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Keywords generalized path algebra; Hopf algebra; radical.

Document code A

MR(2000) Subject Classification 16W30; 05C25

Chinese Library Classification O151.23

1. Introduction

The concept of generalized path algebras was introduced by Coelho and Liu in [1]. Their

structures and representations were studied by the authors in [2].

Pointed Hopf algebras of dimension pm with large coradical were classified[3]. In this paper,

using the theory of generalized path algebras we give the representations, homological dimensions

and radicals of these Hopf algebras. In Section 1, we show that pointed Hopf algebra H(C, n, c, c∗)

is a generalized path algebra with relations and it is also a smash product. The left global

dimensions of Taft algebras are infinity. The radicals and representations of H(C, n, c, c∗) can

be obtained by the theory of generalized path algebras in [2]. In Section 2, we give the relations

between radicals of generalized matrix rings and Γ-rings. We obtain the explicit formulas for

generalized matrix ring A and radical properties r = rb, rl, rj , rn:

r(A) = g.m.r(A) =
∑

{r(Aij) | i, j ∈ I}.

In Section 3, we give the relations between the radicals of path algebras and connectivity of

directed graphs. That is, we obtain that every weak component of directed path D is a strong

component if and only if every unilateral component of D is a strong component if and only if

the Jacobson radical of path algebra A(D) is zero if and only if the Baer radical of path algebra

A(D) is zero.
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2. Preliminaries

Let k be a field. We first recall the concepts of ΓI -systems, generalized matrix rings (algebras)

and generalized path algebras. Let I be a non-empty set. If for any i, j, l, s ∈ I, Aij is an additive

group and there exists a map µijl from Aij × Ajl to Ail (written µijl(x, y) = xy) such that the

following conditions hold:

(i) (x + y)z = xz + yz, w(x + y) = wx + wy;

(ii) w(xz) = (wx)z,

for any x, y ∈ Aij , z ∈ Ajl, w ∈ Ali, then the set {Aij | i, j ∈ I} is a ΓI -system with index I.

Let A be the external direct sum of {Aij | i, j ∈ I}. We define the multiplication in A as

xy = {
∑

k

xikykj}

for any x = {xij}, y = {yij} ∈ A. It is easy to check that A is a ring (possibly without the

unity element ). We call A a generalized matrix ring, or a g.m. ring for short, written as

A =
∑

{Aij | i, j ∈ I}. For any non-empty subset S of A and i, j ∈ I, set Sij = {a ∈ Aij |

there exists x ∈ S such that xij = a}. If B is an ideal of A and B =
∑

{Bij | i, j ∈ I}, then B

is called a g.m. ideal. If for any i, j ∈ I, there exists 0 6= eii ∈ Aii such that xijejj = eiixij = xij

for any xij ∈ Aij , then the set {eii | i ∈ I} is called a generalized matrix unit of ΓI -system

{Aij | i, j ∈ I}, or a generalized matrix unit of g.m. ring A =
∑

{Aij | i, j ∈ I}, or a g.m. unit

for short. It is easy to show that if A has a g.m. unit {eii | i ∈ I}, then every ideal B of A is a

g.m. ideal. Indeed, for any x =
∑

i,j∈I xij ∈ B and i0, j0 ∈ I, since ei0i0xej0j0 = xi0j0 ∈ B, we

have Bi0j0 ⊆ B. Furthermore, if B is a g.m. ideal of A, then {Aij/Bij | i, j ∈ I} is a ΓI -system

and A/B ∼=
∑

{Aij/Bij | i, j ∈ I} as rings.

If for any i, j, l, s ∈ I, Aij is a vector space over field k and there exists a k-linear map µijl

from Aij ⊗ Ajl into Ail (written µijl(x, y) = xy) such that x(yz) = (xy)z for any x ∈ Aij ,

y ∈ Ajl, z ∈ Als, then the set {Aij | i, j ∈ I} is a ΓI - system with index I over field k. Similarly,

we get an algebra A =
∑

{Aij | i, j ∈ I}, called a generalized matrix algebra, or a g.m. algebra

for short.

