
Journal of Mathematical Research & Exposition

May, 2009, Vol. 29, No. 3, pp. 381–390

DOI:10.3770/j.issn:1000-341X.2009.03.001

Http://jmre.dlut.edu.cn

On the Largest Eigenvalue of Signless Laplacian Matrix of
a Graph

TAN Shang Wang, WANG Xing Ke
(Department of Applied Mathematics, China University of Petroleum, Shandong 257061, China)

(E-mail: tswang@sina.com)

Abstract The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex

degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue

and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate

these results into the signless Laplacian matrix of a graph and obtain the similar results.
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1. Introduction

In this paper, all graphs considered are finite, undirected and loopless. Let G be a graph

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Its adjacency matrix is defined to

be the n× n matrix A(G) = (aij), where aij is the number of edges joining vi to vj . Let dG(vi)

denote the degree of vi in G and D(G) the diagonal matrix of vertex degrees of G, i.e.,

D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)).

Then the signless Laplacian matrix K(G) of G is defined by Haemers and Spence as follows[1]

K(G) = D(G) +A(G).

It is well known that the Laplacian matrix L(G) of G is defined as follows

L(G) = D(G) −A(G).

Denote the characteristic polynomials of A(G), K(G) and L(G) by φ(G, λ), φK(G, λ) and

φL(G, λ), or simply by φ(G), φK(G) and φL(G), respectively. Since K(G) and L(G) are two real

symmetric matrices, all of their eigenvalues are real. Write their largest eigenvalues by λK(G)

and λL(G), respectively.

For a long time, most scholars have been interested in the spectra of adjacency matrix and

Laplacian matrix of a graph. Therefore, the two kinds of spectra are studied extensively in

the literature. In [2], Cvetković, Doob and Sachs surveyed the properties and applications of
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spectrum of adjacency matrix of a graph. In [3], Merris surveyed the properties and applications

of spectrum of Laplacian matrix of a graph. Nowadays the spectrum of signless Laplacian

matrix of a graph also attracts many scholars’ attention and becomes a heat point studied. In

[4], Cvetković, Rowlinson and Simić indicated that the signless Laplacian matrix appears very

rarely in published papers and summarized some properties of signless Laplacian matrix of a

graph. In [5], Van and Haemers expressed an idea that, among generalized adjacency matrices

associated with a graph, the signless Laplacian matrix seems to be the most convenient for use

in studying graph properties[4].

This paper has two purposes. On the one hand, we give the calculation formulas on the

characteristic polynomials of signless Laplacian matrix of a graph and Laplacian matrix of a

bipartite graph. On the other hand, we translate some basic results on the largest eigenvalue

and characteristic polynomial of adjacency matrix of a graph obtained by Li and Feng in [6] into

the signless Laplacian matrix of a graph and Laplacian matrix of a bipartite graph.

Throughout this paper, we use the following notations. Let Pn denote a path on n vertices,

NG(v) the adjacent vertex set of a vertex v in a graph G, l(G) the line graph of G, E(Z) the set of

edges in a subgraph (or an edge sequence) Z, |E(Z)| the cardinality of E(Z) and φK(P0, λ) ≡ 0.

In particular, for a function ψ(X,λ), when S = ∅, let

∑

X∈S

ψ(X,λ) = 0.

Lemma 1.1[2] Let v be a vertex of a graph G and CG(v) denote the set of all cycles containing

v in G. Then

φ(G, λ) = λφ(G − v, λ) −
∑

u∈NG(v)

φ(G− v − u, λ) − 2
∑

Z∈CG(v)

φ(G− V (Z), λ).

Lemma 1.2[2] Let G be a connected graph, G′ a proper subgraph of G and H a proper spanning

subgraph of G. Then

λK(G′) < λK(G), λK(H) < λK(G).

