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Abstract Most results on crossing numbers of graphs focus on some special graphs, such as

the Cartesian products of small graphs with path, star and cycle. In this paper, we obtain the

crossing number formula of Cartesian products of wheel Wm with path Pn for arbitrary m ≥ 3

and n ≥ 1.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing number cr(G) of a

graph G is the minimum number of pairs of intersected edges in a drawing of G in the plane. It is

well known that the crossing number of a graph is attained only in good drawings of the graph,

which are those drawings where no edge crosses itself, no adjacent edges cross each other, no two

edges intersect more than once, and no three edges have a common point except their common

vertex. Let D be a good drawing of the graph G, denote by crD(G) the number of crossings in

D. If D is a good drawing of G satisfying crD(G) = cr(G), then D is called an optimal drawing

of G.

The suspension of a graph G1 from a graph G2 is obtained by adjoining every vertex of G1

to every vertex of G2, and is denoted by G1 +G
[1]
2 . The wheel Wm is obtained by the suspension

of K1 from cycle Cm of length m.

The Cartesian product G1×G2 of graphs G1 and G2 has vertex set V (G1)×V (G2) and edge

set

E(G1 × G2) = {{(ui, vj), (uh, vk)} : ui = uh and {vj , vk} ∈ E(G2)

or vj = vk and {ui, uh} ∈ E(G1)}
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Let G1 be a graph homeomorphic to G2, (for the definition[2]), it is readily seen that cr(G1) =

cr(G2). And if G1 is a subgraph of G2, then cr(G1) ≤ cr(G2).

The crossing number of a graph is a tantalizingly open problem. Let Pn be the path of length

n, Sn be the complete bipartite graph K1,n. So far, most researches on crossing number focused

on the estimation of the crossing number of special graphs, such as the Cartesian products of

small graphs with path Pn, star Sn, and cycle C
[3−8]
n . Klešč determined that the crossing number

of W3×Pn is 2n in [3], and that the crossing number of W4×Pn is 3n−1 in [7]. Yu and Huang[9]

gave the upper bounds of the crossing number of Wm×Pn for arbitrary m and n, and proved that

cr(Wm × Pn) = (n − 1)⌊ (m−1)2

4 ⌋ + (n + 1) for arbitrary m when n = 1, 2, 3. Recently, Bokal[10]

determined the crossing number of the Cartesian products of Sm with Pn for an arbitrary star

Sm and path Pn using a newly introduced operation. Stimulated by these results, we consider

the crossing number of the Cartesian products of wheel Wm with path Pn for arbitrary m ≥ 3

and n ≥ 1, and get the main result of this paper:

Theorem 1 For m ≥ 3 and n ≥ 1, we have cr(Wm × Pn) = (n − 1)(⌊m
2 ⌋⌊

m−1
2 ⌋ + 1) + 2.

2. Some lemmas

In [10], Bokal defined that Ĝ is the graph obtained from G by adding two vertices v1 and

v2 and the edges viv for i = 1, 2 and each v ∈ V (G). If a vertex v ∈ V (G) is adjacent to

all other vertices in G, then v is called a dominating vertex. Let 0, 1, . . . , n be the vertices of

the path Pn with 0 and n be its origin and terminus, respectively. With G×̂Pn we denote the

capped Cartesian products of G and Pn, i.e. the graph, obtained from G × Pn by adding two

new vertices v0 and vn and connecting v0 with all the vertices of G × {0} and vn with all the

vertices of G × {n}. Bokal gave a relationship between the crossing numbers of G×̂Pn and Ĝ:

Lemma 2
[10] Let G be a graph with a dominating vertex. Then for n ≥ 0, cr(G×̂Pn) =

(n + 1)cr(Ĝ). 2

Wm × Pn contains a subgraph homeomorphic to Wm×̂Pn−2. To obtain the crossing number

of Wm×̂Pn−2 by Lemma 2, we need to consider the crossing number of Ŵm, which is isomorphic

to P2 + Cm, see Figure 1.
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Figure 1 A good drawing of P2 + Cm

Lemma 3 For m ≥ 3, we have cr(P2 + Cm) = ⌊m
2 ⌋⌊

m−1
2 ⌋ + 1.
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Proof Figure 1 shows that cr(P2+Cm) ≤ ⌊m
2 ⌋⌊

m−1
2 ⌋+1. Now we prove the reverse inequality by

assuming that there exists a good drawing D of P2+Cm with crD(P2+Cm) < ⌊m
2 ⌋⌊

m−1
2 ⌋+1. Since

P2 + Cm contains a subgraph isomorphic to K3,m and crD(P2 + Cm) ≥ cr(K3,m) = ⌊m
2 ⌋⌊

m−1
2 ⌋,

so crD(P2 + Cm) = ⌊m
2 ⌋⌊

m−1
2 ⌋.

