The Torsion-Freeness of Partially Ordered K_0 -Groups for a Class of Exchange Rings

WU Kuo Hua, LÜ Xin Min

(Faculty of Science, Jiangxi University of Science and Technology, Jiangxi 341000, China) (E-mail: wkhlxy@sohu.com)

Abstract A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in $K_0(R)^+$, i.e., $[eR] \wedge [fR] = 0$. In this paper, we shall prove that the K_0 -group of every orthogonal, IBN_2 exchange ring is always torsion-free, which generalizes the main result in [3].

Keywords IBN_2 ring; Orthogonal ring; K_0 -group; Partially ordered Abelian group; ℓ -group.

Document code A MR(2000) Subject Classification 16D90; 16E20; 06F20; 06F15 Chinese Library Classification 0153.3

1. Introduction

Throughout, all rings are associative with identity and all modules are unitary right R-modules. For a ring R, we denote by FP(R) the class of all finitely generated projective right R-modules. A ring R is said to be directly finite if for $x, y \in R$, xy = 1 implies yx = 1. A ring R is said to be stably finite or an IBN₂ ring if all matrix rings $M_n(R)$ over R are directly finite for any positive integers n. According to [2, Chapter 15], there is a natural way to make $K_0(R)$ into a pre-order abelian group, as follows: For any $x, y \in K_0(R), x \leq y$ if and only if $y - x \in K_0(R)^+$. We call the pre-order on $K_0(R)$ the natural pre-order or the algebraic pre-order on $K_0(R)$.

A partially ordered Abelian group G is an Abelian group that is also a partially ordered set such that for any $a, b, c \in G$, $c + a + d \leq c + b + d$ whenever $a \leq b$. G^+ will denote the set $\{a \in G : a \geq 0\}$, and is usually called the positive cone of G. $a, b \in G$ are said to be orthogonal if $a \wedge b$ exists in G and $a \wedge b = 0$. A partially ordered Abelian group G is said to be archimedean if for $x, y \in G$, the condition $nx \leq y$ for all positive integers n implies $x \leq 0$. A partially ordered Abelian group G is said to be an ℓ -group if the underlying order is a lattice. According to [1, Proposition 3.5], every ℓ -group is torsion free. In this paper, we need the following criterion of ℓ -groups: A partially ordered Abelian group G is an ℓ -group if and only if for any $g \in G$, there exist $a, b \in G$ such that $a \wedge b = 0$, and g = a - b.

Received date: 2007-02-07; Accepted date: 2007-07-13

Foundation item: the National Natural Science Foundation of China (No. 10571080); the Natural Science Foundation of Jiangxi Province (No. 0611042); the Science and Technology Projet Foundation of Jiangxi Province (No. G[2006]194) and the Doctor Foundation of Jiangxi University of Science and Technology.

2. Main results

Definition 1 A ring R is to be orthogonal if for any idempotents e and f in R, e and f are orthogonal in R implies that [eR] and [fR] are orthogonal in $K_0(R)^+$, i.e., $[eR] \wedge [fR] = 0$.

Let us first consider some examples of orthogonal rings.

Example 2 Let Q be the field of rational numbers, and $R = \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$. According to [3, Example 3.8], we see that R is a generalized Abelian exchange ring with stable range 1. The class of such rings is usually denoted by **GAERS**-1. In view of [3, Proposition 3.7], R is an orthogonal ring.

It should be pointed out that an orthogonal ring need not be in the class **GAERS**-1 introduced and studied in [3]. For example, let $R = \mathbb{Z}$. Clearly, R is an orthogonal ring, but $R \notin \mathbf{GAERS}$ -1. It follows that the class **GAERS**-1 is, in fact, a proper subclass of the class of orthogonal rings.

Now we shall investigate the structure of the K_0 -groups of orthogonal and IBN_2 exchange rings. In order to do this, we need the following lemma.

