Improved Local Wellposedness of Cauchy Problem for Generalized KdV-BO Equation

ZHAO Xiang Qing ${ }^{1}$, GUO Ai ${ }^{2}$
(1. Department of Mathematics, Zhejiang Ocean University, Zhejiang 316000, China;
2. School of Mathematical Sciences, South China University of Technology, Guangdong 510640, China)
(E-mail: zhao-xiangqing@163.com; guoai@scut.edu.cn)

Abstract

In this paper we prove that the Cauchy problem associated with the generalized KdV-BO equation $u_{t}+u_{x x x}+\lambda \mathcal{H}\left(u_{x x}\right)+u^{2} u_{x}=0, x \in R, t \geq 0$ is locally wellposed in $\widehat{H_{r}^{s}}(R)$ for $\frac{4}{3}<r \leq 2, b>\frac{1}{r}$ and $s \geq s(r)=\frac{1}{2}-\frac{1}{2 r}$. In particular, for $r=2$, we reobtain the result in [3].

Keywords KdV-BO equation; Cauchy problem; local wellposedness.
Document code A
MR(2000) Subject Classification 35A07; 35E15; 35G25; 35Q53; 35Q55
Chinese Library Classification O175.2

1. Introduction

We investigate the initial value problem (IVP) of the generalized KdV-BO (Korteweg-de Vries-Benjamin-Ono) equation:

$$
\begin{gather*}
u_{t}+u_{x x x}+\lambda \mathcal{H}\left(u_{x x}\right)+u^{k} u_{x}=0, x \in R, t \geq 0 \tag{1}\\
u(0, x)=u_{0}(x), x \in R \tag{2}
\end{gather*}
$$

where $\lambda>0$ and \mathcal{H} denotes the usual Hilbert transform. The integro-differential equation (1) models the unidirectional propagation of long waves in a two-fluid system, where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity. It was derived by Benjamin ${ }^{[1]}$ to study gravity-capillary surface waves of solitary type on deep water.

Linares ${ }^{[2]}$ showed that there exists a local and global solution for the IVP (1)-(2) with initial data in L^{2} with constant coefficient $\lambda>0$ if $k=1$.

Guo and Huo ${ }^{[4]}$ proved that IVP (1)-(2) is locally wellposed with data in $H^{s}(R)$ for $s>-\frac{1}{8}$, if $k=1 ; s \geq \frac{1}{4}$, if $k=2$.

Notice that in equation (1), the dispersive term $u_{x x x}$ plays the most important role and the Benjamin-Ono $\mathcal{H}\left(u_{x x}\right)$ term can be treated as a nonlinear term. Therefore, we expect the IVP (1)-(2) has the similar wellposeness to that of the modified KdV equation:

$$
\begin{equation*}
v_{t}+v_{x x x}+v^{k} v_{x}=0, x \in R, t \geq 0 \tag{3}
\end{equation*}
$$

Received date: 2006-12-04; Accepted date: 2007-10-28
Foundation item: the Natural Science Foundation of Zhejiang Province (No. Y6080388); the Science and Technology Research Foundation of Zhejiang Ocean University (Nos. X08M014; X08Z04).

$$
\begin{equation*}
v(0, x)=v_{0}(x), x \in R \tag{4}
\end{equation*}
$$

Indeed, from this point of view, Huo and Guo ${ }^{[3]}$ proved that IVP (1)-(2) is locally wellposed with data in $H^{s}(R)$ for $s>-\frac{3}{4}$, if $k=1 ; s \geq \frac{1}{4}$, if $k=2 ; s>-\frac{1}{6}$, if $k=3$. Moreover, the solutions of IVP (1)-(2) converge to the solutions of IVP (3)-(4) if λ tends to zero.

Though for $k=1$, Guo and Huo in [4] improved the well-posedness of IVP (1)-(2) a great deal, it did not improve the wellposedness for the case of $k=2$. As Grünrock did in [5], by proving the wellposedness of IVP (1)-(2) in \widehat{H}_{r}^{s}, we manage to improve the result of the case $k=2$ to some extent. To this end, let us recall some definitions first.