Assume that D is a directed (or oriented) graph (D is possibly an infinite directed graph and

also possibly not a simple graph) (or quiver ). Let I = D0 denote the vertex set of D and D1

denote the set of arrows of D. Let Ω be a generalized matrix algebra over field k with g.m. unit

{eii | i ∈ I}, the Jacobson radical r(Ωii) of Ωii is zero and Ωij = 0 for any i 6= j ∈ I. The sequence

x = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1in
ain

is called a generalized path (or Ω-path) from i0 to in via

arrows xi0i1 , xi1i2 , xi2i3 , . . . , xin−1in
, where 0 6= aip

∈ Ωipip
for p = 0, 1, 2, . . . , n. In this case, n is

called the length of x, written as l(x). For two Ω-paths x = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1in
ain

and y = bj0yj0j1bj1yj1j2bj2yj2j3 · · · yjm−1jm
bjm

of D with in = j0, we define the multiplication of

x and y as

xy = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1in
(ain

bj0)yj0j1yj1j2bj1yj2j3 · · · yjm−1jm
bjm

. (*)

For any i, j ∈ I, let A′

ij denote the vector space over field k with basis being all Ω-paths from i
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to j with length > 0. Bij is the sub-space spanned by all elements of forms:

ai0xi0i1ai1xi1i2ai2 · · ·xis−1is
(a

(1)
is

+ a
(2)
is

+ · · · + a
(m)
is

)xisis+1
· · ·xin−1in

ain
−

m
∑

l=1

ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xis−1is
a
(l)
is

xisis+1
· · ·xin−1in

ain
,

where i0 = i, in = j, a
(l)
is

∈ Ωisis
, aip

∈ Ωipip
, xitit+1

is an arrow, p = 0, 1, . . . , n, t = 0, 1, . . . , n−1,

l = 0, 1, . . . , m, 0 ≤ s ≤ n, n and m are natural numbers. Let Aij = A′

ij/Bij when i 6= j and

Aii = (A′

ii + Ωii)/Bii, written [α] = α + Bij for any generalized path α from i to j. We can

get a k-linear map from Aij ⊗ Ajl to Ail induced by (∗). We write a instead of [a] when a ∈ Ω.

In fact, [Ωii] ∼= Ωii as algebras for any i ∈ I. Notice that we write eiixij = xijejj = xij

for any arrow xij from i to j. It is clear that {Aij | i, j ∈ I} is a ΓI -system with g.m. unit

{eii | i ∈ I}. The g.m. algebra
∑

{Aij | i, j ∈ I} is called the generalized path algebra, or Ω-path

algebra, written as k(D, Ω) (see, [4, Chapter 3] and [1]). Let J denote the ideal generated by

all arrows in D of k(D, Ω). If ρ is a non-empty subset of k(D, Ω) and the ideal (ρ) generated

by ρ satisfies J t ⊆ (ρ) ⊆ J2, then k(D, Ω)/(ρ) is called generalized path algebra with relations.

If J t ⊆ (ρ) ⊆ J , then k(D, Ω)/(ρ) is called generalized path algebra with weak relations. If

Ωii = keii for any i ∈ I, then k(D, Ω) is called a path algebra, written as kD. For any i, j ∈ I

and A = kD, if u =
∑n

s=1 ksps ∈ Aij , then the length l(u) is defined as the maximal length l(ps)

for s = 1, 2, . . . , n, where p1, p2, . . . , ps are different paths in Aij . Furthermore, sometimes, we

call k(D, Ω) a generalized path algebra although the Jacobson radical r(Ω) 6= 0.

2. Application in Hopf algebras

Let C be an abelian group and G a group. Let C∗ denote the character group of C, N

the set of natural numbers and Z+ the set of positive integrals. Assume ci ∈ C, c∗i ∈ C∗, n =

(n1, n2, . . . , nt) ∈ (Z+)t and a = (a1, a2, . . . , at) ∈ {0, 1}t; bij ∈ k for i, j = 1, 2, . . . , t. Through-

out this section, D denotes the following quiver (or directed graph): vertex set D0 has only one

element and arrow set D1 = {X1, X2, . . . , Xt}. Ω = kC.

Let kt = k{X1, X2, . . . , Xt}/(ρ) with ρ = {XjXi − c∗j (ci)XiXj | i, j = 1, 2, . . . , t and i 6= j}.

That is, kt is the path algebra k(D, ρ) with relation ρ.

We first recall At(C, c, c∗, a, b) and H(C, n, c, c∗, a, b), which was defined in [3, Definitions

5.6.8 and 5.6.15].

Definition 2.1 At(C, c, c∗, a, b) ,At for short,is called the Hopf algebra generated by the element

g ∈ C and Xj , j = 1, 2, . . . , t, where

(i) the elements of C are commuting grouplikes;

(ii) Xj is (1, cj)-primitive;

(iii) xjg = c∗j (g)gxj ;

(iv) XjXi = c∗j (ci)XiXj + bij(cicj − 1) for i, j = 1, 2, . . . , t and i 6= j;

(v) c∗i (cj)c
∗

j (ci) = 1 for j 6= i;

(vi) If bij 6= 0, then c∗i c
∗

j = 1;
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(vii) If cicj = 1, then bij = 0.

