Any Long Cycles Covering Specified Independent Vertices

DONG Jiu Ying
(School of Information Technology, Jiangxi University of Finance and Economics, Jiangxi 330013, China)
(E-mail: jiuyingdong@126.com)

Abstract

An invariant $\sigma_{2}(G)$ of a graph is defined as follows: $\sigma_{2}(G):=\min \{d(u)+d(v) \mid u, v \in$ $V(G), u v \notin E(G), u \neq v\}$ is the minimum degree sum of nonadjacent vertices (when G is a complete graph, we define $\left.\sigma_{2}(G)=\infty\right)$. Let k, s be integers with $k \geq 2$ and $s \geq 4, G$ be a graph of order n sufficiently large compared with s and k. We show that if $\sigma_{2}(G) \geq n+k-1$, then for any set of k independent vertices v_{1}, \ldots, v_{k}, G has k vertex-disjoint cycles C_{1}, \ldots, C_{k} such that $\left|C_{i}\right| \leq s$ and $v_{i} \in V\left(C_{i}\right)$ for all $1 \leq i \leq k$.

The condition of degree sum $\sigma_{2}(G) \geq n+k-1$ is sharp.

Keywords vertex-disjoint cycle; degree sum condition; independent vertices.
Document code A
MR(2000) Subject Classification 05C15
Chinese Library Classification O157.5

1. Introduction

An independent set is a set of pairwise non-adjacent vertices of a graph. In this paper, we only consider finite undirected graphs without loops or multiple edges. We will follow standard terminology and notation from [1] except as indicated. Let $G=(V(G), E(G))$ be a graph, the minimum degree of G will be denoted by $\delta(G)$. An invariant $\sigma_{2}(G)$ of a graph is defined as follows: $\sigma_{2}(G):=\min \{d(u)+d(v) \mid u, v \in V(G), u v \notin E(G), u \neq v\}$ is the minimum degree sum of nonadjacent vertices (when G is a complete graph, we define $\sigma_{2}(G)=\infty$). For $v \in V(G)$ and $U, W \subset V(G)$. We let $N_{G}(v, U)$ (or simply $N(v, U)$) denote the neighborhood of v in U, i.e., $N(v, U):=\{u \in U \mid u v \in E(G)\}$. Let $d_{G}(v, U)$ (or simply $d(v, U)$) denote the degree of v. Thus $d(v, U)=|N(v, U)|$. When $U=V(G)$, we simply write $N(v)=N(v, V(G))$ and $d(v)=d(v, V(G))$. For any $v \in V(G)$, if there is a cycle passing through v, we say G has v-cycle.

Egawa et al. ${ }^{[2]}$ presented the following theorem.
Theorem $1^{[2]}$ Let k be an integer with $k \geq 1$ and G be a graph of order $n \geq 4 k-1$ satisfying the condition that $\sigma_{2}(G) \geq n+2 k-2$. Then for any k independent edges e_{1}, \ldots, e_{k} of G, G has k vertex-disjoint cycles C_{1}, \ldots, C_{k} of order at most four such that $e_{i} \in E\left(C_{i}\right)$ for each $i \in\{1, \ldots, k\}$.

Received date: 2007-03-24; Accepted date: 2007-11-22
Foundation item: the National Natural Science Foundation of China (No. 10626029).

For vertex-disjoint cycles passing through given vertices, The following conjecture from [3],[6] and the result is true.

Theorem $2^{[3],[6]}$ Let G be a graph with order $n \geq c k^{2}$, where c is a large enough absolute constant, with minimum degree at least $\left\lfloor\sqrt{n+\frac{9}{4} k^{2}-4 k+1}+\frac{3}{2} k-1\right\rfloor$. Then for any k distinct vertices in G there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} of length at most six each of which contains exactly one of the k specified vertices.

