Journal of Mathematical Research & Exposition Mar., 2009, Vol. 29, No. 2, pp. 371–375 DOI:10.3770/j.issn:1000-341X.2009.02.023 Http://jmre.dlut.edu.cn

Improved Local Wellposedness of Cauchy Problem for Generalized KdV-BO Equation

ZHAO Xiang Qing¹, GUO Ai²

(1. Department of Mathematics, Zhejiang Ocean University, Zhejiang 316000, China;

 School of Mathematical Sciences, South China University of Technology, Guangdong 510640, China) (E-mail: zhao-xiangqing@163.com; guoai@scut.edu.cn)

Abstract In this paper we prove that the Cauchy problem associated with the generalized KdV-BO equation $u_t + u_{xxx} + \lambda \mathcal{H}(u_{xx}) + u^2 u_x = 0$, $x \in \mathbb{R}$, $t \ge 0$ is locally wellposed in $\widehat{H}_r^s(\mathbb{R})$ for $\frac{4}{3} < r \le 2$, $b > \frac{1}{r}$ and $s \ge s(r) = \frac{1}{2} - \frac{1}{2r}$. In particular, for r = 2, we reobtain the result in [3].

Keywords KdV-BO equation; Cauchy problem; local wellposedness.

Document code A MR(2000) Subject Classification 35A07; 35E15; 35G25; 35Q53; 35Q55 Chinese Library Classification 0175.2

1. Introduction

We investigate the initial value problem (IVP) of the generalized KdV-BO (Korteweg-de Vries-Benjamin-Ono) equation:

$$u_t + u_{xxx} + \lambda \mathcal{H}(u_{xx}) + u^k u_x = 0, \ x \in \mathbb{R}, \ t \ge 0,$$

$$\tag{1}$$

$$u(0,x) = u_0(x), \ x \in R,$$
 (2)

where $\lambda > 0$ and \mathcal{H} denotes the usual Hilbert transform. The integro-differential equation (1) models the unidirectional propagation of long waves in a two-fluid system, where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity. It was derived by Benjamin^[1] to study gravity-capillary surface waves of solitary type on deep water.

Linares^[2] showed that there exists a local and global solution for the IVP (1)–(2) with initial data in L^2 with constant coefficient $\lambda > 0$ if k = 1.

Guo and Huo^[4] proved that IVP (1)–(2) is locally wellposed with data in $H^s(R)$ for $s > -\frac{1}{8}$, if k = 1; $s \ge \frac{1}{4}$, if k = 2.

Notice that in equation (1), the dispersive term u_{xxx} plays the most important role and the Benjamin-Ono $\mathcal{H}(u_{xx})$ term can be treated as a nonlinear term. Therefore, we expect the IVP (1)–(2) has the similar wellposeness to that of the modified KdV equation:

$$v_t + v_{xxx} + v^k v_x = 0, \ x \in R, \ t \ge 0,$$
(3)

Received date: 2006-12-04; Accepted date: 2007-10-28

Foundation item: the Natural Science Foundation of Zhejiang Province (No. Y6080388); the Science and Technology Research Foundation of Zhejiang Ocean University (Nos. X08M014; X08Z04).

$$v(0,x) = v_0(x), \ x \in R.$$
 (4)

Indeed, from this point of view, Huo and Guo^[3] proved that IVP (1)–(2) is locally wellposed with data in $H^s(R)$ for $s > -\frac{3}{4}$, if k = 1; $s \ge \frac{1}{4}$, if k = 2; $s > -\frac{1}{6}$, if k = 3. Moreover, the solutions of IVP (1)–(2) converge to the solutions of IVP (3)–(4) if λ tends to zero.

Though for k = 1, Guo and Huo in [4] improved the well-posedness of IVP (1)–(2) a great deal, it did not improve the wellposedness for the case of k = 2. As Grünrock did in [5], by proving the wellposedness of IVP (1)–(2) in \hat{H}_r^s , we manage to improve the result of the case k = 2 to some extent. To this end, let us recall some definitions first.