2. On the largest eigenvalue of signless Laplacian matrix of a graph

Let S be a sequence consisting of k distinct edges of a graph G. If the edges in S as vertices

of l(G) based on the order in S can form a cycle of length k in l(G), then S is called a line graph

cycle of G. If the two line graph cycles S1 and S2 of G can form the same cycle in l(G), then S1

and S2 are called equal. For an edge e of G, let EG(e) denote the set of all edges (containing no

e) adjacent to e in G and JG(e) the set of all distinct line graph cycles containing e in G. For

instance, to the graph G and its line graph l(G) shown in Figure 1, if we take the edge e1, then

JG(e1) = {e1e2e3, e1e2e4, e1e3e4, e1e7e6; e1e2e3e4, e1e4e2e3, e1e4e5e6;

e1e3e4e5e6, e1e4e5e6e7, e1e2e4e5e6; e1e2e3e4e5e6, e1e3e2e4e5e6,

e1e2e4e5e6e7, e1e3e4e5e6e7; e1e3e2e4e5e6e7, e1e2e3e4e5e6e7}.
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Figure 1 A graph G and its line graph l(G)

Theorem 2.1 Let e be an edge of a graph G. Then

φK(G) =
λ− 2

λ
φK(G− e) −

∑

ē∈EG(e)

φK(G− e− ē)

λ2
− 2

∑

Z∈JG(e)

φK(G− E(Z))

λ|E(Z)|
.

Proof A graph is called an (n,m) graph if it exactly has n vertices and m edges. Suppose that

G = (V (G), E(G)) is an (n,m) graph, where

V (G) = {v1, v2, . . . , vn}, E(G) = {e1, e2, . . . , em}.

Then the vertex-edge incidence matrix of G is defined to be the n × m matrix R(G) = (rij),

where rij = 1 if vi is an end-vertex of ej, and rij = 0 otherwise. Let R(G)t denote the transpose

of R(G). It is well known that[2]

K(G) = R(G)R(G)t, 2Im +A(l(G)) = R(G)tR(G),

det(λIn −R(G)R(G)t) = λn−mdet(λIm −R(G)tR(G)).

Therefore, we have

φK(G, λ) = λn−mφ(l(G), λ − 2). (1)

For any edge e of G, by the definition of line graph, we have

Nl(G)(e) = EG(e), Cl(G)(e) = JG(e).

For any Z ∈ Cl(G)(e), let V (Z)l(G) denote the vertex set of Z in l(G). Then from the definition

of line graph, we have

V (Z)l(G) = E(Z), l(G) − V (Z)l(G) = l(G− E(Z)).

Write l(G) = H . Then by Lemma 1.1, we have

φ(l(G), µ) = µφ(H − e, µ) −
∑

ē∈NH(e)

φ(H − e− ē, µ) − 2
∑

Z∈CH(e)

φ(H − V (Z)H , µ)

= µφ(l(G− e), µ) −
∑

ē∈EG(e)

φ(l(G− e− ē), µ) − 2
∑

Z∈JG(e)

φ(l(G− E(Z)), µ).

Since G− e, G− e− ē and G−E(Z) are (n,m− 1) graph, (n,m− 2) graph and (n,m− |E(Z)|)

graph, respectively, by Equation (1), we have

φ(l(G), λ − 2) =(λ− 2)
φK(G− e, λ)

λn−m+1
−

∑

ē∈EG(e)

φK(G− e− ē, λ)

λn−m+2
−
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2
∑

Z∈JG(e)

φK(G− E(Z), λ)

λn−m+|E(Z)|
. (2)

Combining Equations (1) and (2) yields the required result. 2

Corollary 2.2 Let uv and vw be two edges of a graph G such that dG(u) = 1 and dG(v) = 2.

Then we have

φK(G, λ) = (λ− 2)φK(G− u, λ) − φK(G− u− v, λ).

Proof Take e = uv in Theorem 2.1. Then EG(e) = {vw}, JG(e) = ∅. Note that

φK(G− uv, λ) = λφK(G− u, λ),

φK(G− uv − vw, λ) = λ2φK(G− u− v, λ).

Therefore, by Theorem 2.1, the result follows. 2

Corollary 2.3 Let e be an edge of a graph G.

(i) If ē is an adjacent edge of e, then for λ ≥ λK(G), we have

φK(G, λ) ≤
λ− 2

λ
φK(G− e, λ) −

φK(G− e− ē, λ)

λ2
,

and the inequality strictly holds if G is connected and e has at least two adjacent edges.