Ishigami and Jiang ${ }^{[3]}$ conjectured the conjecture for $n \geq c k^{2}$ where c is a constant. Further they showed that under the same condition the cycles can be chosen so that each has length at most six.

Theorem $3^{[3]}$ Let δ, k be positive integers with $\delta \geq c k$, where c is a large enough constant. Let G be a graph with order $n \leq \delta^{2}+(-3 k+4) \delta-2 k+3$, and minimum degree δ. Then for any k distinct vertices in G there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} of length at most six each of which contains exactly one of the k specified vertices.

Ishigami ${ }^{[4]}$ discussed the minimum degree condition of G containing k vertex-disjoint cycles of length at most four each of which contains one of the k prescribed vertices, and proved the following theorem:

Theorem $4^{[4]}$ Let $k \geq 1$ be an integer and G a graph of order $n \geq 3 k$ with $\delta(G) \geq$ $\left\lfloor\sqrt{\left.n+k^{2}-3 k+1\right\rfloor}+2 k-1\right.$. Then for any k distinct vertices $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} of order at most four with $x_{i} \in V\left(C_{i}\right)$ for $i \in\{1, \ldots, k\}$.

For a bipartite graph with partite sets V_{1} and V_{2}, we define $\sigma_{1,1}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x \in\right.$ $\left.V_{1}, y \in V_{2}, x y \notin E(G)\right\}$. Matsumura ${ }^{[5]}$ proved the maximum number of 4 -cycle passing through given edges in a graph.

Theorem $5^{[5]}$ Suppose $\sigma_{1,1}(G) \geq \max \left\{\left\lceil\frac{4 n+2 s-1}{3}\right\rceil,\left\lceil\frac{2 n-1}{3}\right\rceil+2 k\right\}$, and $k \geq 1,1 \leq s \leq k, n \geq 2 k$. Then for any k independent edges e_{1}, \ldots, e_{k} of G, G contains k vertex-disjoint cycles C_{1}, \ldots, C_{k} such that $e_{i} \in E\left(C_{i}\right),\left|C_{i}\right| \leq 6$, and there are at least s 4-cycle in $\left\{C_{1}, \ldots, C_{k}\right\}$.

Ishigami and Jiang ${ }^{[3]}$, Ishigami ${ }^{[4]}$, Matsumura ${ }^{[5]}$ considered short cycles passing through specified vertices or edges, they limited the length of cycle at most four or at most six. In the following, we consider any length of cycle covering specified vertices, that is the following Theorem 6:

Theorem 6 Let k, s be integers with $k \geq 2$ and $s \geq 4$. Let G be a graph of order $n \geq s(k-1)+5$. If $\sigma_{2}(G) \geq n+k-1$, then for any set of k independent vertices v_{1}, \ldots, v_{k}, G has k vertex-disjoint cycles C_{1}, \ldots, C_{k} such that $\left|C_{i}\right| \leq s$ and $v_{i} \in V\left(C_{i}\right)$ for all $1 \leq i \leq k$.

To demonstrate the sharpness of the condition of degree sum $\sigma_{2}(G) \geq n+k-1$ in Theorem 6 , we construct the following example.

Example Suppose $n \geq 3 k$. Consider three vertex disjoint graphs G_{1}, G_{2} and G_{3}. Let $G_{1}=$ $\{x\}$ be a vertex, G_{2} be independent vertex set of order k, G_{3} be a complete graph of order
$n-k-1$. Join x completely to G_{2}, and join G_{2} completely to G_{3}. Thus we get graph G. Then $\min \left\{d_{G}(x)+d_{G}(y) \mid x y \notin E(G), x \in V\left(G_{1}\right), y \in V\left(G_{3}\right)\right\}=k+k+n-k-2=n+k-2$. Clearly, every cycle passing through x must contain at least two vertices in G_{2}. Therefore, for k independent vertices in G_{2}, G has no k cycles satisfying the property of Theorem 6 .