Definition $1^{[5]}$ For $s \in R, 1 \leq r \leq \infty$, we define the space $\widehat{H_{s}^{r}}$ by

$$
\widehat{H_{s}^{r}}=\left\{f \in S^{\prime}(R):\|f\|_{\widehat{H_{s}^{r}}}<\infty\right\}
$$

with

$$
\|f\|_{\widehat{H}_{s}^{r}}:=\left\|\langle\xi\rangle^{s} \hat{f}\right\|_{L_{\xi}^{r^{\prime}}},
$$

where $\langle\xi\rangle=(1+|\xi|), \frac{1}{r}+\frac{1}{r^{\prime}}$.
Definition $2^{[5]}$ For $s, b \in R, 1 \leq r \leq \infty$, we define the space $X_{s, b}^{r}$ to be the completion of the Schwartz function space on R^{2} with respect to the norm

$$
\|u\|_{X_{s, b}^{r}}=\left\|\langle\xi\rangle^{s}\left\langle\tau-\xi^{3}\right\rangle^{b} \hat{u}\right\|_{L_{\xi \tau}^{r^{\prime}}}=\left(\int \mathrm{d} \xi \mathrm{~d} \tau\langle\xi\rangle^{s r^{\prime}}\langle\tau\rangle^{b^{\prime} r^{\prime}}|\mathcal{F}(U(-\cdot) f)(\tau, \xi)|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}},
$$

where $\langle\xi\rangle=(1+|\xi|), \frac{1}{r}+\frac{1}{r^{\prime}} . \mathcal{F} u=\hat{u}(\tau, \xi)$ denotes the Fourier transform in variables t and x of u. Denote by $\mathcal{F}_{(\cdot)} u$ the Fourier transform in the (\cdot) variable. $U(t)=\mathcal{F}_{x}^{-1} e^{i t \xi^{3}} \mathcal{F}_{x}$ is the unitary operator associated with the Airy equation.

Deduced directly from the definition, the embedding relation

$$
\|u\|_{X_{s_{1}, b_{1}}^{r}} \leq\|u\|_{X_{s_{2}, b_{2}}^{r}}
$$

holds if $s_{1} \leq s_{2}, b_{1} \leq b_{2}$; for $r=2$, we reobtain Bourgain space $X_{s, b} .{ }^{1}$
For $b>\frac{1}{r}$, we have

$$
X_{s, b}^{r} \subset C\left(R, \widehat{H_{s}^{r}}\right)
$$

Let $\psi \in C_{0}^{\infty}(R)$ with $\psi \equiv 1$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\operatorname{supp} \psi \subseteq(-1,1)$. Denote $\psi_{\delta}(t)=\psi\left(\frac{t}{\delta}\right)$. Then the time restricted space is defined by

$$
X_{s, b}^{r}(\delta):=\left\{f=\left.\tilde{f}\right|_{[-\delta, \delta] \times R}=\psi_{\delta}(t) \tilde{f}: \tilde{f} \in X_{s, b}^{r}\right\}
$$

endowed with the norm

$$
\|f\|_{X_{s, b}^{r}}(\delta):=\inf \left\{\|\tilde{f}\|_{X_{s, b}^{r}}:\left.\tilde{f}\right|_{[-\delta, \delta] \times R}=f\right\} .
$$

Our main result reads as follows (for $k=2$):
Theorem Let $\frac{4}{3}<r \leq 2$. Then for any $b>\frac{1}{r}$ and $s \geq s(r)=\frac{1}{2}-\frac{1}{2 r}$, there exist $T=$

[^0]$T\left(\left\|u_{0}\right\|_{\widehat{H}_{s}^{r}}\right)>0$ and a unique solution $u \in C\left([0, T], \widehat{H_{s}^{r}}\right) \cap X_{s, b}^{r}$ of IVP (1)-(2) with $u_{0}(x) \in \widehat{H_{s}^{r}}$. Moreover, for any given $t \in(0, T)$, the mapping $u_{0}(x) \rightarrow u(t, x)$ is Lipschitz continuous from $\widehat{H_{s}^{r}}$ to $C\left([0, T], \widehat{H}_{s}^{r}\right)$.

