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Abstract An invariant σ2(G) of a graph is defined as follows: σ2(G) := min{d(u) + d(v)|u, v ∈

V (G), uv 6∈ E(G), u 6= v} is the minimum degree sum of nonadjacent vertices (when G is a

complete graph, we define σ2(G) = ∞). Let k, s be integers with k ≥ 2 and s ≥ 4, G be a graph

of order n sufficiently large compared with s and k. We show that if σ2(G) ≥ n + k− 1, then for

any set of k independent vertices v1, . . . , vk, G has k vertex-disjoint cycles C1, . . . , Ck such that

|Ci| ≤ s and vi ∈ V (Ci) for all 1 ≤ i ≤ k.

The condition of degree sum σ2(G) ≥ n + k − 1 is sharp.
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1. Introduction

An independent set is a set of pairwise non-adjacent vertices of a graph. In this paper, we

only consider finite undirected graphs without loops or multiple edges. We will follow standard

terminology and notation from [1] except as indicated. Let G = (V (G), E(G)) be a graph, the

minimum degree of G will be denoted by δ(G). An invariant σ2(G) of a graph is defined as

follows: σ2(G) := min{d(u) + d(v)|u, v ∈ V (G), uv 6∈ E(G), u 6= v} is the minimum degree sum

of nonadjacent vertices (when G is a complete graph, we define σ2(G) = ∞). For v ∈ V (G)

and U, W ⊂ V (G). We let NG(v, U) (or simply N(v, U)) denote the neighborhood of v in U ,

i.e., N(v, U) := {u ∈ U |uv ∈ E(G)}. Let dG(v, U) (or simply d(v, U)) denote the degree of

v. Thus d(v, U) = |N(v, U)|. When U = V (G), we simply write N(v) = N(v, V (G)) and

d(v) = d(v, V (G)). For any v ∈ V (G), if there is a cycle passing through v, we say G has v-cycle.

Egawa et al.[2] presented the following theorem.

Theorem 1[2] Let k be an integer with k ≥ 1 and G be a graph of order n ≥ 4k − 1 satisfying

the condition that σ2(G) ≥ n + 2k − 2. Then for any k independent edges e1, . . . , ek of G,

G has k vertex-disjoint cycles C1, . . . , Ck of order at most four such that ei ∈ E(Ci) for each

i ∈ {1, . . . , k}.
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For vertex-disjoint cycles passing through given vertices, The following conjecture from [3],[6]

and the result is true.

Theorem 2[3],[6] Let G be a graph with order n ≥ ck2, where c is a large enough absolute

constant, with minimum degree at least ⌊
√

n + 9
4k2 − 4k + 1 + 3

2k − 1⌋. Then for any k distinct

vertices in G there exist k vertex-disjoint cycles C1, . . . , Ck of length at most six each of which

contains exactly one of the k specified vertices.

Ishigami and Jiang[3] conjectured the conjecture for n ≥ ck2 where c is a constant. Further

they showed that under the same condition the cycles can be chosen so that each has length at

most six.

Theorem 3[3] Let δ, k be positive integers with δ ≥ ck, where c is a large enough constant. Let

G be a graph with order n ≤ δ2 + (−3k + 4)δ − 2k + 3, and minimum degree δ. Then for any k

distinct vertices in G there exist k vertex-disjoint cycles C1, . . . , Ck of length at most six each of

which contains exactly one of the k specified vertices.

Ishigami[4] discussed the minimum degree condition of G containing k vertex-disjoint cycles

of length at most four each of which contains one of the k prescribed vertices, and proved the

following theorem:

Theorem 4[4] Let k ≥ 1 be an integer and G a graph of order n ≥ 3k with δ(G) ≥

⌊
√

n + k2 − 3k + 1⌋ + 2k − 1. Then for any k distinct vertices {x1, x2, . . . , xk}, there exist k

vertex-disjoint cycles C1, . . . , Ck of order at most four with xi ∈ V (Ci) for i ∈ {1, . . . , k}.

For a bipartite graph with partite sets V1 and V2, we define σ1,1(G) = min{dG(x)+dG(y)|x ∈

V1, y ∈ V2, xy 6∈ E(G)}. Matsumura[5]proved the maximum number of 4-cycle passing through

given edges in a graph.

Theorem 5[5] Suppose σ1,1(G) ≥ max{⌈ 4n+2s−1
3 ⌉, ⌈ 2n−1

3 ⌉+2k}, and k ≥ 1, 1 ≤ s ≤ k, n ≥ 2k.

