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Abstract Let G = (V, E) be a simple connected graph, and |V (G)| ≥ 2. Let f be a mapping

from V (G) ∪ E(G) to {1, 2, . . . , k}. If ∀uv ∈ E(G), f(u) 6= f(v), f(u) 6= f(uv), f(v) 6= f(uv);

∀uv, uw ∈ E(G)(v 6= w), f(uv) 6= f(uw); ∀uv ∈ E(G) and u 6= v, C(u) 6= C(v), where

C(u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}.

Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AV DTC

of G for short). The number min{k|k-AV DTC of G} is called the adjacent vertex-distinguishing

total chromatic number and denoted by χat(G). In this paper we prove that if ∆(G) is at least

a particular constant and δ ≥ 32
√

∆ ln ∆, then χat(G) ≤ ∆(G) + 1026 + 2
√

∆ ln ∆.
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1. Introduction

All graphs G = (V, E) discussed in this paper are finite, undirected, simple and connected.

Let δ(G) (∆(G)) denote the minimum (maximum) degree of a graph G. A proper edge-coloring

of a simple graph G is called vertex-distinguishing[1−3], if for any two distinct vertices u and v

in G, the set of colors assigned to the edges incident to u differs from the set of colors assigned

to the edges incident to v. A vertex-distinguishing proper edge-coloring is also called a strong

edge-coloring. The minimal number of colors required for a strong edge-coloring of G is called

the vertex distinguishing edge chromatic number of G (or observability), and denoted by χ′
s(G)

or χ′
vd(G).

Let nd = nd(G) denote the number of vertices of degree d in a graph G. It is clear that
(

χ′

s(G)
d

)

≥ nd for all d with δ(G) ≤ d ≤ △(G). The following conjecture was given in [3].
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Conjecture 1[3] Let G be a graph and let k be the minimum integer such that (k
d) ≥ nd for all

d such that δ(G) ≤ d ≤ △(G). Then χ′
s(G) = k or k + 1.

In [4], the adjacent strong edge-coloring of a graph G was proposed. A proper edge-coloring of

a simple graph G is called an adjacent-vertex-distinguishing edge-coloring if for any two adjacent

vertices u and v in G, the set of colors assigned to the edges incident to u differs from the set

of colors incident to v. An adjacent-vertex-distinguishing proper edge-coloring is also called an

adjacent strong edge-coloring. The minimal number of colors required for an adjacent strong

edge-coloring of G is called the adjacent vertex distinguishing edge chromatic number of G (or

adjacent strong edge chromatic number), and denoted by χ′
as(G). The following conjecture was

proposed by Zhang et al. in [4].

Conjecture 2[4] Let G be a connected graph with |G| ≥ 3, and G 6= C5 (5-cycle). Then

△(G) ≤ χ′
as(G) ≤ △(G) + 2.

Definition 1[5] Let G be a simple connected graph, and |V (G)| ≥ 2. A k-adjacent-vertex-

distinguishing-total coloring of a graph G is a mapping f from V (G) ∪ E(G) to {1, 2, . . . , k},
such that

1) f is a proper k-total coloring, i.e., ∀uv ∈ E(G), f(u) 6= f(v), f(u) 6= f(uv), f(v) 6= f(uv);

2) ∀uv, uw ∈ E(G)(v 6= w), f(uv) 6= f(uw);

3) ∀uv ∈ E(G), C(u) 6= C(v), where C(u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}. Then f is called

a k-adjacent-vertex-distinguishing-total coloring of the graph G (k-AV DTC of G for short).

The number min{k|k-AV DTC of G} is called the adjacent-vertex-distinguishing total chromatic

number and denoted by χat(G).

Conjecture 3[5] Let G be a connected graph of order n (n ≥ 2). Then

χat(G) ≤ ∆(G) + 3.

Zhang et al. proved that Conjecture 3 is true for cycles, complete graphs, complete bipartite

graphs, fans, wheels and trees in [5] and obtained their adjacent vertex distinguishing total

chromatic numbers.

It is interesting that χ′
s(C5) = χ′

as(C5) = 5 and χat(C5) = 4.

It is easy to verify that 2∆+1 is an upper bound for the adjacent-vertex-distinguishing total

chromatic number of G. In this paper we improve this bound to χat(G) ≤ ∆(G)+1026+2
√

∆ln ∆.

For the other terminology and notations we refer to [6, 7, 8].