Definition 1^[5] For $s \in R$, $1 \leq r \leq \infty$, we define the space \widehat{H}_s^r by

$$\widehat{H_s^r} = \{f \in S'(R) : \|f\|_{\widehat{H_s^r}} < \infty\}$$

with

$$\|f\|_{\widehat{H}^r_s} := \|\langle \xi \rangle^s \widehat{f}\|_{L^{r'}_{\varepsilon}}$$

where $\langle \xi \rangle = (1 + |\xi|), \frac{1}{r} + \frac{1}{r'}.$

Definition 2^[5] For $s, b \in R, 1 \leq r \leq \infty$, we define the space $X_{s,b}^r$ to be the completion of the Schwartz function space on R^2 with respect to the norm

$$\|u\|_{X_{s,b}^r} = \|\langle\xi\rangle^s \langle \tau - \xi^3\rangle^b \hat{u}\|_{L_{\xi\tau}^{r'}} = \left(\int \mathrm{d}\xi \mathrm{d}\tau \langle\xi\rangle^{sr'} \langle\tau\rangle^{b'r'} |\mathcal{F}(U(-\cdot)f)(\tau,\xi)|^{r'}\right)^{\frac{1}{r'}},$$

where $\langle \xi \rangle = (1 + |\xi|), \frac{1}{r} + \frac{1}{r'}$. $\mathcal{F}u = \hat{u}(\tau, \xi)$ denotes the Fourier transform in variables t and x of u. Denote by $\mathcal{F}_{(\cdot)}u$ the Fourier transform in the (\cdot) variable. $U(t) = \mathcal{F}_x^{-1}e^{it\xi^3}\mathcal{F}_x$ is the unitary operator associated with the Airy equation.

Deduced directly from the definition, the embedding relation

$$||u||_{X^r_{s_1,b_1}} \le ||u||_{X^r_{s_2,b_2}}$$

holds if $s_1 \leq s_2$, $b_1 \leq b_2$; for r = 2, we reobtain Bourgain space $X_{s,b}$.¹

For $b > \frac{1}{r}$, we have

$$X_{s,b}^r \subset C(R, \hat{H}_s^r).$$

Let $\psi \in C_0^{\infty}(R)$ with $\psi \equiv 1$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\operatorname{supp} \psi \subseteq (-1, 1)$. Denote $\psi_{\delta}(t) = \psi(\frac{t}{\delta})$. Then the time restricted space is defined by

$$X_{s,b}^r(\delta) := \{ f = \tilde{f}|_{[-\delta,\delta] \times R} = \psi_{\delta}(t)\tilde{f} : \tilde{f} \in X_{s,b}^r \},$$

endowed with the norm

$$||f||_{X_{s,b}^r}(\delta) := \inf\{||\tilde{f}||_{X_{s,b}^r} : \tilde{f}|_{[-\delta,\delta] \times R} = f\}.$$

Our main result reads as follows (for k = 2):

Theorem Let $\frac{4}{3} < r \leq 2$. Then for any $b > \frac{1}{r}$ and $s \geq s(r) = \frac{1}{2} - \frac{1}{2r}$, there exist $T = \frac{1}{2} - \frac{1}{2r}$.

¹We call $X_{s,b}$ Bourgain space because it was first introduced by Bourgain in [7]. The norm of $X_{s,b}$ is given by $\|u\|_{X_{s,b}} = \|\langle \xi \rangle^s \langle \tau - \xi^3 \rangle^b \hat{u}(\tau,\xi)\|_{L^2_{\varepsilon\tau}}.$

 $T(\|u_0\|_{\widehat{H^r_s}}) > 0$ and a unique solution $u \in C([0,T],\widehat{H^r_s}) \cap X^r_{s,b}$ of IVP (1)–(2) with $u_0(x) \in \widehat{H^r_s}$. Moreover, for any given $t \in (0,T)$, the mapping $u_0(x) \to u(t,x)$ is Lipschitz continuous from $\widehat{H^r_s}$ to $C([0,T],\widehat{H^r_s})$.

In the sequel, C will denote a constant which may differ at each appearance, possibly depending on the dimension or other parameters.

2. Estimate of the Benjamin-Ono term

In this section, we concentrate on the estimate of Benjamin-Ono term $\mathcal{H}(u_{xx})$.

Lemma 1 Let $s \in R$, $b' + 1 > b > 0 > b' > -\frac{1}{r'}$, and $b - b' > \frac{2}{3}$, $1 < r < \infty$. We have

$$\|\mathcal{H}(u_{xx})\|_{X^{r}_{s,b'}} \le C \|u\|_{X^{r}_{s,b}}.$$
(5)

To prove this lemma, we prove the following preliminary lemma in advance. We agree on that the eigenfunction $\chi_{|\tau|\sim|\xi|^3}$ equals 1 if $|\tau|\sim|\xi|^3$; equals 0, otherwise. Define the operator \mathcal{P} by $\mathcal{P}f(t,x) = \mathcal{F}^{-1}\chi_{|\tau|\sim|\xi|^3}\mathcal{F}f(\tau,\xi)$.

