The Crossing Numbers of Cartesian Products of Stars and 5-Vertex Graphs

HE Pei Ling ${ }^{1,2}$, QIAN Chun Hua ${ }^{2}$, OUYANG Zhang Dong ${ }^{2}$, HUANG Yuan Qiu ${ }^{2}$
(1. Department of Economy and Management, Hunan Institute of Humanities, Science and Technology, Hunan 417000, China;
2. Department of Mathematics, Hunan Normal University, Hunan 410081, China)
(E-mail: hplsss@126.com)

Abstract

In this paper, the crossing numbers of the Cartesian products of a specific 5-vertex graph with a star are given, and thus the result fills up the crossing number list of Cartesian products of all 5 -vertex graphs with stars (presented by Marián Klešč). In addition, we also give an up to date description of Cartesian products of 5 -vertex graphs with stars, whose crossing numbers are known.

Keywords graph; drawing; crossing number; star; cartesian product.
Document code A
MR(2000) Subject Classification 05C10
Chinese Library Classification O157.5

1. Introduction

For graph theory terminology not defined here we refer to [1]. A drawing of an (undirected) graph $G=(V, E)$ is a mapping f that assigns to each vertex in V a distinct point in the plane and to each edge $u v$ in E a continuous arc (i.e., a homeomorphic image of a closed interval) connecting $f(u)$ and $f(v)$, not passing through the image of any other vertex. As for the drawing we need the additional assumptions: (1) No three edges have an interior point in common; (2) If two edges share an interior point p, then they cross at p; (3) Any two edges of a drawing have only a finite number of crossings (common interior points).

The crossing number $\mathrm{cr}(G)$ of a graph G is the minimum number of edge crossings in any drawing of G in the plane.

It is well known that the crossing number of a graph is attained only in these drawing where no edge crosses itself and no two edges cross more than once. Let ϕ be a drawing of graph G. We denote the number of crossings in ϕ by $\mathrm{cr}_{\phi}(G)$. For more on the theory of crossing numbers, we refer the reader to [2].

Computing the crossing number of graphs is a classical problem ${ }^{[2,3]}$, and yet it is also an elusive one. In fact, Garey and Johnson ${ }^{[4]}$ proved that in general the problem of determining

[^0]the crossing number of a graph is NP-complete (the reader can also refer to two recent results on complexity of the crossing number graphs in [5] and [6], respectively).

The Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and edge set

$$
E\left(G_{1} \times G_{2}\right)=\left\{\left(u_{i}, v_{j}\right)\left(u_{h}, v_{k}\right) \mid u_{i}=u_{h} \text { and } u_{j} v_{k} \in E\left(G_{2}\right) \text { or } v_{j}=v_{k} \text { and } u_{i} u_{h} \in E\left(G_{1}\right)\right\} .
$$

At present, only few families of graphs with arbitrarily large crossing number for the plane are known. Most of them are Cartesian products of special graphs. Let C_{n} and P_{n} be the cycle and the path with n edges, and S_{n} the star $K_{1, n}$. The crossing numbers of the Cartesian products of all 4 -vertex graphs with cycles are determined in [7] and [8] and with paths and stars in [9] and [10]. There are several known exact results on the crossing numbers of Cartesian products of paths, cycles and stars with 5 -vertex graphs (in [11], Marian Klešč gave a description of Cartesian products of all 5 -vertex graphs with paths, cycles and stars by a table, whose crossing numbers are known). In Section 3, the table with all the 21 connected graphs G of order five together with the up to date results of crossing numbers of $G_{i} \times S_{n}$ is given. To fill up a blank of the table we prove in Section 2 that $\operatorname{cr}\left(G_{12} \times S_{n}\right)=n(n-1)$.

