academic Press, London-New York, 1976.