Lemma 3 Let R be an orthogonal and IBN_2 ring. Then for any two orthogonal idempotents e and f in R, and any two positive integers m and n, we have

$$m[eR] \wedge n[fR] = 0, \quad m[eR] \vee n[fR] = m[eR] + n[fR]$$

Proof First, we should notice that if for any [eR], $[fR] \in K_0(R)$, $[eR] \wedge [fR]$ exists in $K_0(R)$, then for any positive integer s, $s([eR] \wedge [fR])$ must exist in $K_0(R)$, and

$$s([gR] \land [hR]) = s[gR] \land \{(s-1)[gR] + [hR]\} \land \dots \land \{[gR] + (s-1)[hR]\} \land s[hR]$$

Now, take s = 2k, where $k = \max\{m, n\}$. Then we have

$$0 \le m[eR] \land n[fR] \le k[gR] \land k[hR] \le s([gR] \land [hR]) = 0.$$

It follows that $m[eR] \wedge n[fR]$ exists in $K_0(R)$, and $m[eR] \wedge n[fR] = 0$. Since $K_0(R)$ is a partially ordered Abelian group, and $m[eR] \wedge n[fR]$ exists in $K_0(R)$, we have that $m[eR] \vee n[fR]$ exists in $K_0(R)$, and

$$m[eR] \lor n[fR] = m[eR] + n[fR] - m[eR] \land n[fR] = m[eR] + n[fR].$$

For any a given ring R and any $x \in K_0(R)$, x = [A] - [B] for suitable $A, B \in FP(R)$. Now we shall construct a special subset $k_0(R)$ of $K_0(R)$ satisfied the following conditions:

(1) For any $x \in k_0(R)$, there exist pairwise orthogonal idempotents e_1, \ldots, e_k in R and positive integers n_1, \ldots, n_k such that

 $x = n_1[e_1R] + \dots + n_s[e_sR] - n_{s+1}[e_{s+1}R] - \dots - n_k[e_kR].$

(2) For any $x, y \in k_0(R)$, there exist pairwise orthogonal idempotents e_1, \ldots, e_k in R, and integers m_1, \ldots, m_k and n_1, \ldots, n_k such that

$$x = m_1[e_1R] + \dots + m_k[e_kR], \quad y = n_1[e_1R] + \dots + n_k[e_kR].$$

Clearly, $k_0(R)$ is an Abelian subgroup of $K_0(R)$. In particular, if R is an IBN_2 ring, then it is also a partially ordered Abelian subgroup of $K_0(R)$.

We now prove the main result of this paper.

Theorem 4 If R is an orthogonal and IBN_2 ring, then $k_0(R)$ is Archimedean ℓ -subgroup of $K_0(R)$, i.e., $k_0(R)$ itself is an Archimedean ℓ -group.

Proof First, we show that $k_0(R)$ is an ℓ -group. Notice that $k_0(R)$ is a partially ordered Abelian group. So, according to [1, Proposition 3.5], it suffices to show that for any $x \in k_0(R)$, there exist $a, b \in K_0(R)$ such that x = a - b, and $a \wedge b = 0$.

Now, for any $x \in k_0(R)$, by assumption, there exist pairwise orthogonal idempotents $e_1, \ldots, e_s, e_{s+1}, \ldots, e_k$ in R and nonnegative integers $n_1, \ldots, n_s, p_{s+1}, \ldots, p_k$ such that

$$x = n_1[e_1R] + \dots + n_s[e_sR] - p_{s+1}[e_{s+1}R] + \dots - p_k[e_kR].$$

Let

$$a = n_1[e_1R] + \dots + n_s[e_sR], \quad b = p_{s+1}[e_{s+1}R] + \dots + p_k[e_kR].$$

Then we have that x = a - b. Since $[e_1R], [e_2R], \ldots, [e_kR]$ are pairwise orthogonal, we get

$$\begin{aligned} a \wedge b &= (n_1[e_1R] + \dots + n_s[e_sR]) \wedge (p_{s+1}[e_{s+1}R] + \dots + p_k[e_kR]) \\ &= (n_1[e_1R] \vee \dots \vee n_s[e_sR]) \wedge (p_{s+1}[e_{s+1}R] \vee \dots \vee p_k[e_kR]) \\ &= (n_1[e_1R] \wedge p_{s+1}[e_{s+1}R]) \vee \dots \vee (n_s[e_sR] \wedge p_k[e_kR]) \\ &= 0. \end{aligned}$$

It follows that $k_0(R)$ is an ℓ -group.