2. Proof of Theorem 6

We choose G to be a maximal counterexample, that is, if x and y are nonadjacent vertices in G, then $G+x y$ contains k vertex disjoint cycles C_{1}, \ldots, C_{k} such that $\left|C_{i}\right| \leq s$ and $v_{i} \in V\left(C_{i}\right)$ for all $1 \leq i \leq k$. We may assume that $x y \in E\left(C_{k}\right)$. Then C_{1}, \ldots, C_{k-1} are vertex disjoint cycles such that $\left|C_{i}\right| \leq s$ and $v_{i} \in V\left(C_{i}\right)$ for all $1 \leq i \leq k-1, v_{k} \notin \bigcup_{i=1}^{k-1} V\left(C_{i}\right)$, and $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right| \leq n-3$. Among all possible choices of a set of $k-1$ vertex disjoint cycles such that $\left|C_{i}\right| \leq s, v_{i} \in V\left(C_{i}\right)$ for all $1 \leq i \leq k-1, v_{k} \notin \bigcup_{i=1}^{k-1} V\left(C_{i}\right)$ and $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right| \leq n-3$, select one collection satisfying

$$
\begin{equation*}
\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right| \text { is minimum. } \tag{1}
\end{equation*}
$$

Subject to (1), we may further choose $C_{1}, C_{2}, \ldots, C_{k-1}$ such that

$$
\begin{equation*}
\sum_{i=1}^{k-1} d\left(v_{k}, C_{i}\right) \text { is as small as possible. } \tag{2}
\end{equation*}
$$

We denote $k-1$ cycles satisfying the above (1), (2) as follows:

$$
\begin{aligned}
& C_{1}, \ldots, C_{m_{1}}, C_{m_{1}+1}, \ldots, C_{m_{1}+m_{2}}, C_{m_{1}+m_{2}+1}, \ldots, C_{m_{1}+m_{2}+m_{3}}, C_{m_{1}+m_{2}+m_{3}+1}, \ldots \\
& C_{m_{1}+m_{2}+m_{3}+m_{4}}, \ldots, C_{m_{1}+m_{2}+m_{3}+\cdots+m_{s-3}}, C_{m_{1}+m_{2}+m_{3}+\cdots+m_{s-3}+1}, \ldots, C_{k-1} \\
& \left|C_{i}\right|=3, i \leq m_{1},\left|C_{i}\right|=4, m_{1}+1 \leq i \leq m_{1}+m_{2} \\
& \left|C_{i}\right|=5, m_{1}+m_{2}+1 \leq i \leq m_{1}+m_{2}+m_{3} \\
& \left|C_{i}\right|=s-1, m_{1}+m_{2}+\cdots+m_{s-3}+1 \leq i \leq m_{1}+m_{2}+m_{3}+\cdots+m_{s-3}+m_{s-2} \\
& \left|C_{i}\right|=s, m_{1}+m_{2}+\cdots+m_{s-2}+1 \leq i \leq k-1
\end{aligned}
$$

Let $L=G\left[\bigcup_{i=1}^{k-1} V\left(C_{i}\right)\right], H=G-L$.
We also assume that in this selection any permutation of the vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ can be used.