2. Main results

Lemma A[9] (Lovász Local Lemma) Consider a set ε = {A1, A2, . . . , An} of (typically bad)

events such that each Ai is mutually independent of ε − (Di ∪ Ai) for some Di ⊆ ε. If we have

reals x1, x2, . . . , xn ∈ [0, 1) such that for each 1 ≤ i ≤ n, Pr(Ai) ≤ xi

∏

Aj∈Di
(1 − xj), then the

probability that none of the events in ε occurs is at least
∏n

i=1(1 − xi) > 0.

Lemma B[10] If a simple graph has maximum degree ∆(G) at least a particular constant, then
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χt(G) ≤ ∆(G) + 1026.

Theorem 1 Let G(V, E) be a graph with maximum degree ∆(G) at least a particular constant

and δ ≥ 32
√

∆ln ∆. Then

χat(G) ≤ ∆(G) + 1026 + 2
√

∆ln ∆.

Proof By Lemma B, it is possible to have a ∆ + 1026-total coloring f0. And then each of edges

and vertices in G are recolored randomly and independently with an equal probability 1
16∆ by

one of the 2
√

∆ln ∆ new colors and with probability (1− 1
8

√

ln∆
∆ ) preserving its previous color.

Naming this total coloring of G as f , we will use the Lovász Local Lemma to show that with a

positive probability, f is an adjacent vertex distinguishing total coloring.

We must show that with positive probability the obtained coloring is an adjacent vertex

distinguishing total coloring. The following four types of “bad” events are defined in order to

satisfy this.

(I) For each pair of adjacent edges A = {e1, e2}, let EA be the event that both e1 and e2

are recolored with the same color.

(II) For each edge B = {uv ∈ E(G)}, let EB be the event that both u and v are recolored

with the same color.

(III) For each edge Ce(u,v) = {e = uv ∈ E(G)}, let ECe(u,v)
be the event that e and each end

vertex of e are recolored with the same color.

(IV) For each edge e = uv such that d(u) = d(v) ≥ δ(G), let De be the set of two vertices u

and v, and all edges which are incident with u or v. Then EDe
is the event that two vertices u

and v, and the edges which are incident with u and v are colored properly, and C(u) = C(v).

(Note that for each edge e = uv, let De = {u}
⋃

{v}
⋃

{ux ∈ E(G) : x ∈ V (G)}
⋃

{vy ∈
E(G) : y ∈ V (G)}).

It remains to show that with positive probability none of these events occurs.

We must estimate the probability of a given event first.

Lemma 1 The following four statements hold:

1) For each event EA of Type I, we have Pr[EA] = 2
162∆

√

ln∆
∆ .

2) For each event EB of Type II, we have Pr[EB] = 2
162∆

√

ln ∆
∆ .

3) For each event ECe(u,v)
of Type III, we have Pr[ECe(u,v)

] = 4
162∆

√

ln ∆
∆ .

4) For each event EDe
of Type IV, we have Pr[EDe

] ≤ 3
2e−

1
4

√
ln ∆
∆ ·d.

Proof If EA occurs, then e1 and e2 in A are recolored with the same color. So we have

Pr[EA] =

(

2
√

∆ln ∆

1

)

( 1
16∆)2 =

2

162∆

√

ln ∆

∆
.

If EB occurs, then u and v in B are recolored with the same color. So we get

Pr[EB] =

(

2
√

∆ln ∆

1

)

(
1

16∆
)2 =

2

162∆

√

ln ∆

∆
.
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If ECe(u,v)
occurs, then e and u, or e and v are recolored with the same color. So we obtain

Pr[ECe(u,v)
] = 2

(

2
√

∆ln ∆

1

)

(
1

16∆
)2 =

4

162∆

√

ln ∆

∆
.

Let e = uv, d(u) = d(v) = d. Suppose that after recoloring, the edges incident with u and v

are colored properly and C(u)\{f(e)} = C(v)\{f(e)} = C. Assume that C is a fixed set which

has i members of the new colors and d − i members of the old colors. This event happens with

the probability of

[i!(1 − 1
8

√

ln ∆
∆ )d−i( 1

16∆ )i]2 ≤ [iie
− 1

8

√

ln ∆
∆ (d−i)

( 1
16∆ )i]2 ≤ ( i

16∆ )2ie
− 1

4

√

ln ∆
∆ (d−i)

.