Then for any k independent edges e1, . . . , ek of G, G contains k vertex-disjoint cycles C1, . . . , Ck

such that ei ∈ E(Ci), |Ci| ≤ 6, and there are at least s 4-cycle in {C1, . . . , Ck}.

Ishigami and Jiang [3], Ishigami[4], Matsumura [5] considered short cycles passing through

specified vertices or edges, they limited the length of cycle at most four or at most six. In

the following, we consider any length of cycle covering specified vertices, that is the following

Theorem 6:

Theorem 6 Let k, s be integers with k ≥ 2 and s ≥ 4. Let G be a graph of order n ≥ s(k−1)+5.

If σ2(G) ≥ n+k−1, then for any set of k independent vertices v1, . . . , vk, G has k vertex-disjoint

cycles C1, . . . , Ck such that |Ci| ≤ s and vi ∈ V (Ci) for all 1 ≤ i ≤ k.

To demonstrate the sharpness of the condition of degree sum σ2(G) ≥ n + k − 1 in Theorem

6, we construct the following example.

Example Suppose n ≥ 3k. Consider three vertex disjoint graphs G1, G2 and G3. Let G1 =

{x} be a vertex, G2 be independent vertex set of order k , G3 be a complete graph of order
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n − k − 1. Join x completely to G2, and join G2 completely to G3. Thus we get graph G.

Then min{dG(x) + dG(y)|xy 6∈ E(G), x ∈ V (G1), y ∈ V (G3)} = k + k + n − k − 2 = n + k − 2.

Clearly, every cycle passing through x must contain at least two vertices in G2. Therefore, for k

independent vertices in G2, G has no k cycles satisfying the property of Theorem 6.

2. Proof of Theorem 6

We choose G to be a maximal counterexample, that is, if x and y are nonadjacent vertices in G,

then G+xy contains k vertex disjoint cycles C1, . . . , Ck such that |Ci| ≤ s and vi ∈ V (Ci) for all

1 ≤ i ≤ k. We may assume that xy ∈ E(Ck). Then C1, . . . , Ck−1 are vertex disjoint cycles such

that |Ci| ≤ s and vi ∈ V (Ci) for all 1 ≤ i ≤ k − 1, vk 6∈
⋃k−1

i=1 V (Ci), and
∑k−1

i=1 |V (Ci)| ≤ n− 3.

Among all possible choices of a set of k − 1 vertex disjoint cycles such that |Ci| ≤ s, vi ∈ V (Ci)

for all 1 ≤ i ≤ k− 1, vk 6∈
⋃k−1

i=1 V (Ci) and
∑k−1

i=1 |V (Ci)| ≤ n− 3, select one collection satisfying

k−1
∑

i=1

|V (Ci)| is minimum. (1)

Subject to (1), we may further choose C1, C2, . . . , Ck−1 such that

k−1
∑

i=1

d(vk, Ci) is as small as possible. (2)

We denote k − 1 cycles satisfying the above (1), (2) as follows:

C1, . . . , Cm1
, Cm1+1, . . . , Cm1+m2

, Cm1+m2+1, . . . , Cm1+m2+m3
, Cm1+m2+m3+1, . . . ,

Cm1+m2+m3+m4
, . . . , Cm1+m2+m3+···+ms−3

, Cm1+m2+m3+···+ms−3+1, . . . , Ck−1.

|Ci| = 3, i ≤ m1, |Ci| = 4, m1 + 1 ≤ i ≤ m1 + m2,

|Ci| = 5, m1 + m2 + 1 ≤ i ≤ m1 + m2 + m3,

|Ci| = s − 1, m1 + m2 + · · · + ms−3 + 1 ≤ i ≤ m1 + m2 + m3 + · · · + ms−3 + ms−2,

|Ci| = s, m1 + m2 + · · · + ms−2 + 1 ≤ i ≤ k − 1.

Let L = G[
⋃k−1

i=1 V (Ci)], H = G − L.

We also assume that in this selection any permutation of the vertices {v1, v2, . . . , vk} can be

used.

Claim 1 We claim xvk ∈ E(G) for all x ∈ V (H).

Suppose to the contrary, xvk 6∈ E(G) for any x ∈ V (H), x 6= vk. As G[H ] has no vk cycle,

and G[H ] has no cycle of length four passing through vk, d(vk, H) + d(x, H) ≤ |V (H)| − 2 + 1 =

|V (H)| − 1. Thus d(vk, L) + d(x, L) ≥ n + k − 1− (|V (H)| − 1) = |L|+ k =
∑k−1

i=1 (|Ci|+ 1) + 1.