The antipode of At is given by S(g) = g−1 for g ∈ G and S(Xj) = −c−1
j Xj .

Moreover,

(viii) c∗i (ci) is a primitive ni-th root of unity for any i;

(ix) If ai = 1, then (C∗

i )ni = 1;

(x) If (ci)
ni = 1, then ai = 0;

(xi) bij = −c∗i (cj)bji for any i, j.

Let Hopf algebra H(C, n, c, c∗, a, b) = At/J(a) where J(a) is an ideal of At, generated by

{Xn1

1 − a1(c
n1

1 − 1), Xn2

2 − a2(c
n2

2 − 1), . . . , Xnt

t − at(c
nt

t − 1)}.

If a = 0 and b = 0, we denote At(C, c, c∗, a, b) and H(C, n, c, c∗, a, b) by At(C, c, c∗) and

H(C, n, c, c∗), respectively. If C is a cyclic group generated by c with order n and t = 1 , then

H(C, n, c, c∗) is called a Taft algebra, written as Hn2(λ), where λ = c∗(c).

Since we only consider the algebra structures of At(C, c, c∗, a, b) and H(C, n, c, c∗, a, b) in this

section, we use the two signs “∼=” and “=” to denote isomorphism and equation as algebras,

respectively.

Theorem 2.2 Under the notations above we have the following:

(i) At(C, c, c∗) = kt#kC.

(ii) At(C, c, c∗) = k(D, Ω)/(ρ), with ρ = {XjXi − c∗j (ci)XiXj , Xih− c∗i (h)hXi | h ∈ C, i, j =

1, 2, . . . , t and i 6= j}.

(iii) H(C, n, c, c∗) = k(D, ρ)#kC with ρ = {XjXi − c∗j (ci)XiXj, X
ni

i | i, j = 1, 2, . . . , t and

i 6= j}.

(iv) H(C, n, c, c∗) = k(D, Ω, ρ) with ρ = {Xni

i , XjXi − c∗j (ci)XiXj , Xih − c∗i (h)hXi | h ∈

C, i, j = 1, 2, . . . , t and i 6= j}.

Proof It is well-known. 2

A representation of (D, Ω) is a set (V, f) =: {V, fi | V is a unitary kC-module, fi : V → V is

a k-linear map, i = 1, 2, . . . , n}. A morphism h : (V, f) → (V ′, f ′) between two representations

of (D, Ω) is a k-linear map h : V → V ′ such that hfi = f ′

jh for i, j = 1, 2, . . . , t. Let Rep(D, Ω)

denote the category of representations of (D, Ω).

By [2, Theorem 2.9], we have

Corollary 2.3 Let ρ = {XjXi − c∗j (ci)XiXj, Xih − C∗

i (h)hXi | i, j = 1, 2, . . . , t and i 6= j}.

Then

(i) Repk(D, Ω, ρ) and At(C,c,c∗)M are equivalent.

(ii) f.d.Rep(D, Ω, ρ) and f.d.At(C,c,c∗)M are equivalent. Here, f.d.Rep(D, Ω, ρ) and f.d.k(D,Ω,ρ)M

denote the full subcategories of finite dimensional objects in the corresponding categories, re-

spectively.

Notice that although At(C, c, c∗) = k(D, Ω)/(ρ) is not a generalized path algebra with weak

relations, we may use the conclusion in [2, Theorem 2.9].
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Corollary 2.4 Let ρ = {XjXi − c∗j (ci)XiXj , x
ni

i , Xih − c∗i (h)hXi | i, j = 1, 2, . . . , t and i 6= j}.

Then

(i) Repk(D, Ω, ρ) and H(C,n,c,c∗)M are equivalent.

(ii) f.d.Rep(D, Ω, ρ) and f.d.H(C,n,c,c∗)M are equivalent.

Let lgd(R) and wd(R) denote the left global dimension and weak dimension of algebra R,

respectively.

Corollary 2.5 Let k be a field whose characteristic is not divided by the order of finite group

C. Let ρ = {XjXi − c∗j (ci)XiXj , X
ni

i | i, j = 1, 2, . . . , t and i 6= j}. Then

(i) rb(At(C, c, c∗)) = 0;

(ii) lgd(At(C, c, c∗)) = lgd(kt);

(iii) wd(At(C, c, c∗)) = wd(kt);

(iv) lgd(H(C, n, c, c∗)) = lgd(k(D, ρ));

(v) wd(H(C, n, c, c∗)) = wd(k(D, ρ)).