Hence the edges incident with u and v are colored properly and C(u) = C(v) with a proba-

bility of at most

Pr(EDe
) ≤

2
√

∆ ln ∆
∑

i=0

(

d

i

)(

2
√

∆ln ∆

i

)

( i
16∆)2ie

− 1
4

√

ln ∆
∆ (d−i)

≤
2
√

∆ ln ∆
∑

i=0

( ed
i
)i( e·2

√
∆ ln ∆
i

)i( i
16∆)2ie

− 1
4

√

ln ∆
∆ (d−i)

≤
2
√

∆ ln ∆
∑

i=0

( e
2+

1
4

√

ln ∆
∆ ·d·2

√
∆ ln ∆

162∆2 )ie
−1

4

√

ln ∆
∆ ·d

≤ e
− 1

4

√

ln ∆
∆ ·d ·

2
√

∆ ln ∆
∑

i=0

(2e
2+

1
4

√

ln ∆
∆

162

√

ln ∆
∆ )i.

For ∆ ≥ 32
√

∆ln ∆, we get
√

ln ∆
∆ ≤ 1

32 . So we have

2
√

∆ ln∆
∑

i=0

(2e
2+

1
4

√

ln ∆
∆

162

√

ln ∆
∆ )i ≤

2
√

∆ ln ∆
∑

i=0

(2e
2+

1
4 ·

1
32

162 · 1
32 )i ≤

∞
∑

i=0

( 2
256 )i =

∞
∑

i=0

( 1
128 )i = 128

127 < 3
2 .

(Note that 1
32e2+ 1

4×32 < 1
32 × 8 = 1

4 < 1)

Therefore, we have Pr[EDe
] ≤ 3

2e−
1
4

√
ln ∆
∆ ·d. 2

Then we need to estimate the number of events of each type which are incident to any given

event.

Lemma 2 The following four statements hold.

1) Each event of Type I is incident to at most 4∆ events of Type I, 0 event of Type II, 4

events of Type III, and 3∆ events of Type IV.

2) Each event of Type II is incident to at most 0 event of Type I, 2∆ events of Type II, 2∆

events of Type III, and 2∆ events of Type IV.

3) Each event of Type III is incident to at most 2∆ events of Type I, ∆ events of Type II,

∆ events of Type III, and 2∆ events of Type IV.

4) Each event of Type IV is incident to at most 4d∆ events of Type I, 2∆ events of Type

II, 4∆ events of Type III, and 2∆2 events of Type IV.
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Proof 1) For each event EA of Type I, for any given edge e, less than 2∆ edges are incident to

e. And each event of Type I contains two edges. So each event of Type I is incident to at most

2 × 2∆ = 4∆ events of Type I. Because each event of Type I and each event of Type II have no

common edge or vertex, each event of Type I is incident to at most 0 event of Type II. Because

each edge is incident with two vertices u and v, there are two edges in an event of Type I; each

event of Type I is incident to at most 2 × 2 = 4 events of Type III, there are three end vertices

for each event of Type I; each vertex has at most ∆ adjacent vertices, each event of Type I is

incident to at most 3 × ∆ = 3∆ events of Type IV.

The proofs of 2), 3) and 4) are similar to 1). 2

Next we must determine the real constants xi. Let 4
162∆

√

ln ∆
∆ , 4

162∆

√

ln ∆
∆ , 8

162∆

√

ln ∆
∆

and 1
8∆2 be the constants associated with events of Type I, Type II, Type III and Type IV,

respectively. We conclude that with positive probability none of the events of Type I, II, III or

IV occurs, provided that

2
162∆

√

ln ∆
∆ ≤ 4

162∆

√

ln ∆
∆ (1 − 4

162∆

√

ln ∆
∆ )4∆ (1 − 8

162∆

√

ln∆
∆ )4 (1 − 1

8∆2 )3∆ (1)

2
162∆

√

ln ∆
∆ ≤ 4

162∆

√

ln∆
∆ (1 − 4

162∆

√

ln ∆
∆ )2∆ (1 − 8

162∆

√

ln ∆
∆ )2∆ (1 − 1

8∆2 )2∆ (2)

4
162∆

√

ln ∆
∆ ≤ 8

162∆

√

ln ∆
∆ (1− 4

162∆

√

ln ∆
∆ )2∆ (1− 4

162∆

√

ln ∆
∆ )∆ (1− 8

162∆

√

ln ∆
∆ )∆ (1− 1

8∆2 )2∆

(3)