(ii) For λ ≥ λK(G), we have

φK(G, λ) ≤
λ− 2

λ
φK(G− e, λ),

and the inequality strictly holds if G is a connected graph with at least two edges.

Proof (i) Let G1, G2, . . . , Gs be all components of G. Without loss of generality, let e ∈ E(G1).

Then for ẽ ∈ EG1
(e) and Z ∈ JG1

(e)(6= ∅), G1 − e − ẽ and G1 − E(Z) are the two proper

subgraphs of G1. By Lemma 1.2, we have

λK(G1) > max{λK(G1 − e− ẽ), λK(G1 − E(Z))}.

So for λ ≥ λK(G1), we have φK(G1 − e− ẽ, λ) > 0 and φK(G1 − E(Z), λ) ≥ 0. Therefore, from

Theorem 2.1, we have

φK(G1, λ) ≤
λ− 2

λ
φK(G1 − e, λ) −

∑

ẽ∈EG1
(e)

φK(G1 − e− ẽ, λ)

λ2

≤
λ− 2

λ
φK(G1 − e, λ) −

φK(G1 − e− ē, λ)

λ2
.

In particular, if e has at least two adjacent edges, then EG1
(e) \ {ē} 6= ∅. Therefore, when e

has at least two adjacent edges, the second inequality in above proof strictly holds. Note that

λK(G) = max{λK(Gj) : j = 1, 2, . . . , s}. So for λ ≥ λK(G), we have

φK(G, λ) = φK(G1, λ)φK(G2, λ) · · · φK(Gs, λ)

≤ [
λ− 2

λ
φK(G1 − e, λ) −

φK(G1 − e− ē, λ)

λ2
]

s∏

j=2

φK(Gj , λ)
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=
λ− 2

λ
φK(G− e, λ) −

φK(G− e− ē, λ)

λ2
.

(ii) In the similar way to (i), we can prove this result.

The proof is completed. 2

Theorem 2.4 Let H be a proper spanning subgraph of a connected graph G. Then for

λ ≥ λK(G), we have

φK(G, λ) < φK(H,λ).

Proof Without loss of generality, suppose that G has at least two edges. Let

E(G) − E(H) = {e1, e2, . . . , et}.

For 1 ≤ i ≤ t, set Si = {e1, e2, . . . , ei}. Then H = G − St. Note that G has at least one edge

and G− Si is a proper spanning subgraph of G. So by Lemma 1.2, we have

λK(G) ≥ max{λK(P2), λK(G− Si) : i = 1, 2, . . . , t} ≥ 2.

Hence by Corollary 2.3 (ii), for λ ≥ λK(G), we have

φK(G, λ) < φK(G− S1, λ) ≤ φK(G− S2, λ) ≤ · · · ≤ φK(G− St, λ) = φK(H,λ).

The proof is completed. 2

Theorem 2.5 Let u be a vertex of a connected graph G with at least two vertices. Suppose

that P = a1a2 · · · ak and Q = b1b2 · · · bl are two new disjoint paths. Let Gk,l denote the graph

obtained from G, P and Q by joining u to a1 with an edge and joining u to b1 with another

edge. If k ≥ l ≥ 1, then

λK(Gk+1,l−1) < λK(Gk,l).

Proof Write k − l = s, φK = f . It is obvious that Gs+1,1 is a subgraph of Gk,l and Gs,0 is a

proper subgraph of Gs+1,1. So by Lemma 1.2, we have

λK(Gk,l) ≥ λK(Gs+1,1) > λK(Gs,0). (3)

Next we only need show that for λ ≥ λK(Gk,l), f(Gk,l) < f(Gk+1,l−1).

Assume l ≥ 2. From Corollary 2.2, we have

f(Gk,l) = (λ− 2)f(Gk,l−1) − f(Gk,l−2),

f(Gk+1,l−1) = (λ− 2)f(Gk,l−1) − f(Gk−1,l−1).

Therefore, we have

f(Gk,l) − f(Gk+1,l−1) = f(Gk−1,l−1) − f(Gk,l−2).