Proof (i) It is seen that

rb(At(C, c, c∗)) = rb(kt#kC) by Theorem 2.2(i)

= rb(kt)#kC by [5, Theorem 2.6]

= 0 since rb(kt) = 0.

(ii)–(v) By Theorem 2.2 (i) (iii), At(C, c, c∗) and H(C, n, c, C∗) are smash products. Using

[6, Theorem 2.2], we can complete the proof. 2

Corollary 2.6 Let k be a field whose characteristic is not divided by the order of finite group

C. Let ρ = {XjXi − c∗j (ci)XiXj , X
ni

i , Xih − C∗

i (h)hXi | i, j = 1, 2, . . . , t and i 6= j}. Then

(i) rj(H(C, n, c, c∗)) = J/(ρ), where J is the ideal of H(C, n, c, c∗), generated by X ′

is;

(ii) lgd(Hn2(λ)) = ∞.

Proof (i) The conclusion follows from Theorem 2.2 and [2, Lemma 3.6].

(ii) The Taft algebra is finite dimensional Hopf algebra and hence self-injective, also the Taft

algebra is not semi-simple and hence of infinite global dimension. 2

If we replace the abelian group C by group G in Definition 2.1, we obtain two algebra

At(G, c, c∗, a, b) and H(G, n, c, c∗, a, b), where ci ∈ Z(G) for i = 1, 2, . . . , t. It is clear that

Theorem 2.2 and Corollaries 2.3–2.6 hold for At(G, c, c∗, a, b) and H(G, n, c, c∗, a, b) since we

only consider their algebra structures.

Theorem 2.7 Let k be an algebraically closed field of characteristic zero and H a pointed Hopf

algebra with dimension pm where p is prime. If m ≤ 3 or the dimension of the coradical of H is

more than pm−2, then H is one of the following:

(i) a group algebra;

(ii) H(C, n, c, c∗);

(iii) H(C, n, c, c∗, a, b);
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(iv) H(G, n, c, c∗) with t = 1;

(v) H(G, n, c, c∗, a, b) with t = 1.

Proof We assume H is not a group algebra. If the dimension of the coradical of H is more than

pm−2, then G(H) = G is a group of order pm−1. By [3, Theorem 7.8.2], H = H(G, n, c, c∗) with

t = 1, n = p, c = g ∈ Z(G), or H = H(G, n, c, c∗, a, 0) with t = 1, n = p, c = g ∈ Z(G) and a = 1.

If H is a Hopf algebra of dimension p3 with G(H) = (g) a cyclic group of order p, then

it follows from [3, Theorem 7.9.6] that H ∼= H(C, n, c, c∗) with C = (g) of order p, t = 2,

n = (p, p), c = (g, gi), c∗ = (c∗, (c∗)−i) for 1 ≤ i ≤ p − 1, or H ∼= H(C, n, c, c∗, a, b) with C = (g)

of order p, t = 2, n = (p, p), c = (g, g), c∗ = (c∗, (c∗)−1), a = 0, b12 = 1. 2

Example 2.8 Recall the duality theorem (see [3, Corollary 6.5.6 and Theorem 6.5.11]) for

co-Frobenius Hopf algebra H :

(R#H∗rat)#H ∼= Mf
H(R) and (R#H)#H∗rat ∼= Mf

H(R) (as algebras),

where Mf
H(R) =

∑

{Bij | i, j ∈ I} is a g.m. algebra and I is the basis of H with Bij = R for

i, j ∈ I. Note for the Baer radical, Levitzki radical, Jacobson radical and von Neumann regular

radical r(Mf
H(R)) = Mf

H(r(R)) of Mf
H(R). Consequently, r((R#H∗rat)#H) ∼= Mf

H(r(R)) and

r((R#H)#H∗rat) ∼= Mf
H(r(R)). In particular, the Heseberg algebra H#H∗rat ∼= Mf

H(k) for

infinite co-Frobenius Hopf algebra H . Therefore

r(H#H∗rat) ∼= r(Mf
H(k)) = Mf

H(r(k)) =

{

0 when r = rb, rl, rj

Mf
H(k) when r = rn.

3. The radicals of generalized matrix rings

Since every generalized path algebra is a generalized matrix ring, we study the radicals of

generalized matrix rings in this section.

Let xE(i, j) denote the generalized matrix having a lone x as its (i, j)-entry and all other

entries are zero. If B is a non empty subset of generalized matrix ring A and s, t ∈ I, we call

the set {x ∈ Ast —there exists y ∈ B such that yst = x} the projection on (s, t) of B, written as

Bst.