Secondly, we shall show that $k_0(R)$ has the Archimedean property. Given any $x, y \in G$ with the condition $nx \leq y$ for all positive integers n, by assumption, there exist pairwise orthogonal idempotents $e_1, \ldots, e_s, e_{s+1}, \ldots, e_k$ in R and integers $\{p_i\}_{i=1}^k$ and $\{q_i\}_{i=1}^k$ such that

$$x = p_1[e_1R] + \dots + p_k[e_kR], \quad y = q_1[e_1R] + \dots + q_k[e_kR].$$

In order to prove $x \leq 0$, we need show that for each $p_i \leq 0$, where $i = 1, \ldots, k$.

Suppose by way of contradiction that there exist some *i* such that $p_i < 0$. Without loss of generality, we may further assume that $p_1 > 0$. According to the inequality $nx \leq y$, we have

$$n(p_1[e_1R] + \dots + p_k[e_kR]) \le q_1[e_1R] + \dots + q_k[e_kR].$$

Then

$$(np_1 - q_1)[e_1R] + (np_2 - q_2)[e_2R] + \dots + (np_k - q_k)[e_kR]) \le 0.$$

Since $p_1 > 0$, and n is any a positive integer, we can choose a positive integer n_0 such that $n_0p_1 - q_1 > 0$, while $n_0p_i - q_i > 0$ for i = 2, ..., s $(2 \le s \le k)$, and $n_0p_j - q_j < 0$ for j = s + 1, ..., k. For convenience, let $r_i = n_0p_i - q_i$ for i = 1, 2, ..., s, and $t_j = -n_0p_j + q_j > 0$ for j = s + 1, ..., k. So we have

$$r_1[e_1R] + r_2[e_2R] + \dots + r_s[e_sR] \le t_{s+1}[e_{s+1}R] + \dots + t_k[e_kR]).$$

Similarly, since $[e_1R], [e_2R], \ldots, [e_kR]$ are pairwise orthogonal, we have

$$\begin{split} [e_1 R] &= [e_1 R] \wedge r_1[e_1 R] \\ &= [e_1 R] \wedge (r_1[e_1 R] \vee r_2[e_2 R] \vee \dots \vee r_s[e_s R]) \\ &= [e_1 R] \wedge (r_1[e_1 R] + r_2[e_2 R] + \dots + r_s[e_s R]) \\ &\leq [e_1 R] \wedge (t_{s+1}[e_{s+1} R] + \dots + t_k[e_k R]) \\ &= [e_1 R] \wedge (t_{s+1}[e_{s+1} R] \vee \dots \vee t_k[e_k R]) \\ &= 0. \end{split}$$

This is a contradiction. So, each $p_i \leq 0$ for i = 1, ..., k. Hence $k_0(R)$ is an Archimedean ℓ -group.

Following [4], we say that a ring R is an exchange ring if for every R-module A_R and any decompositions

$$A = B \oplus C = (\bigoplus_{i \in I} A_i)$$
 with $B \cong R_R$

as right *R*-modules, there exist submodules $A'_i \subseteq A_i$ for each $i \in I$ such that $A = B \oplus (\bigoplus_{i \in I} A'_i)$. In view of [5, Corollary 2.2], for any an exchange ring R, $k_0(R) = K_0(R)$. So, as a corollary of Theorem 4, we have

Corollary 5 Let R be an orthogonal and IBN₂ ring. If R is an exchange ring, then $K_0(R)$ is an Archimedean ℓ -group. So, in this case, $K_0(R)$ is always torsion free.

References

- [1] DARNEL M R. Theory of Lattice-Ordered Groups [M]. Marcel Dekker, Inc., New York, 1995.
- [2] GOODEARL K R. Von Neumann Regular Rings [M]. Second Edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
- [3] LU Xinmin, QIN Hourong. Boolean algebras, generalized abelian rings, and Grothendieck groups [J]. Comm. Algebra, 2006, 34(2): 641–659.
- [4] WARFIELD R B JR. Exchange rings and decompositions of modules [J]. Math. Ann., 1972, 199: 31–36.
- [5] WU Tongsuo, TONG Wenting. Finitely generated projective modules over exchange rings [J]. Manuscripta Math., 1995, 86(2): 149–157.