Repeating the above steps, we have

f(Gk,l) − f(Gk+1,l−1) = f(Gs+1,1) − f(Gs+2,0). (4)

Note that Equation (4) hods for l = 1. Therefore, Equation (4) always holds for l ≥ 1.

By Corollary 2.2, we have

f(Gs+2,0) = (λ − 2)f(Gs+1,0) − f(Gs,0).
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Therefore, by Equation (4), we have

f(Gk,l) − f(Gk+1,l−1) = f(Gs,0) + f(Gs+1,1) − (λ− 2)f(Gs+1,0). (5)

Since Gs+1,1 is a connected graph and ub1 has at least two adjacent edges in Gs+1,1, from

Corollary 2.3 (i), for λ ≥ λK(Gs+1,1), we have

f(Gs+1,1) <
λ− 2

λ
f(Gs+1,1 − ub1) −

1

λ2
f(Gs+1,1 − ub1 − ua1)

= (λ− 2)f(Gs+1,0) −
1

λ
f(Ps+1)f(G). (6)

By Equations (3), (5) and (6), for λ ≥ λK(Gk,l), we have

f(Gk,l) − f(Gk+1,l−1) < f(Gs,0) −
1

λ
f(Ps+1)f(G). (7)

Case 1 Assume s = 0. Then Gs,0 = G and f(Ps+1) = λ. So by Equation (7), for λ ≥ λK(Gk,l),

we have

f(Gk,l) − f(Gk+1,l−1) < 0.

Case 2 Assume s = 1. By Corollary 2.3 (ii), for λ ≥ λK(Gs,0), we have

f(Gs,0) ≤
λ− 2

λ
f(Gs,0 − ua1) = (λ− 2)f(G).

So combining Equations (3) and (7), for λ ≥ λK(Gk,l), we have

f(Gk,l) − f(Gk+1,l−1) < [(λ − 2) −
1

λ
f(Ps+1)]f(G) = 0.

Case 3 Assume s ≥ 2. Then by Corollary 2.3 (i), for λ ≥ λK(Gs,0), we have

f(Gs,0) ≤
λ− 2

λ
f(Gs,0 − ua1) −

1

λ2
f(Gs,0 − ua1 − a1a2)

=
λ− 2

λ
f(Ps)f(G) −

1

λ
f(Ps−1)f(G).

Therefore, by Equations (3), (7) and Corollary 2.2, for λ ≥ λK(Gk,l), we have

f(Gk,l) − f(Gk+1,l−1) <
1

λ
f(G)[−f(Ps+1) + (λ− 2)f(Ps) − f(Ps−1)] = 0.

The proof is completed. 2

Theorem 2.6 Let v and u be two distinct vertices joined by a path of length m in a connected

graph G, where dG(v) ≥ 2 and dG(u) ≥ 2. Suppose that P = a1a2 · · · ak and Q = b1b2 · · · bl are

two new disjoint paths. Let G
(m)
k,l denote the graph obtained from G, P and Q by joining v to

a1 with an edge and joining u to b1 with another edge. If k − l ≥ m ≥ 1 and l ≥ 1, then

λK(G
(m)
k+1,l−1) < λK(G

(m)
k,l ).

Proof Write k − l − m = s, φK = h. Next we only need show that for λ ≥ λK(G
(m)
k,l ),

h(G
(m)
k,l ) < h(G

(m)
k+1,l−1). Let v0v1 · · · vm be a path of length m from v to u in G, where v0 = v

and vm = u. In the similar way obtaining Equation (5) in the proof of Theorem 2.5, we have

h(G
(m)
k,l ) − h(G

(m)
k+1,l−1) = h(G

(m)
s+m,0) + h(G

(m)
s+m+1,1) − (λ− 2)h(G

(m)
s+m+1,0). (8)
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Write E0 = ∅, Ei = {vmvm−1, vm−1vm−2, . . . , vm−i+1vm−i}, i = 1, 2, . . . ,m. Since G
(m)
s+m+1,1 is

a connected graph and vmb1 has at least two adjacent edges in G
(m)
s+m+1,1, by Corollary 2.3 (i),

for λ ≥ λK(G
(m)
s+m+1,1), we have

h(G
(m)
s+m+1,1) < (λ− 2)h(G

(m)
s+m+1,0) −

1

λ
h(G

(m)
s+m+1,0 − E1). (9)