Let g.m.r(A) denote the maximal g.m. ideal of r(A) for a radical property r of rings[8].

Let rb, rl, rk, rj , rn denote the Baer radical, Levitzki radical, nil radical, Jacobson radical and

von Neumann regular radical of rings and Γ-rings, respectively. Let r(Aij) denote r radical of

Aji-ring Aij for any i, j ∈ I.

Now we study the von Neumann radical rn(A) of generalized matrix ring

A =
∑

{Aij | i, j ∈ I}.

Definition 3.1 If for all s, t ∈ I, there exists 0 6= dst ∈ Ast such that xisdst 6= 0 and dstytj 6= 0

for any i, j ∈ I, xis ∈ Ais, ytj ∈ Atj , then we say that A has a left g.m. non-zero divisor.

Similarly, we can define the right g.m. non-zero divisor of A. The “divisor” here is not the
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well-known one in ring theory.

Lemma 3.2 (i) If B is an ideal of A, then B̄ =
∑

{Bij | i, j ∈ I} is the g.m. ideal generated by

B in A.

(ii) If D is a g.m. ideal of A and D ⊆
∑

{rn(Aij) | i, j ∈ I}, then D is an rn -g.m. ideal of

A.

(iii) Let Bst be an rn-ideal of Ats-ring Ast and Dij = AisBstAtj for any i, j ∈ I. If A has

left and right g.m. non-zero divisors, then D is an rn-g.m. ideal of A.

(iv) If A has left and right g.m. non-zero divisors and g.m. rn(A) = 0, then rn(Aij) = 0 for

any i, j ∈ I.

Proof (i) It is trivial.

(ii) For any x ∈ D, there exists a finite subset J of I such that xij = 0 for any i, j /∈ J .

Without loss of generality, we can assume that J = {1, 2, . . . , n} and J ′ = {1, 2, . . . , n, n+1} ⊆ I.

Let J ′ × J ′ = {(u, v) | u, v = 1, 2, . . . , n + 1} with the dictionary order. We now show that there

exist two sequences {yt2t1 ∈ At2t1 | (t1, t2) ∈ J ′ × J ′} and {x(t) ∈ D | (t1, t2) ∈ J ′ × J ′} with

x(1,1) = x and

x(t+1) = x(t) − x(t)(y(t2t1)E(t2, t1))x
(t) (1)

such that x
(t)
s = 0 for any s, t ∈ J ′ × J ′ with s ≺ t by induction. Since x

(11)
11 = x11 is a von

Neumann regular element, there exists y11 ∈ A11 such that x11 = x11y11x11. One sees that

x
(12)
11 = x

(11)
11 − x

(11)
11 y11x

(11)
11 = 0. For t = (t1, t2) ∈ B, we assume that there exists ys2s1

∈ As2s1

and x
(t)
s = 0 for any s = (s1, s2) ≺ (t1, t2). Since x

(t1t2)
t1t2

is a von Neumann regular element,

there exists yt2t1 ∈ At2t1 such that x
(t1t2)
t1t2

= x
(t1t2)
t1t2

yt2t1x
(t1t2)
t1t2

. By (1), we have x
(t+1)
t1t2

= 0.

For s = (s1, s2) ≺ t = (t1, t2), we have either s1 = t1, s2 < t2 or s1 < t1. This implies that

(t1, s2) ≺ (t1, t2) or (s1, t2) ≺ (t1, t2). Thus x
(t+1)
s1s2

= 0 by (1). Since x(n,n)+1 = 0 ∈ rn(A), we

have that x is von Neumann regular by [9, Lemma 1].

(iii) Let dij and d′ij in Aij denote the left and right g.m. non-zero divisors of A for any

i, j ∈ I, respectively. For any xij ∈ Dij , there exists uts ∈ Ats such that dstdtixijd
′

jsd
′

st =

dstdtixijd
′

jsd
′

stutsdstdtixijd
′

jsd
′

st and xij = xijd
′

jsd
′

stutsdstdtixij since dstdtixijd
′

jsd
′

st ∈ Bst. This

implies Dij ⊆ rn(Aij). Considering part (ii), we complete the proof.

(iv) If there exist s, t ∈ I such that rn(Ast) 6= 0, let Bst = rn(Ast) and Dij = AisBstAtj for

any i, j ∈ I. By part (iii), we have that D = 0 and Bst = 0. This is a contradiction. 2

Theorem 3.3 If A has left and right g.m. non-zero divisors, then rn(A) = g.m.rn(A) =
∑

{rn(Aij) | i, j ∈ I}.

