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Abstract In this paper, the crossing numbers of the Cartesian products of a specific 5-vertex

graph with a star are given, and thus the result fills up the crossing number list of Cartesian

products of all 5-vertex graphs with stars (presented by Marián Klešč). In addition, we also give

an up to date description of Cartesian products of 5-vertex graphs with stars, whose crossing

numbers are known.
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1. Introduction

For graph theory terminology not defined here we refer to [1]. A drawing of an (undirected)

graph G = (V, E) is a mapping f that assigns to each vertex in V a distinct point in the plane and

to each edge uv in E a continuous arc (i.e., a homeomorphic image of a closed interval) connecting

f(u) and f(v), not passing through the image of any other vertex. As for the drawing we need

the additional assumptions: (1) No three edges have an interior point in common; (2) If two

edges share an interior point p, then they cross at p; (3) Any two edges of a drawing have only

a finite number of crossings (common interior points).

The crossing number cr(G) of a graph G is the minimum number of edge crossings in any

drawing of G in the plane.

It is well known that the crossing number of a graph is attained only in these drawing where

no edge crosses itself and no two edges cross more than once. Let φ be a drawing of graph G.

We denote the number of crossings in φ by crφ(G). For more on the theory of crossing numbers,

we refer the reader to [2].

Computing the crossing number of graphs is a classical problem[2,3], and yet it is also an

elusive one. In fact, Garey and Johnson[4] proved that in general the problem of determining
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the crossing number of a graph is NP-complete (the reader can also refer to two recent results

on complexity of the crossing number graphs in [5] and [6], respectively).

The Cartesian product G1 ×G2 of graphs G1 and G2 has vertex set V (G1 ×G2) = V (G1)×

V (G2) and edge set

E(G1 × G2) = {(ui, vj)(uh, vk)|ui = uh and ujvk ∈ E(G2) or vj = vk and uiuh ∈ E(G1)}.

At present, only few families of graphs with arbitrarily large crossing number for the plane are

known. Most of them are Cartesian products of special graphs. Let Cn and Pn be the cycle and

the path with n edges, and Sn the star K1,n. The crossing numbers of the Cartesian products of

all 4-vertex graphs with cycles are determined in [7] and [8] and with paths and stars in [9] and

[10]. There are several known exact results on the crossing numbers of Cartesian products of

paths, cycles and stars with 5-vertex graphs (in [11], Marian Klešč gave a description of Cartesian

products of all 5-vertex graphs with paths, cycles and stars by a table, whose crossing numbers

are known). In Section 3, the table with all the 21 connected graphs G of order five together

with the up to date results of crossing numbers of Gi × Sn is given. To fill up a blank of the

table we prove in Section 2 that cr(G12 × Sn) = n(n − 1).

2. Crossing number of G12 × Sn

Firstly, let us denote by Hn the graph obtained by adding six edges to the graph K5,n (con-

taining n vertices of degree 5 and one vertex of degree n + 1, one vertex of degree n + 2, three

vertices of degree n + 3, and 5n + 6 edges (see Figure 2)). Consider now the graph G12 in Figure

1. It is easy to see that Hn = G12 ∪ K5,n, where the five vertices of degree n in K5,n and the

vertices of G12 are the same. Let, for i = 1, 2, . . . , n, T i denote the subgraph of K5,n which

consists of the five edges incident with a vertex of degree five in K5,n. Thus, we have

Hn = G12 ∪ K5,n = G12 ∪ (

n⋃

i=1

T i). (1)

Figure 1 G12

We now explain some notations. Let A and B be two sets of edges of a graph G. We use the

sign crφ(A, B) to denote the number of all crossings whose two crossed edges are respectively in

A and in B. Especially, crφ(A, A) is simply written as crφ(A). If G has the edge set E, the two

signs crφ(G) and crφ(E) are essentially the same. The following Lemma 1, which can be shown

easily, is usually used in the proofs of our theorem.
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Lemma 1 Let A, B, C be mutually disjoint subsets of E. Then

crφ(A
⋃

B) = crφ(A) + crφ(B) + crφ(A, B);

crφ(A, B
⋃

C) = crφ(A, B) + crφ(A, C),

where φ is a good drawing of E. 2

Figure 2 A good drawing of Hn

On the crossing numbers of complete bipartite graphs Km,n, Kleitman obtained the following

result in [12].

Lemma 2 If m ≤ 6, then

cr(Km,n) = Z(m, n),

where Z(m, n) = ⌊m
2 ⌋⌊

m−1
2 ⌋⌊n

2 ⌋⌊
n−1

2 ⌋. 2

Lemma 3 Let φ be a good drawing of Hn. If there exist 1 ≤ i 6= j ≤ n, such that crφ(T i, T j) =

0, then

crφ(G12, T
i ∪ T j) ≥ 2.

Proof Let K be the subgraph of Hn induced by the edges of T i ∪ T j. Since crφ(T i, T j) = 0,

and in good drawing two edges incident with the same vertex cannot cross, the subdrawing of

T i ∪ T j induced by φ induces the map in the plane without crossing, as shown in Figure 3(1).