From Equations (8) and (9), for λ ≥ λK(G
(m)
s+m+1,1), we have

h(G
(m)
k,l ) − h(G

(m)
k+1,l−1) < h(G

(m)
s+m,0) −

1

λ
h(G

(m)
s+m+1,0 − E1). (10)

By Corollary 2.2, we have

h(G
(m)
s+m+1,0 − E1) = (λ− 2)h(G

(m)
s+m,0 − E1) − h(G

(m)
s+m−1,0 − E1). (11)

Again by Corollary 2.3 (i), for λ ≥ λK(G
(m)
s+m,0), we have

h(G
(m)
s+m,0) ≤

λ− 2

λ
h(G

(m)
s+m,0 − E1) −

1

λ2
h(G

(m)
s+m,0 − E2). (12)

Since G
(m)
s+m+1,1 is a subgraph of G

(m)
k,l , G

(m)
s+m,0 is a proper subgraph of G

(m)
s+m+1,1, G is a proper

subgraph of G
(m)
s+m,0 and P2 is a proper subgraph of G, by Lemma 1.2, we have

λK(G
(m)
k,l ) ≥ λK(G

(m)
s+m+1,1) > λK(G

(m)
s+m,0) > λK(G) > λK(P2) = 2.

Therefore, by Equations (10)–(12), for λ ≥ λK(G
(m)
k,l ), we have

h(G
(m)
k,l ) − h(G

(m)
k+1,l−1) <

1

λ
[h(G

(m)
s+m−1,0 − E1) −

1

λ
h(G

(m)
s+m,0 − E2)]. (13)

In the similar discussion to Equations (10)–(13), for λ ≥ λK(G
(m)
k,l ), we have

h(G
(m)
k,l ) − h(G

(m)
k+1,l−1) <

1

λ2
[h(G

(m)
s+m−2,0 − E2) −

1

λ
h(G

(m)
s+m−1,0 − E3)].

Repeating the above steps, for λ ≥ λK(G
(m)
k,l ), we have

h(G
(m)
k,l ) − h(G

(m)
k+1,l−1) <

1

λm−1
[h(G

(m)
s+1,0 − Em−1) −

1

λ
h(G

(m)
s+2,0 − Em)]. (14)

Let G
(m)
s+1,0 − Em−1 = U , G

(m)
s+1,0 − Em = F , G

(m)
s+2,0 − Em = B and G− Em = M .

Case 1 Assume s = 0.

By Corollary 2.2, we have

h(G
(m)
s+2,0 − Em) = (λ− 2)h(B − a2) − h(B − a2 − a1)

= (λ− 2)h(F ) − h(M). (15)

By Corollary 2.3 (i), for λ ≥ λK(G
(m)
k,l ), we have

h(G
(m)
s+1,0 − Em−1) ≤

λ− 2

λ
h(U − v0v1) −

1

λ2
h(U − v0v1 − va1)

=
λ− 2

λ
h(F ) −

1

λ
h(M). (16)

By Equations (14)–(16), for λ ≥ λK(G
(m)
k,l ), we have h(G

(m)
k,l ) − h(G

(m)
k+1,l−1) < 0.
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Case 2 Assume s ≥ 1.

By Theorem 2.1, we have

h(G
(m)
s+2,0 − Em) =

λ− 2

λ
h(B − va1) −

1

λ2
h(B − va1 − a1a2) − ∆1 − ∆2

=
1

λ
h(M)[(λ− 2)h(Ps+2) − h(Ps+1)] − ∆1 − ∆2

=
1

λ
h(M)h(Ps+3) − ∆1 − ∆2, (17)

where

∆1 = 2
∑

Z∈JB(va1)

h(B − E(Z))

λ|E(Z)|
, ∆2 =

h(Ps+2)

λ2

∑

w∈NM(v)

h(M − vw).