In the sequel, C will denote a constant which may differ at each appearance, possibly depending on the dimension or other parameters.

2. Estimate of the Benjamin-Ono term

In this section, we concentrate on the estimate of Benjamin-Ono term $\mathcal{H}\left(u_{x x}\right)$.
Lemma 1 Let $s \in R, b^{\prime}+1>b>0>b^{\prime}>-\frac{1}{r^{\prime}}$, and $b-b^{\prime}>\frac{2}{3}, 1<r<\infty$. We have

$$
\begin{equation*}
\left\|\mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}} \leq C\|u\|_{X_{s, b}^{r}} \tag{5}
\end{equation*}
$$

To prove this lemma, we prove the following preliminary lemma in advance. We agree on that the eigenfunction $\chi_{|\tau| \sim|\xi|^{3}}$ equals 1 if $|\tau| \sim|\xi|^{3}$; equals 0 , otherwise. Define the operator \mathcal{P} by $\mathcal{P} f(t, x)=\mathcal{F}^{-1} \chi_{|\tau| \sim|\xi|^{3}} \mathcal{F} f(\tau, \xi)$.

Lemma 2 Let $s \in R, b^{\prime}+1>b>0>b^{\prime}>-\frac{1}{r^{\prime}}$, and $b-b^{\prime}>\frac{2}{3}, 1<r<\infty$. Assume that the Fourier transform $\mathcal{F} f=\hat{f}(\tau, \xi)$ of f is supported in $\{(\tau, \xi):|\xi|>1\}$. Then there holds that

$$
\|\mathcal{P} f\|_{X_{s, b^{\prime}}^{r}} \leq C\|f\|_{X_{s-2, b}^{r}}
$$

Proof We have

$$
\begin{aligned}
\|\mathcal{P} f\|_{X_{s, b^{\prime}}^{r}} & =\left(\int \mathrm{d} \xi \mathrm{~d} \tau\langle\xi\rangle^{s r^{\prime}}\langle\tau\rangle^{b^{\prime} r^{\prime}}|\mathcal{F}[U(-) \mathcal{P} f](\tau, \xi)|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \\
& =\left(\int \mathrm{d} \xi \mathrm{~d} \tau \frac{\langle\xi\rangle^{2 r^{\prime}}}{\langle\tau\rangle^{\left(b-b^{\prime}\right) r^{\prime}}}\langle\xi\rangle^{(s-2) r^{\prime}}\langle\tau\rangle^{b r^{\prime}}|\mathcal{F}[U(-\cdot) \mathcal{P} f](\tau, \xi)|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \\
& \leq\left(\int \mathrm{d} \xi \mathrm{~d} \tau \frac{\langle\xi\rangle^{2 r^{\prime}} \chi|\tau| \sim|\xi|^{3}}{\langle\tau\rangle^{\left(b-b^{\prime}\right) r^{\prime}}}\langle\xi\rangle^{(s-2) r^{\prime}}\langle\tau\rangle^{b r^{\prime}}|\mathcal{F}[U(-\cdot) \mathcal{P} f](\tau, \xi)|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \\
& \leq\left(\int \mathrm{d} \xi \mathrm{~d} \tau\langle\xi\rangle^{(s-2) r^{\prime}}\langle\tau\rangle^{b r^{\prime}}|\mathcal{F}[U(-\cdot) \mathcal{P} f](\tau, \xi)|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \\
& =C\|f\|_{X_{s-2, b}^{r}} .
\end{aligned}
$$

This completes the proof.

