The Torsion-Freeness of Partially Ordered K_{0}-Groups for a Class of Exchange Rings

WU Kuo Hua, LÜ Xin Min
(Faculty of Science, Jiangxi University of Science and Technology, Jiangxi 341000, China)
(E-mail: wkhlxy@sohu.com)

Abstract

A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that $[e R]$ and $[f R]$ are orthogonal in $K_{0}(R)^{+}$, i.e., $[e R] \wedge[f R]=0$. In this paper, we shall prove that the K_{0}-group of every orthogonal, $I B N_{2}$ exchange ring is always torsion-free, which generalizes the main result in [3].

Keywords $I B N_{2}$ ring; Orthogonal ring; K_{0}-group; Partially ordered Abelian group; ℓ-group.
Document code A
MR(2000) Subject Classification 16D90; 16E20; 06F20; 06F15
Chinese Library Classification O153.3

1. Introduction

Throughout, all rings are associative with identity and all modules are unitary right R modules. For a ring R, we denote by $\operatorname{FP}(R)$ the class of all finitely generated projective right R-modules. A ring R is said to be directly finite if for $x, y \in R, x y=1$ implies $y x=1$. A ring R is said to be stably finite or an IBN_{2} ring if all matrix rings $M_{n}(R)$ over R are directly finite for any positive integers n. According to [2, Chapter 15], there is a natural way to make $K_{0}(R)$ into a pre-order abelian group, as follows: For any $x, y \in K_{0}(R), x \leq y$ if and only if $\left.y-x \in K_{0}(R)^{+}\right)$. We call the pre-order on $K_{0}(R)$ the natural pre-order or the algebraic pre-order on $K_{0}(R)$.

A partially ordered Abelian group G is an Abelian group that is also a partially ordered set such that for any $a, b, c \in G, c+a+d \leq c+b+d$ whenever $a \leq b . G^{+}$will denote the set $\{a \in G: a \geq 0\}$, and is usually called the positive cone of $G . a, b \in G$ are said to be orthogonal if $a \wedge b$ exists in G and $a \wedge b=0$. A partially ordered Abelian group G is said to be archimedean if for $x, y \in G$, the condition $n x \leq y$ for all positive integers n implies $x \leq 0$. A partially ordered Abelian group G is said to be an ℓ-group if the underlying order is a lattice. According to [1, Proposition 3.5], every ℓ-group is torsion free. In this paper, we need the following criterion of ℓ-groups: A partially ordered Abelian group G is an ℓ-group if and only if for any $g \in G$, there exist $a, b \in G$ such that $a \wedge b=0$, and $g=a-b$.

[^0]
2. Main results

Definition $1 A$ ring R is to be orthogonal if for any idempotents e and f in R, e and f are orthogonal in R implies that $[e R]$ and $[f R]$ are orthogonal in $K_{0}(R)^{+}$, i.e., $[e R] \wedge[f R]=0$.

Let us first consider some examples of orthogonal rings.
Example 2 Let Q be the field of rational numbers, and $R=\left(\begin{array}{cc}\mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q}\end{array}\right)$. According to [3, Example 3.8], we see that R is a generalized Abelian exchange ring with stable range 1. The class of such rings is usually denoted by GAERS-1. In view of [3, Proposition 3.7], R is an orthogonal ring.

It should be pointed out that an orthogonal ring need not be in the class GAERS-1 introduced and studied in [3]. For example, let $R=\mathbb{Z}$. Clearly, R is an orthogonal ring, but $R \notin$ GAERS-1. It follows that the class GAERS-1 is, in fact, a proper subclass of the class of orthogonal rings.

Now we shall investigate the structure of the K_{0}-groups of orthogonal and $I B N_{2}$ exchange rings. In order to do this, we need the following lemma.

Lemma 3 Let R be an orthogonal and $I B N_{2}$ ring. Then for any two orthogonal idempotents e and f in R, and any two positive integers m and n, we have

$$
m[e R] \wedge n[f R]=0, \quad m[e R] \vee n[f R]=m[e R]+n[f R]
$$

Proof First, we should notice that if for any $[e R],[f R] \in K_{0}(R),[e R] \wedge[f R]$ exists in $K_{0}(R)$, then for any positive integer $s, s([e R] \wedge[f R])$ must exist in $K_{0}(R)$, and

$$
s([g R] \wedge[h R])=s[g R] \wedge\{(s-1)[g R]+[h R]\} \wedge \cdots \wedge\{[g R]+(s-1)[h R]\} \wedge s[h R]
$$

Now, take $s=2 k$, where $k=\max \{m, n\}$. Then we have

$$
0 \leq m[e R] \wedge n[f R] \leq k[g R] \wedge k[h R] \leq s([g R] \wedge[h R])=0
$$