Claim 1 We claim $x v_{k} \in E(G)$ for all $x \in V(H)$.
Suppose to the contrary, $x v_{k} \notin E(G)$ for any $x \in V(H), x \neq v_{k}$. As $G[H]$ has no v_{k} cycle, and $G[H]$ has no cycle of length four passing through $v_{k}, d\left(v_{k}, H\right)+d(x, H) \leq|V(H)|-2+1=$ $|V(H)|-1$. Thus $d\left(v_{k}, L\right)+d(x, L) \geq n+k-1-(|V(H)|-1)=|L|+k=\sum_{i=1}^{k-1}\left(\left|C_{i}\right|+1\right)+1$. This implies there exists C_{i} in L such that $d\left(v_{k}, C_{i}\right)+d\left(x, C_{i}\right) \geq\left|C_{i}\right|+2$. If $\left|C_{i}\right|=3$, let $C_{i}=x_{i} y_{i} v_{i} x_{i}$, then $d\left(x, C_{i}\right)=3, d\left(v_{k}, C_{i}\right)=2\left(v_{k} v_{i} \notin E(G)\right)$. Say $C_{i}^{\prime}=x y_{i} v_{i} x$ and $d\left(v_{k}, C_{i}^{\prime}\right)=1$, a contradiction to (2). So $\left|C_{i}\right| \geq 4$. $d\left(v_{k}, C_{i}\right)+d\left(x, C_{i}\right) \geq\left|C_{i}\right|+2$. By (1) and $v_{k} v_{i} \notin E(G)$, it is easy to check that $d\left(x, C_{i}\right) \leq 3$, and if $d\left(x, C_{i}\right)=3$, then x is only adjacent to the consecutive three vertices of $C_{i}-\left\{v_{i}\right\}$ (For otherwise, there is a cycle C_{i}^{\prime} containing x and v_{i} and $\left|C_{i}^{\prime}\right|<\left|C_{i}\right|$), a contradiction to (1). So $d\left(v_{k}, C_{i}\right)=\left|C_{i}\right|-1$, that is, v_{k} is adjacent to every vertex of $V\left(C_{i}\right)-\left\{v_{i}\right\}$, hence we may get a v_{k}-cycle C_{k} such that $\left|C_{k}\right|<\left|C_{i}\right|$, a contradiction to (1). As claimed.

As $|L|=3 m_{1}+4 m_{2}+\cdots+s m_{s-2}, m_{1}+m_{2}+\cdots+m_{s-2}=k-1,|H|=n-\left(3 m_{1}+4 m_{2}+\right.$ $\left.\cdots+s m_{s-2}\right)=n-\left[3 m_{1}+4 m_{2}+\cdots+(s-1) m_{s-3}+s\left(k-1-m_{1}-m_{2}-\cdots-m_{s-3}\right)\right]=$ $n+(s-3) m_{1}+(s-4) m_{2}+\cdots+m_{s-3}-s(k-1) \geq s(k-1)+5-s(k-1)=5$.

By Claim 1, $V(H)-\left\{v_{k}\right\}$ are independent. For any $u_{1}, u_{2}, u_{3}, u_{4} \in V(H)(|H| \geq 5), d\left(u_{1}, L\right)+$ $d\left(u_{2}, L\right)+d\left(u_{3}, L\right)+d\left(u_{4}, L\right) \geq 2 n+2 k-2-4=n-5+n-5+2 k+4 \geq|L|+|L|+2(k-1)+6=$ $2\left(\sum_{i=1}^{k-1}\left(\left|C_{i}\right|+1\right)\right)+6$. This implies there exists C_{i} in L such that $d\left(u_{1}, C_{i}\right)+d\left(u_{2}, C_{i}\right)+d\left(u_{3}, C_{i}\right)+$ $d\left(u_{4}, C_{i}\right) \geq 2\left(\left|C_{i}\right|+1\right)+1=2\left|C_{i}\right|+3$.

If $\left|C_{i}\right|=3$, then $d\left(u_{1}, C_{i}\right)+d\left(u_{2}, C_{i}\right)+d\left(u_{3}, C_{i}\right)+d\left(u_{4}, C_{i}\right) \geq 9$. Say $C_{i}=x_{i} y_{i} v_{i} x_{i}$. Without loss of generality we may assume $d\left(u_{1}, C_{i}\right)=3, d\left(u_{2}, C_{i}\right) \geq 2$. Then $d\left(u_{3}, C_{i}\right)+d\left(u_{4}, C_{i}\right) \geq 3$. Without loss of generality we may assume $d\left(u_{3}, C_{i}\right) \geq 2$.