Lemma 2 Let $s \in R$, $b' + 1 > b > 0 > b' > -\frac{1}{r'}$, and $b - b' > \frac{2}{3}$, $1 < r < \infty$. Assume that the Fourier transform $\mathcal{F}f = \hat{f}(\tau,\xi)$ of f is supported in $\{(\tau,\xi) : |\xi| > 1\}$. Then there holds that

$$\|\mathcal{P}f\|_{X^r_{s,b'}} \le C \|f\|_{X^r_{s-2,b}}$$

Proof We have

$$\begin{split} \|\mathcal{P}f\|_{X^r_{s,b'}} &= \left(\int \mathrm{d}\xi \mathrm{d}\tau \langle\xi\rangle^{sr'} \langle\tau\rangle^{b'r'} |\mathcal{F}[U(-\cdot)\mathcal{P}f](\tau,\xi)|^{r'}\right)^{\frac{1}{r'}} \\ &= \left(\int \mathrm{d}\xi \mathrm{d}\tau \frac{\langle\xi\rangle^{2r'}}{\langle\tau\rangle^{(b-b')r'}} \langle\xi\rangle^{(s-2)r'} \langle\tau\rangle^{br'} |\mathcal{F}[U(-\cdot)\mathcal{P}f](\tau,\xi)|^{r'}\right)^{\frac{1}{r'}} \\ &\leq \left(\int \mathrm{d}\xi \mathrm{d}\tau \frac{\langle\xi\rangle^{2r'}\chi_{|\tau|\sim|\xi|^3}}{\langle\tau\rangle^{(b-b')r'}} \langle\xi\rangle^{(s-2)r'} \langle\tau\rangle^{br'} |\mathcal{F}[U(-\cdot)\mathcal{P}f](\tau,\xi)|^{r'}\right)^{\frac{1}{r'}} \\ &\leq \left(\int \mathrm{d}\xi \mathrm{d}\tau \langle\xi\rangle^{(s-2)r'} \langle\tau\rangle^{br'} |\mathcal{F}[U(-\cdot)\mathcal{P}f](\tau,\xi)|^{r'}\right)^{\frac{1}{r'}} \\ &= C \|f\|_{X^r_{s-2,b}}. \end{split}$$

This completes the proof.

Proof of Lemma 1

Case 1 If the Fourier transform $\mathcal{FH}(\partial_{xx}u)$ is supported in $\{(\tau,\xi): |\xi| \leq 1\}$, we obtain

$$\begin{aligned} \|\mathcal{H}(u_{xx})\|_{X_{s,b'}^r} &= \left\|\frac{\langle\xi\rangle^s}{\langle\tau-\xi^3\rangle^{-b'}}\mathcal{F}\mathcal{H}(u_{xx})(\tau,\xi)\right\|_{L_{\tau,\xi}^{r'}} \\ &= \left\|\frac{\xi|\xi|}{\langle\tau-\xi^3\rangle^{b-b'}}\langle\xi\rangle^s\langle\tau-\xi^3\rangle^b\hat{u}(\tau,\xi)\right\|_{L_{\tau,\xi}^{r'}} \\ &\leq C\|u\|_{X_{s,b}^r}. \end{aligned}$$

Case 2 If the Fourier transform $\mathcal{FH}(u_{xx})$ is supported in $\{(\tau, \xi) : |\xi| \ge 1\}$, we rewrite $\mathcal{H}(u_{xx})$ as $\mathcal{H}(u_{xx}) = \mathcal{PH}(u_{xx}) + (1 - \mathcal{P})\mathcal{H}(u_{xx})$ and estimate the two terms respectively.

For $\mathcal{PH}(u_{xx})$, by Lemma 2, we have

$$\|\mathcal{PH}(u_{xx})\|_{X_{s,b'}^r} \le C \|\mathcal{H}(u_{xx})\|_{X_{s-2,b}^r} \le C \|u\|_{X_{s,b}^r}.$$