Proof Let B = rn(A). For any i, j ∈ I and xij ∈ Bij , there exists y ∈ B such that

yij = xij . Let dii and d′jj be left and right non-zero divisors in Aii and Ajj , respectively.

Since (diiE(i, i))y(d′jjE(j, j)) = (diixijd
′

jj)E(i, j) ∈ B, we have that there exists z ∈ B such

that (diixijd
′

jj)E(i, j) = (diixijd
′

jj)E(i, j)z(diixijd
′

jj)E(i, j). By simple computation, we have

diixijd
′

jj = (diixijd
′

jj)zji(diixijd
′

jj) and xij = xijd
′

jjzjidiixij . Thus xij is von Neumann regular.
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This implies Bij ⊆ rn(Aij) and rn(A) ⊆
∑

{rn(Aij) | i, j ∈ I}.

Let N = g.m.rn(A). Since g.m.rn(A//N) = 0, we have that Aij/Nij is an rn-semisimple

Aji/Nji-ring for any i, j ∈ I by Lemma 1.2 (iv). It is clear that Aij/Nij is an rn-semisimple

Aji-ring . This implies rn(Aij) ⊆ Nij for any i, j ∈ I. Consequently,
∑

{rn(Aij) | i, j ∈ I} ⊆

g.m.rn(A). 2

If for any s ∈ I, there exists uss ∈ Ass such that xess = x for any i ∈ I and x ∈ Ais, then we

say that A has a right g.m. unit and uss is a right g.m. unit in Ass. Similarly, we can define a

left g.m. unit of A and g.m. unit of A. In fact, if A has left and right g.m. units, then every ideal

of A is a g.m. ideal, so rn(A) = g.m.rn(A) ⊆
∑

{rn(Aij) | i, j ∈ I} by the proof of Theorem 3.3.

It is clear that if R is a ring and M is a Γ-ring with R = M = Γ, then rn(R) = rn(M). We

also have that r(R) = r(M) for r = rb, rk, rl, rj (see [10, Theorem 5.2], [11, Theorem 10.1], [8,

Theorem 3.3] and [12, Theorem 5.1]).

Theorem 3.4 Let r = rb, rl, rj , rn. Then

(i) r(A) = g.m.r(A) =
∑

{r(Aij) | i, j ∈ I}.

(ii) r(A) =
∑

{r(Aii) | i ∈ I} when Aij = 0 for any i 6= j, i.e., r radical of the direct sum of

rings is equal to the direct sum of r radicals of these rings.

(iii) r(A) is graded by G when the index set I of A is an abelian group G. Moreover the

grading is canonical.

Here A has left and right g.m. non-zero divisors when r = rn in (i), (ii) and (iii).

Proof (i)It is obtained from the following:

rb(A) =g.m.rb(A) =
∑

{rb(Aij) | i, j ∈ I} ( by [8, Theorem 3.7])

rl(A) =g.m.rl(A) =
∑

{rl(Aij) | i, j ∈ I} ( by [12, Theorems 1.3 and 2.5])

rj(A) =g.m.rj(A) =
∑

{rj(Aij) | i, j ∈ I} ( by [12, Theorems 3.10 and 1.3]).

(ii) Since the radicals of ring Aii and Aii-ring Aii are the same, we have (ii).

(iii) The conclusion follows from (i) and [2, Lemma 2.1]. 2

Let Mf
I (R) denote the generalized matrix ring A =

∑

{Aij | Aij = R, i, j ∈ I} with infinite

index set I, which is called an infinite matrix ring over ring R. In this case, Mf
I (k) is called an

infinite matrix algebra over field k. Let Mm×n(R) denote the ring of all (m × n) matrices over

ring R.

Example 3.5 (i) Let V =
∑

g∈G ⊕Vg be a vector space over field k graded by abelian group

G with dimVg = ng < ∞. Let I denote a basis of V . Then
∑

{Aij | Aij = Hom(Vj , Vi), i, j ∈

G} =
∑

{Aij | Aij = Mni×nj
(k), i, j ∈ G} as generalized matrix algebras. However,

∑

{Aij |

Aij = Hom(Vj , Vi), i, j ∈ G} =
∑

{Aij | Aij = Mni×nj
(k), i, j ∈ G} = {f ∈ EndkV |

kerf has finite codimension } = Mf
I (k) =

∑

{Aij | Aij = k, i, j ∈ I} as algebras. Then

r(Mf
I (k)) =

∑

{r(Aij) | Aij = k, i, j ∈ I} = r({f ∈ EndkV | kerf has finite codimension }) = 0

for r = rb, rl, rj . It is clear that generalized matrix algebra A =
∑

{Aij | Aij = Hom(Vj , Vi), i, j ∈

G} has left and right g.m. non-zero divisors if and only if ni = nj for any i, j ∈ G. Con-
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sequently, rn(Mf
I (k)) =

∑

{rn(Aij) | Aij = k, i, j ∈ I} = Mf
I (k). That is, {f ∈ EndkV |

kerf has finite codimension } is a von Neumann regular algebra.