2. Crossing number of $G_{12} \times S_{n}$

Firstly, let us denote by H_{n} the graph obtained by adding six edges to the graph $K_{5, n}$ (containing n vertices of degree 5 and one vertex of degree $n+1$, one vertex of degree $n+2$, three vertices of degree $n+3$, and $5 n+6$ edges (see Figure 2)). Consider now the graph G_{12} in Figure 1. It is easy to see that $H_{n}=G_{12} \cup K_{5, n}$, where the five vertices of degree n in $K_{5, n}$ and the vertices of G_{12} are the same. Let, for $i=1,2, \ldots, n, T^{i}$ denote the subgraph of $K_{5, n}$ which consists of the five edges incident with a vertex of degree five in $K_{5, n}$. Thus, we have

$$
\begin{equation*}
H_{n}=G_{12} \cup K_{5, n}=G_{12} \cup\left(\bigcup_{i=1}^{n} T^{i}\right) . \tag{1}
\end{equation*}
$$

Figure $1 \quad G_{12}$
We now explain some notations. Let A and B be two sets of edges of a graph G. We use the sign $\operatorname{cr}_{\phi}(A, B)$ to denote the number of all crossings whose two crossed edges are respectively in A and in B. Especially, $\operatorname{cr}_{\phi}(A, A)$ is simply written as $\operatorname{cr}_{\phi}(A)$. If G has the edge set E, the two signs $\operatorname{cr}_{\phi}(G)$ and $\operatorname{cr}_{\phi}(E)$ are essentially the same. The following Lemma 1 , which can be shown easily, is usually used in the proofs of our theorem.

Lemma 1 Let A, B, C be mutually disjoint subsets of E. Then

$$
\begin{gathered}
\operatorname{cr}_{\phi}(A \bigcup B)=\operatorname{cr}_{\phi}(A)+c r_{\phi}(B)+\operatorname{cr}_{\phi}(A, B) ; \\
\operatorname{cr}_{\phi}(A, B \bigcup C)=\operatorname{cr}_{\phi}(A, B)+\operatorname{cr}_{\phi}(A, C),
\end{gathered}
$$

where ϕ is a good drawing of E.

Figure 2 A good drawing of H_{n}
On the crossing numbers of complete bipartite graphs $K_{m, n}$, Kleitman obtained the following result in [12].

Lemma 2 If $m \leq 6$, then

$$
\operatorname{cr}\left(K_{m, n}\right)=Z(m, n)
$$

where $Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$.
Lemma 3 Let ϕ be a good drawing of H_{n}. If there exist $1 \leq i \neq j \leq n$, such that $\operatorname{cr}_{\phi}\left(T^{i}, T^{j}\right)=$ 0 , then

$$
\operatorname{cr}_{\phi}\left(G_{12}, T^{i} \cup T^{j}\right) \geq 2
$$

Proof Let K be the subgraph of H_{n} induced by the edges of $T^{i} \cup T^{j}$. Since $c r_{\phi}\left(T^{i}, T^{j}\right)=0$, and in good drawing two edges incident with the same vertex cannot cross, the subdrawing of $T^{i} \cup T^{j}$ induced by ϕ induces the map in the plane without crossing, as shown in Figure 3(1). Let a, b, c, d, e denote the five vertices of the subgraph G_{12} (see Figure 3(2)). Clearly, in figure $3(1)$ for any $x \in V\left(G_{12}\right)$, there are exactly two other vertices of G_{12} on the boundary of common region with x. By $d_{G_{12}}(e)=3$, at the edges incidenting with e, there is at least one crossing with edges of K. Similarly, at the edges incidenting with c, there is at least one crossing with edges of K. If the two crossings are different, this completes the proof. Otherwise, the same crossing only can be found at edge $e c$. However, by $d_{G_{12}}(b)=3$, at the edges incidenting with b, there is at least one crossing with edges of K. Clearly, it is different from the crossing in the ec. Therefore, we complete the proof.

Let H be a graph isomorphic to G_{12}. Consider a graph G_{H} obtained by joining all vertices of H to five vertices of a connected graph G such that every vertex of H will only be adjacent to exactly one vertex of G. Let G_{H}^{*} be the graph obtained from G_{H} by contracting the edges of H.

Lemma 4 The crossing number of G_{H}^{*} is no more than the crossing number of G_{H}, i.e., $\operatorname{cr}\left(G_{H}^{*}\right) \leq \operatorname{cr}\left(G_{H}\right)$.

Proof Let ϕ be an optimal drawing of G_{H}. Since the plane is a normal space, for an edge e

(1)

(2)

Figure 3 A good drawing of $T^{i} \cup T^{j}$ and G_{12}
of the drawing ϕ there is an open set M_{e} homeomorphic to the open disk such that M_{e} contains e, together with ends of edges incident with endpoints of e, and open arcs of edges which are crossing e (see Figure 4(a)). All remaining edges of ϕ are disjoint with M_{e}.