This implies there exists Ci in L such that d(vk, Ci) + d(x, Ci) ≥ |Ci| + 2. If |Ci| = 3, let

Ci = xiyivixi, then d(x, Ci) = 3, d(vk, Ci) = 2 (vkvi 6∈ E(G)). Say C′

i = xyivix and d(vk, C′

i) = 1,

a contradiction to (2). So |Ci| ≥ 4. d(vk, Ci) + d(x, Ci) ≥ |Ci| + 2. By (1) and vkvi 6∈ E(G), it

is easy to check that d(x, Ci) ≤ 3, and if d(x, Ci) = 3, then x is only adjacent to the consecutive

three vertices of Ci−{vi} (For otherwise, there is a cycle C′

i containing x and vi and |C′

i| < |Ci|), a

contradiction to (1). So d(vk, Ci) = |Ci|−1, that is, vk is adjacent to every vertex of V (Ci)−{vi},

hence we may get a vk-cycle Ck such that |Ck| < |Ci|, a contradiction to (1). As claimed.
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As |L| = 3m1 + 4m2 + · · ·+ sms−2, m1 + m2 + · · ·+ ms−2 = k − 1, |H | = n− (3m1 + 4m2 +

· · · + sms−2) = n − [3m1 + 4m2 + · · · + (s − 1)ms−3 + s(k − 1 − m1 − m2 − · · · − ms−3)] =

n + (s − 3)m1 + (s − 4)m2 + · · · + ms−3 − s(k − 1) ≥ s(k − 1) + 5 − s(k − 1) = 5.

By Claim 1, V (H)−{vk} are independent. For any u1, u2, u3, u4 ∈ V (H) (|H | ≥ 5), d(u1, L)+

d(u2, L)+d(u3, L)+d(u4, L) ≥ 2n+2k−2−4 = n−5+n−5+2k+4 ≥ |L|+ |L|+2(k−1)+6 =

2(
∑k−1

i=1 (|Ci|+1))+6. This implies there exists Ci in L such that d(u1, Ci)+d(u2, Ci)+d(u3, Ci)+

d(u4, Ci) ≥ 2(|Ci| + 1) + 1 = 2|Ci| + 3.

If |Ci| = 3, then d(u1, Ci)+d(u2, Ci)+d(u3, Ci)+d(u4, Ci) ≥ 9. Say Ci = xiyivixi. Without

loss of generality we may assume d(u1, Ci) = 3, d(u2, Ci) ≥ 2. Then d(u3, Ci) + d(u4, Ci) ≥ 3.

Without loss of generality we may assume d(u3, Ci) ≥ 2.

We claim u2xi 6∈ E(G).

Suppose to the contrary u2xi ∈ E(G). If u3xi ∈ E(G), say Ck = vku2xiu3vk, C′

i = viu1yivi,

we get k desired cycles, a contradiction. So u3vi ∈ E(G), u3yi ∈ E(G). Say C′

i = viu3yivi,

Ck = vku1xiu2vk, we get k desired cycles, a contradiction. So u2xi 6∈ E(G). As claimed.

Hence u2vi ∈ E(G), u2yi ∈ E(G). If u3xi ∈ E(G), then we say C′

i = viu2yivi, Ck =

vku1xiu3vk, we get k desired cycles, a contradiction. So u3vi ∈ E(G), u3yi ∈ E(G). Say

C′

i = viu1xivi, Ck = vku2yiu3vk, we get k desired cycles, a contradiction.

So |Ci| 6= 3.

If |Ci| = 4, then d(u1, Ci) + d(u2, Ci) + d(u3, Ci) + d(u4, Ci) ≥ 11. Let Ci = vixiyizivi.

By (1), we may assume d(ui, Ci) = 3, i ∈ {1, 2, 3}, and uivi 6∈ E(G). Say C′

i = vixiu1zivi,

Ck = vku2yiu3vk, we get k desired cycles, a contradiction.

Therefore |Ci| ≥ 5. By (1), d(ui, Ci) ≤ 3, thus d(u1, Ci)+d(u2, Ci)+d(u3, Ci)+d(u4, Ci) ≤ 12.

Contradicting to d(u1, Ci) + d(u2, Ci) + d(u3, Ci) + d(u4, Ci) ≥ 2|Ci| + 3 ≥ 13. This completes

the proof of Theorem 6.
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