Let a, b, c, d, e denote the five vertices of the subgraph G12 (see Figure 3(2)). Clearly, in figure

3(1) for any x ∈ V (G12), there are exactly two other vertices of G12 on the boundary of common

region with x. By dG12
(e) = 3, at the edges incidenting with e, there is at least one crossing

with edges of K. Similarly, at the edges incidenting with c, there is at least one crossing with

edges of K. If the two crossings are different, this completes the proof. Otherwise, the same

crossing only can be found at edge ec. However, by dG12
(b) = 3, at the edges incidenting with b,

there is at least one crossing with edges of K. Clearly, it is different from the crossing in the ec.

Therefore, we complete the proof. 2

Let H be a graph isomorphic to G12. Consider a graph GH obtained by joining all vertices

of H to five vertices of a connected graph G such that every vertex of H will only be adjacent to

exactly one vertex of G. Let G∗

H be the graph obtained from GH by contracting the edges of H .

Lemma 4 The crossing number of G∗

H is no more than the crossing number of GH , i.e.,

cr(G∗

H) ≤ cr(GH).

Proof Let φ be an optimal drawing of GH . Since the plane is a normal space, for an edge e
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T i

T j

(2)

a

b

c d

e

(1)

Figure 3 A good drawing of T i
∪ T j and G12

of the drawing φ there is an open set Me homeomorphic to the open disk such that Me contains

e, together with ends of edges incident with endpoints of e, and open arcs of edges which are

crossing e (see Figure 4(a)). All remaining edges of φ are disjoint with Me.

Let x denote the number of crossings of e in φ. If we draw in Me two edges e1 and e2 instead

of e, these two edges have 2x crossings (see Figure 4(b)).
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Figure 4 Open disks which contain edge

The subgraph H has six edges and let x1, x2, x3, x4, x5 and x6 denote the numbers of cross-

ings on the edges of H (see Figure 5).

x1

x2

x3

x4

x5

x6

a

b

c d

e

Figure 5 The numbers of crossing on the edge of H

Let x2 ≤ x4 +x5. Figure 6 shows that H can be contracted to the vertex c without increasing

the number of crossings.

Let x5 ≤ x2 +x3. Figure 7 shows that H can be contracted to the vertex e without increasing

the number of crossings. This completes the proof, because for nonnegative integers the system

of inequalities

x2 > x4 + x5,
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x5 > x2 + x3

holds only for x3 + x4 < 0. This is impossible because x3 and x4 are all nonnegative integers.2
a

b

c d

e

x1

x2

x3

x4

x5

x6
-

c

x1

2x2

x3

x6

Figure 6 H is contracted to the vertex c
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b

c d

e

x1
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x5

x6
-

e

x1 2x5

x4x6

2x5

Figure 7 H is contracted to the vertex e

Theorem 1 For n ≥ 1, we have cr(Hn) = n(n − 1).

Proof The drawing in Figure 2 shows that

cr(Hn) ≤ cr(K5,n) + 2⌊
n

2
⌋ = 4⌊

n

2
⌋⌊

n − 1

2
⌋ + 2⌊

n

2
⌋ = n(n − 1).

Thus, in order to prove theorem, we need only to prove that crφ′(Hn) ≥ n(n−1) for any drawing

φ′ of Hn. We prove the reverse inequality by induction on n. The cases n = 1 and 2 are trivial.

Suppose now that for n ≥ 3

cr(Hn−2) ≥ (n − 2)(n − 3) (2)

and consider such a drawing φ of Hn that

crφ(Hn) < n(n − 1). (3)

Our next analysis depends on whether or not there are different subgraphs T i and T j that do

not cross each other in φ.

First, we suppose that every pair of T i crosses each other. By Lemmas 1 and 2, using (1),

we have

crφ(Hn) = crφ(K5,n) + crφ(G12) + crφ(K5,n, G12).

This, together with our assumption that crφ(Hn) < 4⌊n
2 ⌋⌊

n−1
2 ⌋ + 2⌊n

2 ⌋, implies that

crφ(G12) + crφ(K5,n, G12) < 2⌊
n

2
⌋

and, using (1),

crφ(G12) +

n∑

i=1

crφ(G12, T
i) < 2⌊

n

2
⌋.
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We can see that in φ there is at least one subgraph T i which does not cross G12. Let us suppose

that crφ(G12, T
n) = 0 and let F be the subgraph G12 ∪ T n of the graph Hn.

Consider the subdrawings φ∗ and φ∗∗ of G12 and F , respectively, induced by φ. Since

crφ(G12, T
n) = 0, the subdrawing φ∗ divides the plane in such a way that all vertices are on

the boundary of one “region”. It is easy to verify that all possibilities of the subdrawing φ∗ are

shown in Figure 8. Thus, all possibilities of the subdrawing φ∗∗ are shown in Figure 9.