By Corollary 2.3 (i) and Theorem 2.1, for λ ≥ λK(G
(m)
k,l ), we have

h(G
(m)
s+1,0 − Em−1) ≤

λ− 2

λ
h(U − v0v1) −

1

λ2
h(U − v0v1 − va1)

=
λ− 2

λ
h(F ) −

1

λ2
h(F − va1)

=
λ− 2

λ
[
λ− 2

λ
h(F − va1) −

h(F − va1 − a1a2)

λ2
− ∆3 − ∆4] −

h(M)h(Ps+1)

λ2

=
λ− 2

λ
[
λ− 2

λ
h(M)h(Ps+1) −

h(M)h(Ps)

λ
− ∆3 − ∆4] −

h(M)h(Ps+1)

λ2

=
1

λ2
h(M)[(λ− 2)2h(Ps+1) − (λ− 2)h(Ps) − h(Ps+1)] −

λ− 2

λ
(∆3 + ∆4)

=
1

λ2
h(M)h(Ps+3) −

λ− 2

λ
(∆3 + ∆4), (18)

where

∆3 = 2
∑

Z∈JF (va1)

h(F − E(Z))

λ|E(Z)|
, ∆4 =

h(Ps+1)

λ2

∑

w∈NM(v)

h(M − vw).

By s ≥ 1, we have JB(va1) = JF (va1). By Corollary 2.3 (ii), for λ ≥ λK(B − E(Z)), we have

h(B − E(Z)) ≤ (λ− 2)h(F − E(Z)).

Note that λK(G
(m)
k,l ) > λK(B − E(Z)). So for λ ≥ λK(G

(m)
k,l ), we have

∆1 − (λ− 2)∆3 ≤ 2
∑

Z∈JB(va1)

(λ − 2)h(F − E(Z))

λ|E(Z)|
− (λ− 2)∆3 = 0. (19)

By Corollary 2.2, for λ ≥ λK(G
(m)
k,l ), we have

∆2 − (λ− 2)∆4 =
1

λ2
[h(Ps+2) − (λ− 2)h(Ps+1)]

∑

w∈NM(v)

h(M − vw)

= −
h(Ps)

λ2

∑

w∈NM(v)

h(M − vw) ≤ 0. (20)

By Equations (14), (17)–(20), for λ ≥ λK(G
(m)
k,l ), we have h(G

(m)
k,l ) − h(G

(m)
k+1,l−1) < 0.

The proof is completed. 2

Theorem 2.7 Let vu be an edge of a connected graph G such that dG(v) ≥ 2 and dG(u) ≥ 2.
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Suppose that P = a1a2 · · · ak and Q = b1b2 · · · bl are two new disjoint paths. Let G
(1)
k,l denote

the graph obtained from G, P and Q by joining v to a1 with an edge and joining u to b1 with

another edge. If k ≥ l ≥ 1, then λK(G
(1)
k+1,l−1) < λK(G

(1)
k,l ).

Proof Set φK = h. We need show that for λ ≥ λK(G
(1)
k,l ), h(G

(1)
k,l ) < h(G

(1)
k+1,l−1). Note that the

case k > l is a special case of Theorem 2.6 when m = 1. Therefore, next assume k = l. Write

G
(1)
1,0 − uv = B and G− vu = M . Since G

(1)
0,0 = G, in the similar way obtaining Equation (10) in

the proof of Theorem 2.6, for λ ≥ λK(G
(1)
k,l ), we have

h(G
(1)
k,l ) − h(G

(1)
k+1,l−1) < h(G) −

1

λ
h(B). (21)

By Theorem 2.1, we have

h(G) −
1

λ
h(B) =

λ− 2

λ
h(G− vu) − α1 − α2 −

1

λ
[
λ− 2

λ
h(B − va1) − α3 − α4]

=
λ− 2

λ
h(M) − α1 − α2 −

1

λ
[(λ − 2)h(M) − α3 − α4]

= [
1

λ
α3 − α1] + [

1

λ
α4 − α2], (22)

where

α1 = 2
∑

Z∈JG(vu)

h(G− E(Z))

λ|E(Z)|
, α2 =

1

λ2

∑

e∈EG(vu)

h(M − e).