3
2e

−1
4

√

ln ∆
∆ ·d ≤ 1

8∆2 (1− 4
162∆

√

ln ∆
∆ )4d∆(1− 4

162∆

√

ln∆
∆ )2∆(1− 8

162∆

√

ln ∆
∆ )4∆(1− 1

8∆2 )2∆
2

(4)

For (1), we have

(1 − 4
162∆

√

ln ∆
∆ )4∆(1 − 8

162∆

√

ln ∆
∆ )4(1 − 1

8∆2 )3∆

≥ (1
4 )

1
16

√

ln ∆
∆ +

1
8∆

√

ln ∆
∆ +

3
8∆ = (1

2 )
1
8

√

ln ∆
∆ +

1
4∆

√

ln ∆
∆ +

3
4∆

≥ (1
2 )

1
8×32+

1
32×4∆+

3
4∆ = (1

2 )
1

32×8+
97

128∆ .

So in order to prove (1), we only need to prove 1
2 ≤ (1

2 )
1

32×8 + 97
128∆ .

This inequality is obviously true when ∆ > 2. So inequality (1) holds.

For (2), we have

(1 − 4
162∆

√

ln ∆
∆ )2∆ (1 − 8

162∆

√

ln∆
∆ )2∆ (1 − 1

8∆2 )2∆

≥ (1
4 )

1
32

√

ln ∆
∆ +

1
16

√

ln ∆
∆ +

1
4∆ = (1

2 )
1
16

√

ln ∆
∆ +

1
8

√

ln∆
∆ +

1
2∆

≥ (1
2 )

1
16×32+

1
8×32+

1
2∆ = (1

2 )
3

512+
1

2∆ .

So in order to prove (2), we only need to prove 1
2 ≤ (1

2 )
3

512+ 1
2∆ . This inequality is obviously

true when ∆ > 1. So inequality (2) holds.

For (3), we have

(1 − 4
162∆

√

ln ∆
∆ )2∆(1 − 4

162∆

√

ln∆
∆ )∆(1 − 8

162∆

√

ln ∆
∆ )∆(1 − 1

8∆2 )2∆
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≥ (1
4 )

3
64

√

ln∆
∆ +

1
16

√

ln ∆
∆ +

1
4∆ = (1

2 )
7
32

√

ln ∆
∆ +

1
2∆

≥ (1
2 )

7
32×32+

1
2∆ = (1

2 )
7

1024+
1

2∆ .

So, in order to prove (3), we only need to prove 1
2 ≤ (1

2 )
7

1024 + 1
2∆ . This inequality is obviously

true when ∆ > 1. So inequality (3) holds.

For (4), we have

1
8∆2 (1 − 4

162∆

√

ln ∆
∆ )4d∆ (1 − 4

162∆

√

ln ∆
∆ )2∆ (1 − 8

162∆

√

ln ∆
∆ )4∆ (1 − 1

8∆2 )2∆
2

≥ e− ln(8∆2) · e−
1
8

√

ln ∆
∆ d · e−

1
16

√

ln∆
∆ · e−

1
4

√

ln ∆
∆ · e−

1
2

= e
−2 ln∆− 1

8

√

ln ∆
∆ d− 5

16

√

ln ∆
∆ −ln 8−0.5

.

So in order to prove (4), it is sufficient to prove the following

3
2e

− 1
4

√

ln ∆
∆ ·d ≤ e

−2 ln∆− 1
8

√

ln ∆
∆ d− 5

16

√

ln ∆
∆ −ln 8−0.5

− 1
4

√

ln ∆
∆ · d + ln 3

2 ≤ −2 ln∆ − 1
8

√

ln ∆
∆ d − 5

16

√

ln ∆
∆ − ln 8 − 0.5

1
8

√

ln ∆
∆ d − 5

16

√

ln ∆
∆ − 2 ln ∆ − ln 12 − 0.5 ≥ 0.

Since δ ≥ 32
√

∆ln ∆, 1
8

√

ln∆
∆ d ≥ 4 ln∆, it suffices to show 2 ln∆− 5

16 × 1
32 − ln 12− 0.5 ≥ 0.

This inequality is obviously true when ∆ ≥ 5. So inequality (4) holds.

So, by the Lovász Local Lemma, G has a ∆(G)+1026+2
√

∆ln ∆-adjacent vertex-distinguishing

total coloring. 2
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