Let x denote the number of crossings of e in ϕ. If we draw in M_{e} two edges e_{1} and e_{2} instead of e, these two edges have $2 x$ crossings (see Figure 4(b)).

Figure 4 Open disks which contain edge
The subgraph H has six edges and let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} denote the numbers of crossings on the edges of H (see Figure 5).

Figure 5 The numbers of crossing on the edge of H
Let $x_{2} \leq x_{4}+x_{5}$. Figure 6 shows that H can be contracted to the vertex c without increasing the number of crossings.

Let $x_{5} \leq x_{2}+x_{3}$. Figure 7 shows that H can be contracted to the vertex e without increasing the number of crossings. This completes the proof, because for nonnegative integers the system of inequalities

$$
x_{2}>x_{4}+x_{5}
$$

$$
x_{5}>x_{2}+x_{3}
$$

holds only for $x_{3}+x_{4}<0$. This is impossible because x_{3} and x_{4} are all nonnegative integers.

Figure $6 H$ is contracted to the vertex c

Figure $7 H$ is contracted to the vertex e

Theorem 1 For $n \geq 1$, we have $\operatorname{cr}\left(H_{n}\right)=n(n-1)$.
Proof The drawing in Figure 2 shows that

$$
\operatorname{cr}\left(H_{n}\right) \leq \operatorname{cr}\left(K_{5, n}\right)+2\left\lfloor\frac{n}{2}\right\rfloor=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor=n(n-1) .
$$

Thus, in order to prove theorem, we need only to prove that $\mathrm{cr}_{\phi^{\prime}}\left(H_{n}\right) \geq n(n-1)$ for any drawing ϕ^{\prime} of H_{n}. We prove the reverse inequality by induction on n. The cases $n=1$ and 2 are trivial. Suppose now that for $n \geq 3$

$$
\begin{equation*}
\operatorname{cr}\left(H_{n-2}\right) \geq(n-2)(n-3) \tag{2}
\end{equation*}
$$

and consider such a drawing ϕ of H_{n} that

$$
\begin{equation*}
\operatorname{cr}_{\phi}\left(H_{n}\right)<n(n-1) . \tag{3}
\end{equation*}
$$

Our next analysis depends on whether or not there are different subgraphs T^{i} and T^{j} that do not cross each other in ϕ.

First, we suppose that every pair of T^{i} crosses each other. By Lemmas 1 and 2, using (1), we have

$$
\operatorname{cr}_{\phi}\left(H_{n}\right)=\operatorname{cr}_{\phi}\left(K_{5, n}\right)+\operatorname{cr}_{\phi}\left(G_{12}\right)+\operatorname{cr}_{\phi}\left(K_{5, n}, G_{12}\right)
$$

This, together with our assumption that $\operatorname{cr}_{\phi}\left(H_{n}\right)<4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$, implies that

$$
\operatorname{cr}_{\phi}\left(G_{12}\right)+\operatorname{cr}_{\phi}\left(K_{5, n}, G_{12}\right)<2\left\lfloor\frac{n}{2}\right\rfloor
$$

and, using (1),

$$
\operatorname{cr}_{\phi}\left(G_{12}\right)+\sum_{i=1}^{n} \operatorname{cr}_{\phi}\left(G_{12}, T^{i}\right)<2\left\lfloor\frac{n}{2}\right\rfloor .
$$

We can see that in ϕ there is at least one subgraph T^{i} which does not cross G_{12}. Let us suppose that $\operatorname{cr}_{\phi}\left(G_{12}, T^{n}\right)=0$ and let F be the subgraph $G_{12} \cup T^{n}$ of the graph H_{n}.

Consider the subdrawings ϕ^{*} and $\phi^{* *}$ of G_{12} and F, respectively, induced by ϕ. Since $\operatorname{cr}_{\phi}\left(G_{12}, T^{n}\right)=0$, the subdrawing ϕ^{*} divides the plane in such a way that all vertices are on the boundary of one "region". It is easy to verify that all possibilities of the subdrawing ϕ^{*} are shown in Figure 8. Thus, all possibilities of the subdrawing $\phi^{* *}$ are shown in Figure 9.