(ii) By Theorem 3.4, r(Mf
I (R)) = Mf

I (r(R)) for r = rb, rl, rj . If R is a ring with left and

right non-zero divisors, then rn(Mf
I (R)) = Mf

I (rn(R)). Obviously, if R has left and right units,

then R is a ring with left and right non-zero divisors (R 6= 0), so rn(Mf
I (R)) = Mf

I (rn(R)).

4. Application in path algebras

Lemma 4.1 Let r denote rb, rk, r1, rj and s, t ∈ I. If Ast 6= 0, then

(i) r(Ast) = 0 if and only if Ats 6= 0.

(ii) r(Ast) = Ast if and only if Ats = 0.

Proof If r(Ast) = 0, then rb(Ast) = 0 and Ats 6= 0. Conversely, if Ats 6= 0 and rj(Ast) 6= 0, then

rj(Ast) = k or there exists y ∈ rj(Ast) with l(y) > 0. Since y is a right quasi-regular element of

Ats-ring Ast, for x ∈ Ats, there exists u ∈ AtsAst such that

y(xy)u + y(xy) = −yu. (2)

If l(u) > 0, then the right hand side of (2) is shorter than the left hand side of (2), we get a

contradiction. If l(u) = 0, then the left hand side of (2) is either equal to zero, or longer than the

right hand side of (2). We get a contradiction. This implies that rj(Ast) = 0 and r(Ast) = 0. 2

Lemma 4.2 rn(Ast) = 0 for any s 6= t.

Proof For any 0 6= x ∈ Ast, if x is a von Neumann regular element, then there exists y ∈ Ats

such that x = xyx. Considering the length of both sides we get a contradiction. Consequently,

rn(Ast) = 0. 2

Theorem 4.3 (i) As radicals, r(A) = g.m.r(A) =
∑

{r(Aij) | i, j ∈ I} = kR(D), where r

denotes rb, r1, rk and rj .

(ii) rn(A) = g.m.rn(A) = ⊕{Nii | i ∈ I}, where

Nii =

{

keii = rn(Aii), when Asi = Ais = 0 for any s ∈ I with i 6= s.

0, otherwise .

Proof (i) By Lemma 4.1,
∑

{r(Aij) | i, j ∈ I} ⊆ kR(D). Let x ∈ kR(D) be a regular path from

i to j. Then Aij 6= 0 and Aji = 0, which implies r(Aij) = Aij and x ∈ r(Aij). This has proved
∑

{r(Aij) | i, j ∈ I} = kR(D). It follows that rb(A) = rj(A) = kR(D) from [13, Proposition 5]

or Theorem 3.4. Thus r(A) = kR(D). By [12, Theorem 1.3] or Theorem 3.4, r(A) = g.m.r(A).

We complete the proof.

(ii) Since A has a g.m. unit ess ∈ Ass for any s ∈ I, we have that rn(A) = g.m.rn(A).

By Lemma 4.2 and the proof of Theorem 3.3, we have rn(A) = g.m.rn(A) ⊆
∑

{rn(Aij) | i, j ∈

I} = ⊕{rn(Aii) | i ∈ I}. Let N = rn(A). If Nss 6= 0, then Nss = rn(Ass) = kess by the proof of

Lemma 4.2. For any t ∈ I with t 6= s, since AtsNss = Ats ⊆ Nts = 0, we have Ats = 0. Similarly,

Ast = 0. 2
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Next we give the relations between the radicals of path algebras and connectivity of directed

graphs.

Theorem 4.4 Directed graph D is strong connected if and only if A = A(D) is a prime algebra.

Proof If D is strong connected and A is not prime, then there exist u, v, s, t ∈ I and 0 6= x ∈

Auv, 0 6= y ∈ Ast such that xAy = 0, i.e., xAvsy = 0, which contradicts the strong connectivity

of D. Consequently, A is prime. Conversely, if A is prime, then eiiAijejj 6= 0 for any i, j ∈ I,

which implies that D is strong connected. 2

Theorem 4.5 Every weak component of D has at least two vertexes if and only if rn(A) = 0.

Proof The conclusion follows from Theorem 4.3 (ii). 2

Lemma 4.6 Every directed graph D is the union of all of its unilateral components.