For $(1 - \mathcal{P})\mathcal{H}(u_{xx})$, it is clear that $\mathcal{F}(1 - \mathcal{P})\mathcal{H}(u_{xx})$ is supported in

$$\{(\tau,\xi): |\tau| \ll |\xi|^3 \text{ or } |\tau| \gg |\xi|^3\},\$$

correspondingly, we have either $|\tau - \xi^3| \sim |\xi|^3$ or $|\tau - \xi^3| \gg |\xi|^3$. Then we have

$$\begin{aligned} \|(1-\mathcal{P})\mathcal{H}(u_{xx})\|_{X^r_{s,b'}} \\ &= \left\|\frac{\xi|\xi|}{\langle \tau-\xi^3\rangle^{b-b'}}\langle \xi\rangle^s \langle \tau-\xi^3\rangle^b \chi_{|\tau-\xi^3|\sim|\xi|^3} \text{ or } |\tau-\xi^3|\gg|\xi|^3 \hat{u}(\tau,\xi)\right\|_{L^{r'_{\xi}}_{\tau\xi}} \\ &\leq C\|u\|_{X^r_{s,b}}. \end{aligned}$$

Thus, collecting all the estimates together, we obtain

$$\|\mathcal{H}(u_{xx})\|_{X_{s,b'}^r} \le \|\mathcal{P}\mathcal{H}(u_{xx})\|_{X_{s,b'}^r} + \|(1-\mathcal{P})\mathcal{H}(u_{xx})\|_{X_{s,b'}^r} \le C\|u\|_{X_{s,b}^r}$$

3. Proof of the main results

In order to smooth the proof of the main result, let us recall some facts as lemmas first.

Lemma 3^[5] 1) For $\phi \in \widehat{H_s^r}$, we have

$$\|\psi(t)S(t)\phi\|_{X_{s,b}^r} \le C_{\psi}\|\phi\|_{\widehat{H_r}}$$

2) Assume $1 < r < \infty$ and $b' + 1 \ge b \ge 0 \ge b' > -\frac{1}{r'}$. Then

$$\left\|\psi_{\delta}(t)\int_{0}^{t}S(t-t')f(t')dt'\right\|_{X^{r}_{s,b}} \leq C\delta^{1+b'-b}\|f\|_{X^{r}_{s,b'}}.$$

Lemma 4^[5] Let $\frac{4}{3} < r \le 2$ and $s \ge s(r) = \frac{1}{2} - \frac{1}{2r}$. Then for all $b' < \frac{1}{2r} - \frac{5}{8}$ and $b > \frac{1}{r}$ the estimate

$$\|(\Pi_{i=1}^{3}u_{i})_{x}\|_{X_{s,b'}^{r}} \leq C\Pi_{i=1}^{3}\|u_{i}\|_{X_{s,b}^{r}}$$

holds true.

Lemma 5 Let $\frac{4}{3} < r \le 2$ and $s \ge s(r) = \frac{1}{2} - \frac{1}{2r}$. Then for all $b' < \frac{1}{2r} - \frac{5}{8}$ and $b > \frac{1}{r}$ the estimates

$$\|u^2 u_x\|_{X^r_{s,b'}} \le C \|u\|^3_{X^r_{s,b}} \tag{6}$$

and

$$\|u^{2}u_{x} - v^{2}v_{x}\|_{X^{r}_{s,b'}} \le C[\|u\|^{2}_{X^{r}_{s,b}} + \|v\|^{2}_{X^{r}_{s,b}}]\|u - v\|_{X^{r}_{s,b}}$$

$$\tag{7}$$

hold true.

Proof Inequality (6) is a direct result of Lemma 4. Inequality (7) follows from Lemma 4 and

$$\begin{aligned} 3(u^2u_x - v^2v_x) &= (u^3 - v^3)_x = [(u - v)(u^2 + uv + v^2)]_x \\ &= [(u - v)u^2]_x + [(u - v)uv]_x + [(u - v)v^2]_x. \end{aligned}$$

Sketch of proof of the Theorem Take $b = \frac{1}{r} + \varepsilon$, $b' = -\frac{1}{r'} + 2\varepsilon$, for $0 < \varepsilon < \frac{1}{2r'}$. Then $b' + 1 > b > 0 > b' > -\frac{1}{r'}$, and $b - b' > \frac{2}{3}$, $b > \frac{1}{r}$.