We claim $u_{2} x_{i} \notin E(G)$.
Suppose to the contrary $u_{2} x_{i} \in E(G)$. If $u_{3} x_{i} \in E(G)$, say $C_{k}=v_{k} u_{2} x_{i} u_{3} v_{k}, C_{i}^{\prime}=v_{i} u_{1} y_{i} v_{i}$, we get k desired cycles, a contradiction. So $u_{3} v_{i} \in E(G), u_{3} y_{i} \in E(G)$. Say $C_{i}^{\prime}=v_{i} u_{3} y_{i} v_{i}$, $C_{k}=v_{k} u_{1} x_{i} u_{2} v_{k}$, we get k desired cycles, a contradiction. So $u_{2} x_{i} \notin E(G)$. As claimed.

Hence $u_{2} v_{i} \in E(G), u_{2} y_{i} \in E(G)$. If $u_{3} x_{i} \in E(G)$, then we say $C_{i}^{\prime}=v_{i} u_{2} y_{i} v_{i}, C_{k}=$ $v_{k} u_{1} x_{i} u_{3} v_{k}$, we get k desired cycles, a contradiction. So $u_{3} v_{i} \in E(G), u_{3} y_{i} \in E(G)$. Say $C_{i}^{\prime}=v_{i} u_{1} x_{i} v_{i}, C_{k}=v_{k} u_{2} y_{i} u_{3} v_{k}$, we get k desired cycles, a contradiction.

So $\left|C_{i}\right| \neq 3$.

If $\left|C_{i}\right|=4$, then $d\left(u_{1}, C_{i}\right)+d\left(u_{2}, C_{i}\right)+d\left(u_{3}, C_{i}\right)+d\left(u_{4}, C_{i}\right) \geq 11$. Let $C_{i}=v_{i} x_{i} y_{i} z_{i} v_{i}$. By (1), we may assume $d\left(u_{i}, C_{i}\right)=3, i \in\{1,2,3\}$, and $u_{i} v_{i} \notin E(G)$. Say $C_{i}^{\prime}=v_{i} x_{i} u_{1} z_{i} v_{i}$, $C_{k}=v_{k} u_{2} y_{i} u_{3} v_{k}$, we get k desired cycles, a contradiction.

Therefore $\left|C_{i}\right| \geq 5$. By (1), $d\left(u_{i}, C_{i}\right) \leq 3$, thus $d\left(u_{1}, C_{i}\right)+d\left(u_{2}, C_{i}\right)+d\left(u_{3}, C_{i}\right)+d\left(u_{4}, C_{i}\right) \leq 12$. Contradicting to $d\left(u_{1}, C_{i}\right)+d\left(u_{2}, C_{i}\right)+d\left(u_{3}, C_{i}\right)+d\left(u_{4}, C_{i}\right) \geq 2\left|C_{i}\right|+3 \geq 13$. This completes the proof of Theorem 6 .

References

[1] BOLLOBÁS B. Extremal Graph Theory [M]. Academic Press, London-New York, 1978.
[2] EGAWA Y, FAUDREE R J, GYÖRI E. Vertex-disjoint cycles containing specified edges [J]. Graphs Combin., 2000, 16(1): 81-92.
[3] ISHIGAMI Y, JIANG Tao. Vertex-disjoint cycles containing prescribed vertices [J]. J. Graph Theory, 2003, 42(4): 276-296.
[4] ISHIGAMI Y. Vertex-disjoint cycles of length at most four each of which contains a specified vertex [J]. J. Graph Theory, 2001, 37(1): 37-47.
[5] MATSUMURA H. Vertex-disjoint 4-cycles containing specified edges in a bipartite graph [J]. Discrete Math., 2005, 297(1-3): 78-90.
[6] YOSHIMI E, RALPH J.F, ERVIN G, YOSHIYASU I, RICHARD H.S, HONG W, Vertex-disjoint cycles containing specified edges [J]. Graphs Combin., 2000, 16(1): 81-92.