Proof of Lemma 1

Case 1 If the Fourier transform $\mathcal{F} \mathcal{H}\left(\partial_{x x} u\right)$ is supported in $\{(\tau, \xi):|\xi| \leq 1\}$, we obtain

$$
\begin{aligned}
\left\|\mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}} & =\left\|\frac{\langle\xi\rangle^{s}}{\left\langle\tau-\xi^{3}\right\rangle^{-b^{\prime}}} \mathcal{F} \mathcal{H}\left(u_{x x}\right)(\tau, \xi)\right\|_{L_{\tau, \xi}^{r^{\prime}}} \\
& =\left\|\frac{\xi|\xi|}{\left\langle\tau-\xi^{3}\right\rangle^{b-b^{\prime}}}\langle\xi\rangle^{s}\left\langle\tau-\xi^{3}\right\rangle^{b} \hat{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{r^{\prime}}} \\
& \leq C\|u\|_{X_{s, b}^{r}} .
\end{aligned}
$$

Case 2 If the Fourier transform $\mathcal{F} \mathcal{H}\left(u_{x x}\right)$ is supported in $\{(\tau, \xi):|\xi| \geq 1\}$, we rewrite $\mathcal{H}\left(u_{x x}\right)$ as $\mathcal{H}\left(u_{x x}\right)=\mathcal{P} \mathcal{H}\left(u_{x x}\right)+(1-\mathcal{P}) \mathcal{H}\left(u_{x x}\right)$ and estimate the two terms respectively.

For $\mathcal{P} \mathcal{H}\left(u_{x x}\right)$, by Lemma 2, we have

$$
\left\|\mathcal{P} \mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}} \leq C\left\|\mathcal{H}\left(u_{x x}\right)\right\|_{X_{s-2, b}^{r}} \leq C\|u\|_{X_{s, b}^{r}}^{r} .
$$

For $(1-\mathcal{P}) \mathcal{H}\left(u_{x x}\right)$, it is clear that $\mathcal{F}(1-\mathcal{P}) \mathcal{H}\left(u_{x x}\right)$ is supported in

$$
\left\{(\tau, \xi):|\tau| \ll|\xi|^{3} \text { or }|\tau| \gg|\xi|^{3}\right\}
$$

correspondingly, we have either $\left|\tau-\xi^{3}\right| \sim|\xi|^{3}$ or $\left|\tau-\xi^{3}\right| \gg|\xi|^{3}$. Then we have

$$
\begin{aligned}
& \left\|(1-\mathcal{P}) \mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}} \\
& \quad=\| \frac{\xi|\xi|}{\left\langle\tau-\xi^{3}\right\rangle^{b-b^{\prime}}}\langle\xi\rangle^{s}\left\langle\tau-\xi^{3}\right\rangle^{b} \chi_{\left|\tau-\xi^{3}\right| \sim|\xi|^{3}} \text { or }\left.\left|\tau-\xi^{3}\right| \gg|\xi|\right|^{3} \hat{u}(\tau, \xi) \|_{L_{\tau \xi}^{r^{\prime}}} \\
& \quad \leq C\|u\|_{X_{s, b}^{r}} .
\end{aligned}
$$

Thus, collecting all the estimates together, we obtain

$$
\left\|\mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}} \leq\left\|\mathcal{P} \mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}}+\left\|(1-\mathcal{P}) \mathcal{H}\left(u_{x x}\right)\right\|_{X_{s, b^{\prime}}^{r}}^{r} \leq C\|u\|_{X_{s, b}^{r}} .
$$

3. Proof of the main results

In order to smooth the proof of the main result, let us recall some facts as lemmas first.
Lemma 3 ${ }^{[5]}$ 1) For $\phi \in \widehat{H_{s}^{r}}$, we have

$$
\|\psi(t) S(t) \phi\|_{X_{s, b}^{r}} \leq C_{\psi}\|\phi\|_{\widehat{H_{s}^{r}}} .
$$

2) Assume $1<r<\infty$ and $b^{\prime}+1 \geq b \geq 0 \geq b^{\prime}>-\frac{1}{r^{\prime}}$. Then

$$
\left\|\psi_{\delta}(t) \int_{0}^{t} S\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}\right\|_{X_{s, b}^{r}} \leq C \delta^{1+b^{\prime}-b}\|f\|_{X_{s, b^{\prime}}^{r}}
$$