Figure 8 All possibilities of the subdrawing ϕ^{*}

Figure 9 All possibilities of the subdrawing $\phi^{* *}$
Consider now a subdrawing of $F \cup T^{i}$ of the drawing ϕ for some $i \in\{1,2, \ldots, n-1\}$ and let x be the vertex of T^{i} of degree five. If x is in $\phi^{* *}$ in a region with one or two vertices of G_{12} on its boundary, the edges of T^{i} at least three times cross the edges of F. If x is in a region with three vertices of G_{12} on its boundary except the region ω in Figure $9(d)$, at least one vertex of G_{12} is in a region having no common edge with the region containing x. In this case, the edges of T^{i} again at least three times cross the edges of F. Only if x is in the region ω (Figure $9(d)$), one can draw the edges of T^{i} with two crossings, but only with the edges of G_{12}. Thus, using $\operatorname{cr}_{\phi}\left(T^{i}, T^{j}\right) \geq 1$, we have again at least three crossings on the edges of T^{i}. Hence, $\operatorname{cr}_{\phi}\left(F, T^{i}\right) \geq 3$ for all $i=1,2, \ldots, n-1$, and

$$
\operatorname{cr}_{\phi}\left(K_{5, n-1}, F\right) \geq 3(n-1)
$$

Thus, by Lemma 1 and the fact that $H_{n}=K_{5, n-1} \cup F$, we have

$$
\begin{aligned}
\mathrm{cr}_{\phi}\left(H_{n}\right) & =\operatorname{cr}_{\phi}\left(K_{5, n-1}\right)+\mathrm{cr}_{\phi}(F)+\mathrm{cr}_{\phi}\left(K_{5, n-1}, F\right) \\
& \geq 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+3(n-1)
\end{aligned}
$$

$$
\geq n(n-1)
$$

This contradicts our assumption of the drawing ϕ.
Hence, there are at least two different subgraphs T^{i} and T^{j} that do not cross each other in ϕ. Without loss of generality, we may assume that $\operatorname{cr}_{\phi}\left(T^{n-1}, T^{n}\right)=0$. By Lemma $3, \operatorname{cr}_{\phi}\left(G_{12}, T^{n-1} \cup\right.$ $\left.T^{n}\right) \geq 2$. As $\operatorname{cr}\left(K_{3,5}\right)=4$, for all $i=1,2, \ldots, n-2, \operatorname{cr}_{\phi}\left(T^{i}, T^{n-1} \cup T^{n}\right) \geq 4$. This implies that

$$
\begin{equation*}
\operatorname{cr}_{\phi}\left(H_{n-2}, T^{n-1} \cup T^{n}\right) \geq 4(n-2)+2=4 n-6 \tag{4}
\end{equation*}
$$

Since $H_{n}=H_{n-2} \cup\left(T^{n-1} \cup T^{n}\right)$, using (1),(2) and (4), we have

$$
\begin{aligned}
\operatorname{cr}_{\phi}\left(H_{n}\right) & =\operatorname{cr}_{\phi}\left(H_{n-2}\right)+\operatorname{cr}_{\phi}\left(T^{n-1} \cup T^{n}\right)+\operatorname{cr}_{\phi}\left(H_{n-2}, T^{n-1} \cup T^{n}\right) \\
& \geq(n-2)(n-3)+4 n-6=n(n-1)
\end{aligned}
$$

This contradiction to (3) completes the proof.
Consider now the graph $\operatorname{cr}\left(G_{12} \times S_{n}\right)$. For $n \geq 1$ it has $5(n+1)$ vertices and edges that are the edges in $n+1$ copies G_{12}^{i} for $i=0,1, \ldots, n$, and in the five stars S_{n} (see Figure 10), where the vertices of G_{12}^{0} are the central vertices of the stars S_{n}.

Figure 10 A optimal drawing of $G_{12} \times S_{n}$

Table 1 The up to date results of the Cartesian products of 5-vertex graphs with stars
Theorem 2 For $n \geq 1$, we have $\operatorname{cr}\left(G_{12} \times S_{n}\right)=n(n-1)$.