α3 = 2
∑

Z∈JB(va1)

h(B − E(Z))

λ|E(Z)|
, α4 =

1

λ

∑

w∈NM(v)

h(M − vw).

It is easy to find that NM (u) 6= ∅ and
∑

e∈EG(vu)

h(M − e) =
∑

w∈NM(v)

h(M − vw) +
∑

w∈NM(u)

h(M − uw).

Therefore, for λ ≥ λK(G
(1)
k,l ), we have

1

λ
α4 − α2 = −

1

λ2

∑

w∈NM(u)

h(M − uw) < 0. (23)

For each Z ∈ JB(va1), let Z̄ denote the edge sequence obtained from Z and vu by replacing

va1 of Z with vu. Then we have

h(B − E(Z)) = h(G
(1)
1,0 − vu− E(Z)) = h((G − E(Z̄))

⋃
{a1}) = λh(G − E(Z̄)).

Write J1 = {Z̄ : Z ∈ JB(va1)} and J2 = JG(vu) − J1. Then we have

α1 = 2
∑

Z̄∈J1

h(G− E(Z̄))

λ|E(Z̄)|
+ 2

∑

Z∈J2

h(G− E(Z))

λ|E(Z)|
=

1

λ
α3 + 2

∑

Z∈J2

h(G− E(Z))

λ|E(Z)|
.

Therefore, for λ ≥ λK(G
(1)
k,l ), we have

1

λ
α3 − α1 = −2

∑

Z∈J2

h(G− E(Z))

λ|E(Z)|
≤ 0. (24)

By Equations (21)–(24), for λ ≥ λK(G
(1)
k,l ), we have h(G

(1)
k,l ) − h(G

(1)
k+1,l−1) < 0.
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The proof is completed. 2

3. On the largest eigenvalue of Laplacian matrix of a bipartite graph

For a bipartite graph G, K(G) and L(G) have the same spectrum[2]. Therefore, by Theorems

2.1, 2.4, 2.5, 2.6 and 2.7, we immediately obtain the following corollaries.

Corollary 3.1 Let e be an edge of a bipartite graph G. Then

φL(G) =
λ− 2

λ
φL(G− e) −

∑

ē∈EG(e)

φL(G− e− ē)

λ2
− 2

∑

Z∈JG(e)

φL(G− E(Z))

λ|E(Z)|
.

Corollary 3.2 Let H be a proper spanning subgraph of a connected bipartite graph G. Then

for λ ≥ λL(G), we have φL(G, λ) < φL(H,λ).

Corollary 3.3[7] Let u be a vertex of a connected bipartite graph G with at least two vertices.

Suppose that P = a1a2 · · · ak and Q = b1b2 · · · bl are two new disjoint paths. Let Gk,l denote

the graph obtained from G, P and Q by joining u to a1 with an edge and joining u to b1 with

another edge. If k ≥ l ≥ 1, then λL(Gk+1,l−1) < λL(Gk,l).

Corollary 3.4 Let v and u be two distinct vertices joined by a path of length m in a connected

bipartite graph G, where dG(v) ≥ 2 and dG(u) ≥ 2. Suppose that P = a1a2 · · · ak and Q =

b1b2 · · · bl are two new disjoint paths. Let G
(m)
k,l denote the graph obtained from G, P and Q by

joining v to a1 with an edge and joining u to b1 with another edge. If k − l ≥ m ≥ 1 and l ≥ 1,

then λL(G
(m)
k+1,l−1) < λL(G

(m)
k,l ).

Corollary 3.5 Let vu be an edge of a connected bipartite graph G such that dG(v) ≥ 2 and

dG(u) ≥ 2. Suppose that P = a1a2 · · · ak and Q = b1b2 · · · bl are two new disjoint paths. Let

G
(1)
k,l denote the graph obtained from G, P and Q by joining v to a1 with an edge and joining u

to b1 with another edge. If k ≥ l ≥ 1, then λL(G
(1)
k+1,l−1) < λL(G

(1)
k,l ).
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