(a) (b) (c) (d) (e)

Figure 8 All possibilities of the subdrawing φ∗

ω

(a) (b)

(d) (e)

T n T n T n

T n
T n

(c)

Figure 9 All possibilities of the subdrawing φ∗∗

Consider now a subdrawing of F ∪ T i of the drawing φ for some i ∈ {1, 2, . . . , n− 1} and let

x be the vertex of T i of degree five. If x is in φ∗∗ in a region with one or two vertices of G12 on

its boundary, the edges of T i at least three times cross the edges of F . If x is in a region with

three vertices of G12 on its boundary except the region ω in Figure 9 (d), at least one vertex of

G12 is in a region having no common edge with the region containing x. In this case, the edges

of T i again at least three times cross the edges of F . Only if x is in the region ω (Figure 9 (d)),

one can draw the edges of T i with two crossings, but only with the edges of G12. Thus, using

crφ(T i, T j) ≥ 1, we have again at least three crossings on the edges of T i. Hence, crφ(F, T i) ≥ 3

for all i = 1, 2, . . . , n − 1, and

crφ(K5,n−1, F ) ≥ 3(n − 1).

Thus, by Lemma 1 and the fact that Hn = K5,n−1 ∪ F , we have

crφ(Hn) = crφ(K5,n−1) + crφ(F ) + crφ(K5,n−1, F )

≥ 4⌊
n − 1

2
⌋⌊

n − 2

2
⌋ + 3(n − 1)
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≥ n(n − 1).

This contradicts our assumption of the drawing φ.

Hence, there are at least two different subgraphs T i and T j that do not cross each other in φ.

Without loss of generality, we may assume that crφ(T n−1, T n) = 0. By Lemma 3, crφ(G12, T
n−1∪

T n) ≥ 2. As cr(K3,5) = 4, for all i = 1, 2, . . . , n − 2, crφ(T i, T n−1 ∪ T n) ≥ 4. This implies that

crφ(Hn−2, T
n−1 ∪ T n) ≥ 4(n − 2) + 2 = 4n − 6. (4)

Since Hn = Hn−2 ∪ (T n−1 ∪ T n), using (1),(2) and (4), we have

crφ(Hn) = crφ(Hn−2) + crφ(T n−1 ∪ T n) + crφ(Hn−2, T
n−1 ∪ T n)

≥ (n − 2)(n − 3) + 4n − 6 = n(n − 1).

This contradiction to (3) completes the proof. 2

Consider now the graph cr(G12 × Sn). For n ≥ 1 it has 5(n + 1) vertices and edges that are

the edges in n + 1 copies Gi
12 for i = 0, 1, . . . , n, and in the five stars Sn (see Figure 10), where

the vertices of G0
12 are the central vertices of the stars Sn.

G0
12

Figure 10 A optimal drawing of G12 × Sn

Gi

Gi

Z(5, n)

[14]

G1 G2 G3 G4 G5 G6 G7

G8 G9 G10 G11 G12 G13 G14

G15 G16 G17 G18 G19 G20 G21

n(n − 1)

[16] [15]

n(n − 1) n(n − 1) n(n − 1)

[16]

Z(5, n) + 2n

Z(5, n) + ⌊ n

2
⌋

[17]
+⌊n

2
⌋

[19]

Z(5, n) + 5n
⌊n

2
⌋ + 1

[18]
+⌊n

2
⌋

Z(5, n) + 2nZ(5, n) + 2n

[13]

[11]

Gi

cr(Gi) × Sn

cr(Gi) × Sn

cr(Gi) × Sn

Table 1 The up to date results of the Cartesian products of 5-vertex graphs with stars

Theorem 2 For n ≥ 1, we have cr(G12 × Sn) = n(n − 1).
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Proof The drawing in Figure 10 shows that cr(G12 × Sn) ≤ cr(K5,n) + 2⌊n
2 ⌋ = n(n − 1). To

complete the proof, assume that there is an optimal drawing φ of G12 × Sn with fewer than

n(n − 1) crossings. Contracting the edges of Gi
12 for all i = 1, 2, . . . , n in φ results in a graph

isomorphic to Hn. In accordance with Lemma 4, we have: cr(Hn) ≤ n(n−1). This is impossible

because in Theorem 1 it is shown that cr(Hn) = n(n − 1). Therefore, the graph G12 × Sn has

crossing number n(n − 1). 2

3. Summary of results

To conclude, we present Table 1 to give a picture of the up to date results of the Cartesian

products of 5-vertex graphs with stars.
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[16] MARIÁN K. The crossing number of K2,3 × Pn and K2,3 × Sn [J]. Tatra Mt. Math. Publ., 1996, 9: 51–56.

[17] MARIÁN K. On the crossing number of products of stars and graphs of order five [J]. Graphs Combin., 2001,
17(2): 289–294.

[18] HE Peiling, HUANG Yuanqiu. The crossing number of W4×Sn [J]. Journal of Zhengzhou University (Natural

Science Edition), 2007, 39(4): 14-18.
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