It follows that $m[e R] \wedge n[f R]$ exists in $K_{0}(R)$, and $m[e R] \wedge n[f R]=0$. Since $K_{0}(R)$ is a partially ordered Abelian group, and $m[e R] \wedge n[f R]$ exists in $K_{0}(R)$, we have that $m[e R] \vee n[f R]$ exists in $K_{0}(R)$, and

$$
m[e R] \vee n[f R]=m[e R]+n[f R]-m[e R] \wedge n[f R]=m[e R]+n[f R]
$$

For any a given ring R and any $x \in K_{0}(R), x=[A]-[B]$ for suitable $A, B \in F P(R)$. Now we shall construct a special subset $k_{0}(R)$ of $K_{0}(R)$ satisfied the following conditions:
(1) For any $x \in k_{0}(R)$, there exist pairwise orthogonal idempotents e_{1}, \ldots, e_{k} in R and positive integers n_{1}, \ldots, n_{k} such that

$$
x=n_{1}\left[e_{1} R\right]+\cdots+n_{s}\left[e_{s} R\right]-n_{s+1}\left[e_{s+1} R\right]-\cdots-n_{k}\left[e_{k} R\right] .
$$

(2) For any $x, y \in k_{0}(R)$, there exist pairwise orthogonal idempotents e_{1}, \ldots, e_{k} in R, and integers m_{1}, \ldots, m_{k} and n_{1}, \ldots, n_{k} such that

$$
x=m_{1}\left[e_{1} R\right]+\cdots+m_{k}\left[e_{k} R\right], \quad y=n_{1}\left[e_{1} R\right]+\cdots+n_{k}\left[e_{k} R\right] .
$$

Clearly, $k_{0}(R)$ is an Abelian subgroup of $K_{0}(R)$. In particular, if R is an $I B N_{2}$ ring, then it is also a partially ordered Abelian subgroup of $K_{0}(R)$.

We now prove the main result of this paper.
Theorem 4 If R is an orthogonal and $I B N_{2}$ ring, then $k_{0}(R)$ is Archimedean ℓ-subgroup of $K_{0}(R)$, i.e., $k_{0}(R)$ itself is an Archimeden ℓ-group.

Proof First, we show that $k_{0}(R)$ is an ℓ-group. Notice that $k_{0}(R)$ is a partially ordered Abelian group. So, according to [1, Proposition 3.5], it suffices to show that for any $x \in k_{0}(R)$, there exist $a, b \in K_{0}(R)$ such that $x=a-b$, and $a \wedge b=0$.

Now, for any $x \in k_{0}(R)$, by assumption, there exist pairwise orthogonal idempotents e_{1}, \ldots, $e_{s}, e_{s+1}, \ldots, e_{k}$ in R and nonnegative integers $n_{1}, \ldots, n_{s}, p_{s+1}, \ldots, p_{k}$ such that

$$
x=n_{1}\left[e_{1} R\right]+\cdots+n_{s}\left[e_{s} R\right]-p_{s+1}\left[e_{s+1} R\right]+\cdots-p_{k}\left[e_{k} R\right] .
$$

Let

$$
a=n_{1}\left[e_{1} R\right]+\cdots+n_{s}\left[e_{s} R\right], \quad b=p_{s+1}\left[e_{s+1} R\right]+\cdots+p_{k}\left[e_{k} R\right]
$$

Then we have that $x=a-b$. Since $\left[e_{1} R\right],\left[e_{2} R\right], \ldots,\left[e_{k} R\right]$ are pairwise orthogonal, we get

$$
\begin{aligned}
a \wedge b & =\left(n_{1}\left[e_{1} R\right]+\cdots+n_{s}\left[e_{s} R\right]\right) \wedge\left(p_{s+1}\left[e_{s+1} R\right]+\cdots+p_{k}\left[e_{k} R\right]\right) \\
& =\left(n_{1}\left[e_{1} R\right] \vee \cdots \vee n_{s}\left[e_{s} R\right]\right) \wedge\left(p_{s+1}\left[e_{s+1} R\right] \vee \cdots \vee p_{k}\left[e_{k} R\right]\right) \\
& =\left(n_{1}\left[e_{1} R\right] \wedge p_{s+1}\left[e_{s+1} R\right]\right) \vee \cdots \vee\left(n_{s}\left[e_{s} R\right] \wedge p_{k}\left[e_{k} R\right]\right) \\
& =0
\end{aligned}
$$

It follows that $k_{0}(R)$ is an ℓ-group.
Secondly, we shall show that $k_{0}(R)$ has the Archimedean property. Given any $x, y \in G$ with the condition $n x \leq y$ for all positive integers n, by assumption, there exist pairwise orthogonal idempotents $e_{1}, \ldots, e_{s}, e_{s+1}, \ldots, e_{k}$ in R and integers $\left\{p_{i}\right\}_{i=1}^{k}$ and $\left\{q_{i}\right\}_{i=1}^{k}$ such that

$$
x=p_{1}\left[e_{1} R\right]+\cdots+p_{k}\left[e_{k} R\right], \quad y=q_{1}\left[e_{1} R\right]+\cdots+q_{k}\left[e_{k} R\right] .
$$