Proof For any path x ∈ Ast, set

K = {E | E is a unilateral connected subgraph of D with x ∈ E}.

By Zorn’s Lemma, we have that there exists a maximal Q in K. 2

Theorem 4.7 Let r denote rb, rk, rl and rj , respectively. The following conditions are equiva-

lent.

(i) Every weak component of D is a strong component.

(ii) Every unilateral component of D is a strong component.

(iii) Weak component, unilateral component and strong component of D are the same.

(iv) D is the union of strong components of D.

(v) D has no regular path.

(vi) Aij = 0 if and only if Aji = 0 for any i, j ∈ I.

(vii) A is a direct sum of prime algebras.

(viii) A is semiprime.

(ix) Aij is a semiprime Aji-ring for i, j ∈ I.

(x) r(Aij) = 0 for any i, j ∈ I.

(xi) r(A) = 0.

Proof By Theorem 4.3, (v), (vi), (viii), (ix), (x) and (xi) are equivalent.

(i)⇒(vi) If i and j belong to the same weak component, then Aij 6= 0 and Aji 6= 0. If i and

j do not belong to the same weak component, then obviously Aij = 0 and Aji = 0.

(ii)⇒(vi) If Aij 6= 0, then there exists a path x ∈ Aij . By Lemma 4.6, x belongs to a certain

unilateral component of D. Consequently, x belongs to a certain strong component of D. This

implies Aji 6= 0.

(vi)⇒(ii) If i and j belong to the same unilateral component of D, then Aij 6= 0 or Aji 6= 0.

Consequently Aij 6= 0 and Aji 6= 0, which implies that i and j belong to the same strong

component of D. Therefore (ii) holds.
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(iv)⇒(vi) If Aij 6= 0, then there exists a path x ∈ Aij and x belongs to a certain strong

component of D. This implies Aji 6= 0.

(vi)⇒(iv) For any arrow x ∈ Aij , we only need show that x belongs to a certain strong

component of D. By Lemma 4.6, there exists a certain unilateral component C of D such that

x ∈ C. Since (ii) and (vi) are equivalent, we have that C is a strong component of D.

(iv)⇒(i) If i and j belong to the same weak component, then there exists a semi-path

x = xii1xi1i2 . . . , xinj . If i and j belong to different strong components, then we can assume that

is is the first vertex, which does not belong to the strong component containing i. Consequently,

Ais−1i 6= 0 and Aiis−1
6= 0, and either Aiis

6= 0 or Aisi 6= 0. Since (iv) and (vi) are equivalent,

we have that Aiis
6= 0 and Aisi 6= 0. We get a contradiction. This shows that i and j belong to

the same strong components.

(iii)⇒(i) It is obvious.

(i)⇒(iii) Since (i) and (ii) are equivalent, we have (iii).

(vii)⇒(viii) It follows from Theorem 3.4 (ii).

(iv)⇒(vii) Let {D(α) | α ∈ Ω} be all of the strong component of D and D = ∪{D(α) | α ∈ Ω}.

Thus A(D) = ⊕{A(D(α)) | α ∈ Ω}. However, for any α ∈ Ω, A(D(α)) is a prime algebra by

Theorem 4.4. We complete the proof. 2

We easily obtain the following by the preceding conclusion for r = rb, rl, rk, rj . D has no

cycle if and only if r(Aij) = Aij for any i 6= j ∈ I; s and t (s 6= t) are not contained in the same

cycle if and only if r(Ast) = Ast; s and t ( s 6= t ) are contained in the same cycle if and only if

r(Ast) = 0.

We give an example to show whether the condition in Theorem 3.3 is a necessary one.

Example 4.8 (i) Let D be a directed graph with vertex set I = {1, 2} and only one arrow x12 ∈

A12. Obviously, A12 = kx12, A11 = ke11, A22 = ke22, A21 = 0, rn(Aii) = keii and rn(Aij) = 0 for

any i, j ∈ I with i 6= j. By Theorem 4.3 (ii), rn(A) = 0 6=
∑

{rn(Aij) | i, j ∈ I}. It is clear that

A has no left g.m. non-zero divisor since A21 = 0. Consequently, it is possible that Theorem 3.3

does not hold if its condition is dropped.

(ii) Let I = {1, 2} and Aij = Mi×j(k) for any i, j ∈ I. It is clear that A has no left g.m.

non-zero divisor in A12 since, for any non-zero x ∈ A12, there exists a non-zero y ∈ A21 such

that xy = 0. However, rn(A) =
∑

{rn(Aij) | i, j ∈ I} = M3×3(k). Consequently, the condition

in Theorem 3.3 is not a necessary condition.
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