Proof The drawing in Figure 10 shows that $\operatorname{cr}\left(G_{12} \times S_{n}\right) \leq \operatorname{cr}\left(K_{5, n}\right)+2\left\lfloor\frac{n}{2}\right\rfloor=n(n-1)$. To complete the proof, assume that there is an optimal drawing ϕ of $G_{12} \times S_{n}$ with fewer than $n(n-1)$ crossings. Contracting the edges of G_{12}^{i} for all $i=1,2, \ldots, n$ in ϕ results in a graph isomorphic to H_{n}. In accordance with Lemma 4, we have: $\operatorname{cr}\left(H_{n}\right) \leq n(n-1)$. This is impossible because in Theorem 1 it is shown that $\operatorname{cr}\left(H_{n}\right)=n(n-1)$. Therefore, the graph $G_{12} \times S_{n}$ has crossing number $n(n-1)$.

3. Summary of results

To conclude, we present Table 1 to give a picture of the up to date results of the Cartesian products of 5 -vertex graphs with stars.

References

[1] BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
[2] ERDÖS P, GUY R K. Crossing number problems [J]. Amer. Math. Monthly, 1973, 80: 52-58.
[3] HARARY F. Graph Theory [M]. Addision-Wesley: Reading, MA, 1969.
[4] GAREY M R, JOHNSON D S. Crossing number is NP-complete [J]. SIAM J. Algebraic Discrete Methods, 1983, 4(3): 312-316.
[5] GROHE M. Computing crossing numbers in quadratic time [C]. Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 231-236 (electronic), ACM, New York, 2001.
[6] HLINĚNÝ P. Crossing Number is Hard for Cubic Graphs [M]. Springer, Berlin, 2004.
[7] BEINEKE L W, RINGEISEN R D. On the crossing numbers of products of cycles and graphs of order four [J]. J. Graph Theory, 1980, 4(2): 145-155.
[8] JENDROL̆ S, ŠČERBOVÁ M. On the crossing numbers of $S_{m} \times P_{n}$ and $S_{m} \times C_{n}$ [J]. Časopis Pěst. Mat., 1982, 107(3): 225-230.
[9] MARIÁN K. On the crossing numbers of Cartesian products of stars and paths or cycles [J]. Math. Slovaca, 1991, 41(2): 113-120.
[10] MARIÁN K. The crossing numbers of products of path and stars with 4-vertex graphs [J]. J. Graph Theory, 1994, 18(6): 605-614.
[11] MARIÁN K. The crossing numbers of Cartesian products of paths with 5-vertex graphs [J]. Discrete Math., 2001, 233(1-3): 353-359.
[12] KLEITMAN D J. The crossing number of $K_{5, n}$ [J]. J. Combinatorial Theory, 1970, 9: 315-323.
[13] DRAGO B. On the crossing numbers of Cartesian products with paths [J]. J. Combin. Theory Ser. B, 2007, 97(3): 381-384.
[14] HUANY Yuanqiu, ZHAO Tinglei, The crossing number of $K_{1,4, n}$ [J]. Discrete Math., 2008, 308(9): 16341638.
[15] SU Zhenhua, HUANG yuanqiu, The crossing number of Cartesian products of stars with 5-vertex graphs [J]. To appear Journal of Mathematical Research and Exposition.
[16] MARIÁN K. The crossing number of $K_{2,3} \times P_{n}$ and $K_{2,3} \times S_{n}$ [J]. Tatra Mt. Math. Publ., 1996, 9: 51-56.
[17] MARIÁN K. On the crossing number of products of stars and graphs of order five [J]. Graphs Combin., 2001, 17(2): 289-294.
[18] HE Peiling, HUANG Yuanqiu. The crossing number of $W_{4} \times S_{n}$ [J]. Journal of Zhengzhou University (Natural Science Edition), 2007, 39(4): 14-18.
[19] LÜ Shengxiang, HUANG Yuanqiu, The crossing number of $K_{5} \times S_{n}$ [J]. J. Mathe. Res. Exposition, 2008, 28(3): 445-459.

[^0]: Received date: 2007-09-22; Accepted date: 2008-04-16
 Foundation item: the National Natural Science Foundation of China (No. 10771062); the Fund for New Century Excellent Talents in University (No. NCET-07-0276).