In order to prove $x \leq 0$, we need show that for each $p_{i} \leq 0$, where $i=1, \ldots, k$.
Suppose by way of contradiction that there exist some i such that $p_{i}<0$. Without loss of generality, we may further assume that $p_{1}>0$. According to the inequality $n x \leq y$, we have

$$
n\left(p_{1}\left[e_{1} R\right]+\cdots+p_{k}\left[e_{k} R\right]\right) \leq q_{1}\left[e_{1} R\right]+\cdots+q_{k}\left[e_{k} R\right] .
$$

Then

$$
\left.\left(n p_{1}-q_{1}\right)\left[e_{1} R\right]+\left(n p_{2}-q_{2}\right)\left[e_{2} R\right]+\cdots+\left(n p_{k}-q_{k}\right)\left[e_{k} R\right]\right) \leq 0
$$

Since $p_{1}>0$, and n is any a positive integer, we can choose a positive integer n_{0} such that $n_{0} p_{1}-q_{1}>0$, while $n_{0} p_{i}-q_{i}>0$ for $i=2, \ldots, s(2 \leq s \leq k)$, and $n_{0} p_{j}-q_{j}<0$ for $j=s+1, \ldots, k$. For convenience, let $r_{i}=n_{0} p_{i}-q_{i}$ for $i=1,2, \ldots, s$, and $t_{j}=-n_{0} p_{j}+q_{j}>0$ for $j=s+1, \ldots, k$. So we have

$$
\left.r_{1}\left[e_{1} R\right]+r_{2}\left[e_{2} R\right]+\cdots+r_{s}\left[e_{s} R\right] \leq t_{s+1}\left[e_{s+1} R\right]+\cdots+t_{k}\left[e_{k} R\right]\right)
$$

Similarly, since $\left.\left[e_{1} R\right],\left[e_{2} R\right], \ldots,\left[e_{k} R\right]\right)$ are pairwise orthogonal, we have

$$
\begin{aligned}
{\left[e_{1} R\right] } & =\left[e_{1} R\right] \wedge r_{1}\left[e_{1} R\right] \\
& =\left[e_{1} R\right] \wedge\left(r_{1}\left[e_{1} R\right] \vee r_{2}\left[e_{2} R\right] \vee \cdots \vee r_{s}\left[e_{s} R\right]\right) \\
& =\left[e_{1} R\right] \wedge\left(r_{1}\left[e_{1} R\right]+r_{2}\left[e_{2} R\right]+\cdots+r_{s}\left[e_{s} R\right]\right) \\
& \leq\left[e_{1} R\right] \wedge\left(t_{s+1}\left[e_{s+1} R\right]+\cdots+t_{k}\left[e_{k} R\right]\right) \\
& =\left[e_{1} R\right] \wedge\left(t_{s+1}\left[e_{s+1} R\right] \vee \cdots \vee t_{k}\left[e_{k} R\right]\right) \\
& =0
\end{aligned}
$$

This is a contradiction. So, each $p_{i} \leq 0$ for $i=1, \ldots, k$. Hence $k_{0}(R)$ is an Archimedean ℓ-group.

Following [4], we say that a ring R is an exchange ring if for every R-module A_{R} and any decompositions

$$
A=B \oplus C=\left(\bigoplus_{i \in I} A_{i}\right) \text { with } B \cong R_{R}
$$

as right R-modules, there exist submodules $A_{i}^{\prime} \subseteq A_{i}$ for each $i \in I$ such that $A=B \oplus\left(\bigoplus_{i \in I} A_{i}^{\prime}\right)$. In view of [5, Corollary 2.2], for any an exchange ring $R, k_{0}(R)=K_{0}(R)$. So, as a corollary of Theorem 4, we have

Corollary 5 Let R be an orthogonal and IBN_{2} ring. If R is an exchange ring, then $K_{0}(R)$ is an Archimedean ℓ-group. So, in this case, $K_{0}(R)$ is always torsion free.

References

[1] DARNEL M R. Theory of Lattice-Ordered Groups [M]. Marcel Dekker, Inc., New York, 1995.
[2] GOODEARL K R. Von Neumann Regular Rings [M]. Second Edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
[3] LU Xinmin, QIN Hourong. Boolean algebras, generalized abelian rings, and Grothendieck groups [J]. Comm. Algebra, 2006, 34(2): 641-659.
[4] WARFIELD R B JR. Exchange rings and decompositions of modules [J]. Math. Ann., 1972, 199: 31-36.
[5] WU Tongsuo, TONG Wenting. Finitely generated projective modules over exchange rings [J]. Manuscripta Math., 1995, 86(2): 149-157.

[^0]: Received date: 2007-02-07; Accepted date: 2007-07-13
 Foundation item: the National Natural Science Foundation of China (No. 10571080); the Natural Science Foundation of Jiangxi Province (No. 0611042); the Science and Technology Projiet Foundation of Jiangxi Province (No. G[2006]194) and the Doctor Foundation of Jiangxi University of Science and Technology.