Lemma $4^{[5]}$ Let $\frac{4}{3}<r \leq 2$ and $s \geq s(r)=\frac{1}{2}-\frac{1}{2 r}$. Then for all $b^{\prime}<\frac{1}{2 r}-\frac{5}{8}$ and $b>\frac{1}{r}$ the estimate

$$
\left\|\left(\Pi_{i=1}^{3} u_{i}\right)_{x}\right\|_{X_{s, b^{\prime}}^{r}} \leq C \Pi_{i=1}^{3}\left\|u_{i}\right\|_{X_{s, b}^{r}}
$$

holds true.
Lemma 5 Let $\frac{4}{3}<r \leq 2$ and $s \geq s(r)=\frac{1}{2}-\frac{1}{2 r}$. Then for all $b^{\prime}<\frac{1}{2 r}-\frac{5}{8}$ and $b>\frac{1}{r}$ the estimates

$$
\begin{equation*}
\left\|u^{2} u_{x}\right\|_{X_{s, b^{\prime}}^{r}} \leq C\|u\|_{X_{s, b}^{r}}^{3} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u^{2} u_{x}-v^{2} v_{x}\right\|_{X_{s, b^{\prime}}^{r}} \leq C\left[\|u\|_{X_{s, b}^{r}}^{2}+\|v\|_{X_{s, b}^{r}}^{2}\right]\|u-v\|_{X_{s, b}^{r}} \tag{7}
\end{equation*}
$$

hold true.
Proof Inequality (6) is a direct result of Lemma 4. Inequality (7) follows from Lemma 4 and

$$
\begin{aligned}
3\left(u^{2} u_{x}-v^{2} v_{x}\right) & =\left(u^{3}-v^{3}\right)_{x}=\left[(u-v)\left(u^{2}+u v+v^{2}\right)\right]_{x} \\
& =\left[(u-v) u^{2}\right]_{x}+[(u-v) u v]_{x}+\left[(u-v) v^{2}\right]_{x} .
\end{aligned}
$$

Sketch of proof of the Theorem Take $b=\frac{1}{r}+\varepsilon$, $b^{\prime}=-\frac{1}{r^{\prime}}+2 \varepsilon$, for $0<\varepsilon<\frac{1}{2 r^{\prime}}$. Then $b^{\prime}+1>b>0>b^{\prime}>-\frac{1}{r^{\prime}}$, and $b-b^{\prime}>\frac{2}{3}, b>\frac{1}{r}$.

For $u \in X_{s, b}^{r}(\delta)$ with extension $\widetilde{u} \in X_{s, b}^{r}$, define operator

$$
\mathcal{T}(u)=\psi(t) U(t) u_{0}-i \psi_{\delta}(t) \int_{0}^{t} U(t-\tau) F(u(\tau)) \mathrm{d} \tau
$$

then extension of $\mathcal{T}(u)$ is given by

$$
\widetilde{\mathcal{T}}(u)=\psi(t) U(t) u_{0}-i \psi_{\delta}(t) \int_{0}^{t} U(t-\tau) F(\widetilde{u}(\tau) \mathrm{d} \tau
$$

where $F(\widetilde{u}(\tau))=\left(\widetilde{u}^{3}\right)_{x}+\lambda \mathcal{H}\left(\widetilde{u}_{x x}\right)$.
By Lemma 3 and the first inequality of Lemma 5, we obtain

$$
\begin{aligned}
\|\mathcal{T}(u)\|_{X_{s, b}^{r}(\delta)} & \leq\left\|\psi(t) U(t) u_{0}\right\|_{X_{s, b}^{r}}+\left\|\psi_{\delta}(t) \int_{0}^{t} U(t-\tau) F(\widetilde{u}(\tau)) \mathrm{d} \tau\right\|_{X_{s, b}^{r}} \\
& \leq C\left\|u_{0}\right\|_{\widehat{H}_{s}^{r}}+C \delta^{1-b+b^{\prime}}\|\widetilde{u}\|_{X_{s, b}^{r}}^{3}+C \delta^{1-b+b^{\prime}}\|\widetilde{u}\|_{X_{s, b}^{r}}
\end{aligned}
$$