We partite the edges of P2 + Cm into three parts: these edges in P2, these edges in Cm,

and these edges in K3,m. Obviously, there isn’t any crossing on the edges of P2 or Cm, or else

deleting the crossed edges of P2 or Cm from D, we get a graph containing a subgraph isomorphic

to K3,m and a drawing with crossing number less than ⌊m
2 ⌋⌊

m−1
2 ⌋, a contradiction! Let x1, x2, x3

be the vertices of P2, and let v1, v2, . . . , vm be the vertices of Cm, see Figure 1. Then x1, x2, x3

must lie in the same region of Cm, without loss of generality, we may assume that they lie in

the finite region. The edges x1vi (1 ≤ i ≤ m) divide the finite region into m subregions, in one

of which x2 lies. Thus the m edges x2vi (1 ≤ i ≤ m) must cross those edges adjacent to x1 at

least ⌊m
2 ⌋⌊

m−1
2 ⌋ times. Similarly, the edges adjacent to x3 also contribute at least ⌊m

2 ⌋⌊
m−1

2 ⌋

crossings. None of these crossings are counted more than once, so there are at least 2⌊m
2 ⌋⌊

m−1
2 ⌋

crossings in D, a contradiction to our assumption. 2

According to Lemmas 2 and 3, it is easy to get that cr(Wm×̂Pn−2) = (n − 1)cr(Ŵm) =

(n − 1)(⌊m
2 ⌋⌊

m−1
2 ⌋ + 1).
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2
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Wm × {n}
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x1

Wm × {0}
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Figure 2 A good drawing of Wm × Pn

3. The proof of Theorem 1
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We always assume that m ≥ 4 and n ≥ 4 in the proof since the results in [3,7,9] are consistent

with Theorem 1. It will be convenient to consider the graph Wm × Pn in the following way: it

has (m + 1)(n + 1) vertices and edges in the n + 1 copies Wm × {i}, i = 0, 1, . . . , n, and in the

m+1 paths of length n (see Figure 2). Furthermore, we color the former edges red and the latter

ones blue.

Proof Figure 2 shows that cr(Wm × Pn) ≤ (n − 1)(⌊m
2 ⌋⌊

m−1
2 ⌋ + 1) + 2. Now we move to the

proof of the reverse inequality.

Let D be an optimal drawing of Wm×Pn. We denote the m−cycles of Wm×{0} and Wm×{n}

by C0
m and Cn

m, respectively. The following two cases are discussed:

Case 1 Suppose that there is not any crossing on the edges of C0
m or Cn

m in D. We may assume,

without loss of generality, that there is not any crossing on the edges of C0
m. We denote the

dominating vertex of Wm × {0} by x0, and the vertices of C0
m by u1, u2, . . . , um.

Since there is not any crossing on the edges of C0
m, x0 and all of the other vertices of Wm×{1},

Wm ×{2}, . . . , Wm ×{n} must lie in the same region of C0
m. Without loss of generality, we may

assume that they lie in the interior region of C0
m. Let |Ai| denote the number of crossings on the

edge x0ui (i = 1, 2, . . . , m). Without loss of generality, we assume that |A1| = min
1≤i≤m

{Ai}.

Now we move to obtain a good drawing D′ of a new graph which is homeomorphic to

Wm×̂Pn−2: firstly, deleting the edges x0ui (i = 2, 3, . . . , m) from D; secondly, drawing curves

connecting u1ui along the exterior region of C0
m (i = 3, 4, . . . , m − 1) such that there is not any

crossing on the curves u1ui (i = 3, 4, . . . , m − 1); thirdly, deleting uiui+1 (i = 2, 3, . . . , m − 1)

from D (see Figure 3); and lastly, deleting the edges of Cn
m from Wm × {n}. We distinguish two

subcases:
u1

u3

um

u2

um−1

u3

um−1

u1

um−2

u2

-

x0

um

x0

Figure 3 A good drawing D
′ produced from D

Subcase 1.1 Suppose that |A1| = 0. Let x1 denote the dominating vertex of Wm × {1}. If all

of the vertices of Wm × {1} except x1 lie in the same region, without loss of generality, we may

assume that they lie in the region x0u2u3, then there will be at least m − 2 crossings on the

edges of x0u2 and x0u3 made by the blue edges adjacent to ui (i 6= 2, 3). If all of the vertices of

Wm × {1} except x1 lie in different regions of C0
m, then there will be at least 2 crossings on the

edges x0ui (i 6= 1) made by the m−cycle of Wm × {1}. Thus the first step decreases at least 2

crossings.
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Subcase 1.2 Suppose that |A1| 6= 0, that is |A1| ≥ 1. It is easy to see that the first step

decreases at least (m − 1)|A1| crossings.

Therefore, the first step decreases at least 2 crossings no matter |A1| = 0 or not. The latter

three steps don’t increase the number of crossings, so we have

crD(Wm × Pn) ≥ crD′(Wm×̂Pn−2) + 2 ≥ (n − 1)(⌊
m

2
⌋⌊

m − 1

2
⌋ + 1) + 2.

Case 2 Suppose that both C0
m and Cn

m are crossed in D. If the crossings are made between the

edges of C0
m and Cn

m, then they must cross at least twice; if not, the edges of C0
m and Cn

m are

crossed at least once respectively. Deleting the edges of C0
m and Cn

m from D, we obtain a graph

homeomorphic to Wm×̂Pn−2 with at least (n − 1)(⌊m
2 ⌋⌊

m−1
2 ⌋ + 1) crossings. So we have

crD(Wm × Pn) ≥ (n − 1)(⌊
m

2
⌋⌊

m − 1

2
⌋ + 1) + 2.

In all, for an optimal drawing D of Wm ×Pn, we have crD(Wm ×Pn) ≥ (n−1)(⌊m
2 ⌋⌊

m−1
2 ⌋+

1) + 2, which completes the proof of Theorem 1. 2
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