For $u \in X^r_{s,b}(\delta)$ with extension $\widetilde{u} \in X^r_{s,b}$, define operator

$$\mathcal{T}(u) = \psi(t)U(t)u_0 - i\psi_{\delta}(t)\int_0^t U(t-\tau)F(u(\tau))\mathrm{d}\tau,$$

then extension of $\mathcal{T}(u)$ is given by

$$\widetilde{\mathcal{T}}(u) = \psi(t)U(t)u_0 - i\psi_{\delta}(t)\int_0^t U(t-\tau)F(\widetilde{u}(\tau)\mathrm{d}\tau)$$

where $F(\widetilde{u}(\tau)) = (\widetilde{u}^3)_x + \lambda \mathcal{H}(\widetilde{u}_{xx}).$

By Lemma 3 and the first inequality of Lemma 5, we obtain

$$\begin{aligned} \mathcal{T}(u)\|_{X^{r}_{s,b}(\delta)} &\leq \|\psi(t)U(t)u_{0}\|_{X^{r}_{s,b}} + \|\psi_{\delta}(t)\int_{0}^{t}U(t-\tau)F(\widetilde{u}(\tau))\mathrm{d}\tau\|_{X^{r}_{s,b}} \\ &\leq C\|u_{0}\|_{\widehat{H^{r}_{s}}} + C\delta^{1-b+b'}\|\widetilde{u}\|_{X^{r}_{s,b}}^{3} + C\delta^{1-b+b'}\|\widetilde{u}\|_{X^{r}_{s,b}}. \end{aligned}$$

This holds for all extension $\widetilde{u} \in X_{s,b}^r$ of $u \in X_{s,b}^r(\delta)$. Hence

$$\|\mathcal{T}(u)\|_{X^{r}_{s,b}(\delta)} \le C \|u_0\|_{\widehat{H}^{r}_{s}} + C\delta^{1-b+b'} \|u\|^{3}_{X^{r}_{s,b}(\delta)} + C\delta^{1-b+b'} \|u\|_{X^{r}_{s,b}(\delta)}.$$
(8)

Similarly, by Lemma 3 and the second inequality of Lemma 5, for given $u \in X_{s,b}^r(\delta), v \in X_{s,b}^r(\delta)$, we obtain

$$\|\mathcal{T}(u) - \mathcal{T}(v)\|_{X^{r}_{s,b}(\delta)} \le C\delta^{1-b+b'}(\|u\|^{2}_{X^{r}_{s,b}(\delta)} + \|v\|^{2}_{X^{r}_{s,b}(\delta)})\|u - v\|_{X^{r}_{s,b}(\delta)} + C\delta^{1-b+b'}\|u - v\|_{X^{r}_{s,b}(\delta)}.$$
(9)

Inequalitis (8) and (9) show that for $R = 2C ||u_0||_{\widehat{H}_s^r}$ and $\delta^{1-b+b'} < \min\{\frac{1}{4CR^2}, \frac{1}{2}\}$, the mapping \mathcal{T} is a contract mapping of the closed ball of radius R in $X_{s,b}^r(\delta)$ into itself. The Banach fixed point theorem now guarantees the existence of a solution of $\mathcal{T}(u) = u$. Because of $b > \frac{1}{r}$, any solution $u \in X_{s,b}^r(\delta)$ also belongs to $C([0,\delta], \widehat{H}_s^r)$. Finally, the statement about continuous dependence can be shown in a straightforward manner using the same estimates as the above.

References

- [1] BENJAMIN T B. A new kind of solitary wave [J]. J. Fluid Mech., 1992, 245: 401-411.
- [2] LINARES F. L² global well-posedness of the initial value problem associated to the Benjamin equation [J].
 J. Differential Equations, 1999, 152(2): 377–393.
- [3] HUO Zhaohui, GUO Boling. The Cauchy problem for the generalized Korteweg-de Vries-Benjamin-Ono equation with low regularity data [J]. Acta Math. Sin. (Engl. Ser.), 2005, 21(5): 1191–1196.
- [4] GUO Boling, HUO Zhaohui. The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation [J]. J. Math. Anal. Appl., 2004, 295(2): 444–458.
- [5] GRÜNROCK A. An improved local well-posedness result for the modified KdV equation [J]. Int. Math. Res. Not., 2004, 61: 3287–3308.
- [6] KENIG C E, PONCE G, VEGA L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle [J]. Comm. Pure Appl. Math., 1993, 46(4): 527–620.
- [7] BOURGAIN J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations (I, II) [J]. Geom. Funct. Anal., 1993, 3(2): 107–156; 1993, 3(3): 209–262.
- [8] KENIG C E, PONCE G, VEGA L. A bilinear estimate with applications to the KdV equation [J]. J. Amer. Math. Soc., 1996, 9(2): 573–603.
- KENIG C E, PONCE G, VEGA L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices [J]. Duke Math. J., 1993, 71(1): 1–21.