This holds for all extension $\widetilde{u} \in X_{s, b}^{r}$ of $u \in X_{s, b}^{r}(\delta)$. Hence

$$
\begin{equation*}
\|\mathcal{T}(u)\|_{X_{s, b}^{r}(\delta)} \leq C\left\|u_{0}\right\|_{\widehat{H_{s}^{r}}}+C \delta^{1-b+b^{\prime}}\|u\|_{X_{s, b}^{r}(\delta)}^{3}+C \delta^{1-b+b^{\prime}}\|u\|_{X_{s, b}^{r}(\delta)} . \tag{8}
\end{equation*}
$$

Similarly, by Lemma 3 and the second inequality of Lemma 5 , for given $u \in X_{s, b}^{r}(\delta), v \in X_{s, b}^{r}(\delta)$, we obtain

$$
\begin{equation*}
\|\mathcal{T}(u)-\mathcal{T}(v)\|_{X_{s, b}^{r}(\delta)} \leq C \delta^{1-b+b^{\prime}}\left(\|u\|_{X_{s, b}^{r}(\delta)}^{2}+\|v\|_{X_{s, b}^{r}(\delta)}^{2}\right)\|u-v\|_{X_{s, b}^{r}(\delta)}+C \delta^{1-b+b^{\prime}}\|u-v\|_{X_{s, b}^{r}(\delta)} \tag{9}
\end{equation*}
$$

Inequalitis (8) and (9) show that for $R=2 C\left\|u_{0}\right\|_{\widehat{H_{s}^{r}}}$ and $\delta^{1-b+b^{\prime}}<\min \left\{\frac{1}{4 C R^{2}}, \frac{1}{2}\right\}$, the mapping \mathcal{T} is a contract mapping of the closed ball of radius R in $X_{s, b}^{r}(\delta)$ into itself. The Banach fixed point theorem now guarantees the existence of a solution of $\mathcal{T}(u)=u$. Because of $b>\frac{1}{r}$, any solution $u \in X_{s, b}^{r}(\delta)$ also belongs to $C\left([0, \delta], \widehat{H_{s}^{r}}\right)$. Finally, the statement about continuous dependence can be shown in a straightforward manner using the same estimates as the above.

References

[1] BENJAMIN T B. A new kind of solitary wave [J]. J. Fluid Mech., 1992, 245: 401-411.
[2] LINARES F. L^{2} global well-posedness of the initial value problem associated to the Benjamin equation [J]. J. Differential Equations, 1999, 152(2): 377-393.
[3] HUO Zhaohui, GUO Boling. The Cauchy problem for the generalized Korteweg-de Vries-Benjamin-Ono equation with low regularity data [J]. Acta Math. Sin. (Engl. Ser.), 2005, 21(5): 1191-1196.
[4] GUO Boling, HUO Zhaohui. The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation [J]. J. Math. Anal. Appl., 2004, 295(2): 444-458.
[5] GRÜNROCK A. An improved local well-posedness result for the modified KdV equation [J]. Int. Math. Res. Not., 2004, 61: 3287-3308.
[6] KENIG C E, PONCE G, VEGA L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle [J]. Comm. Pure Appl. Math., 1993, 46(4): 527-620.
[7] BOURGAIN J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations (I, II) [J]. Geom. Funct. Anal., 1993, 3(2): 107-156; 1993, 3(3): 209-262.
[8] KENIG C E, PONCE G, VEGA L. A bilinear estimate with applications to the KdV equation [J]. J. Amer. Math. Soc., 1996, 9(2): 573-603.
[9] KENIG C E, PONCE G, VEGA L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices [J]. Duke Math. J., 1993, 71(1): 1-21.

[^0]: ${ }^{1}$ We call $X_{s, b}$ Bourgain space because it was first introduced by Bourgain in [7]. The norm of $X_{s, b}$ is given by $\|u\|_{X_{s, b}}=\left\|\langle\xi\rangle^{s}\left\langle\tau-\xi^{3}\right\rangle^{b} \hat{u}(\tau, \xi)\right\|_{L_{\xi \tau}^{2}}$.

