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Abstract In the present paper we discuss some properties of book presentation of spatial graphs,

and prove that the book presentation of minimum sheets of a complete graph K2m with even

vertices is unique up to sheet translation and ambient isotopy. We also show this is true for K7.
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1. Introduction

Kobayashi discussed some kinds of standard embeddings into 3-manifolds of spatial graphs

in [1] and [2]. He introduced the concepts of locally unknotted spatial graphs and globally

unknotted (unlinked) spatial graphs, and defined a standard embedding of spatial graphs so that

each spatial graph has such a standard embedding, and the spatial graph has good properties.

The concept of book presentation introduced by Kobayashi, which is also a standard embed-

ding of spatial graphs, is a perfect presentation of spatial graph. In [1] the book presentation of

pseudo Hamilton graphs was studied and the book presentation of minimum sheets for Kn was

given by Kobayashi. Moreover, he conjectured that the book presentation of minimum sheets of

Kn is unique up to the sheet translation and the ambient isotopy. He showed his conjecture is

true for K5 in [2].

In the present paper we discuss some properties of book presentations of spatial graphs, and

prove that the book presentation of minimum sheets of a complete graph K2m with even vertices

is unique up to sheet translation and ambient isotopy, giving a positive answer to Kobayashi’s

conjecture when the vertex number of the complete graph is even. We also show this is true for

K7 at the end.

In Section 2, we will preview some definitions and lemmas, and in Section 3 we will give the

main results and its proofs.
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2. Preliminary

A graph G is denoted by (V,E), where V is a set. The element in V is called a vertex. Let

E be a subset of V × V . Then each of its elements is called an edge.

The set of vertices is denoted by V (G), and the set of edges is denoted by E(G). G is called

a finite graph if V (G) and E(G) are both finite sets, otherwise G is called a infinite graph. Only

finite graph will be discussed in this paper. The number of the vertices in the graph G is called

the rank of the graph. G is called a complete graph if each pair of different vertices are connected

by an edge. The complete graph with rank n is denoted by Kn. Obviously a complete graph of

rank n contains C2
n = 1

2n(n− 1) edges.

LetG be a finite graph. It is well known thatG can be embedded into 3-dimensional Euclidian

space in many ways. Let SE(G) be the set of embeddings from G into R3. An element of SE(G)

is called a spatial embedding of the graph or simply a spatial graph.

Definition 2.1 Let f , g ∈ SE(G), f, g : G → R3, and I = [0, 1] be a unit closed interval. The

map Φ : G× I → R3 × I is called

1) Level preserving, if for any t ∈ I, there exists a map Φt : G → R3 so that Φ(x, t) =

(Φt(x), t).

2) Locally flat, if for any point of the image of Φ, there is a neighborhood N s.t. (N,N ∩

Φ(G × I)) is homeomorphic to the standard pairs of disks (D4, D2) or (D3 × I,Xn × I), n is

non-negative.

3) Between f and g, if there is a real number, so that for all x ∈ G, 0 ≤ t ≤ ε, Φ(x, t) =

(f(x), t); and for all x ∈ G, 1 − ε ≤ t ≤ 1, Φ(x, t) = (g(x), t).

Definition 2.2 Let f , g ∈ SE(G), f, g : G → R3, and I = [0, 1] be a unit closed interval. f

and g are called

1) An ambient isotopic, if there is a level preserving and locally flat embedding map Φ :

G× I → R3 × I between f and g.

2) Cobordism, if there is a locally flat map Φ : G× I → R3 × I between f and g.

3) Isotopic, if there is a level preserving map Φ : G× I → R3 × I between f and g.

Definition 2.3 Let P ′

1 = {(x, y, z) ∈ R3|z = 0, y ≥ 0}. Set

P ′

2 ={(x2, y2, z2) ∈ R3|x2 = x, y2 = y cos θ − z sin θ, z2 = y sin θ + z cos θ,

(x, y, z) ∈ P ′

1, and θ = 2π/n}

· · ·

P ′

k ={(xk, yk, zk) ∈ R3|xk = x, yk = y cos θ − z sin θ, zk = y sin θ + z cos θ,

(x, y, z) ∈ P ′

1, and θ = 2(k − 1)π/n}

· · ·

P ′

n ={(xn, yn, zn) ∈ R3|xn = x, yn = y cos θ − z sin θ, zn = y sin θ + z cos θ,

(x, y, z) ∈ P ′

1, and θ = 2(n− 1)π/n}.
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We call Bn =
⋃n

i=1 P
′

i a book. Let E = {(x, y, z) ∈ R3|y = z = 0}. We call E the binder of Bn.

Let Pi = P ′

i − E. We call Pi the i−th sheet of Bn.

Thus Bn =
⋃n

i=1 P
′

i = E∪
⋃n

i=1 Pi is a book with n-sheets {Pi} and the binder E (See Figure

1).

1
P

2
P

3
P

Binder

Figure 1 A book with 3-sheets

Definition 2.4 Let ψ : G −→ Bn be an embedding satisfying that

(1) ψ(V (G)) ⊂ E ⊂ Bn,

(2) For any edge e ∈ E(G), ψ(e) ⊂ E or ψ(Int(e)) ⊂ Pi for some Pi and

(3) For any sheet Pi there is at least one edge e of G with ψ(Int(e)) ⊂ Pi.

Then we call G̃ = ψ(G) (or the embedding ψ) a book presentation of G with n sheets. It is clear

that 0 ≤ n ≤ |E(G)|. When n is minimum, we call G̃ a book presentation of G with minimum

sheets.

Definition 2.5 For a finite graphG, if there is a simple edge path (or simple arc) in G containing

all vertices of G, we call the path a Hamilton path and G a pseudo Hamiltonian. Furthermore, if

there is a simple closed path on G containing all vertices of G, we call it a Hamilton cycle. Let ∆

be a Hamilton path. If a book presentation ψ : G −→ Bn satisfies ψ(∆) ⊂ E, we call G̃ = ψ(G)

a book presentation with respect to the Hamilton path ∆, or simply, call ψ a B.P.H.∆.

Some properties of spatial graphs can be found in [3] and [4]. The following three lemmas

can be found in [1]:

Lemma 2.6 Let ψ : Kn −→ Bp be a B.P.H.∆ of a complete graph Kn. Then every sheet of

Bp cannot contain (n− 1) edges.

Lemma 2.7 Let ψ : Kn −→ Bp be a B.P.H.∆ of a complete graph Kn. Then there is at most

one sheet containing (n− 2) edges.

Lemma 2.8 Let Kn be a complete graph with n vertices and ψ : Kn −→ Bp be a B.P.H.∆

with p-sheets. Then [(n+ 1)/2] ≤ p ≤ (n− 1)(n− 2)/2 for n ≥ 4 and p = 1 for n = 3, where [k]

is the greatest integer less than or equal to k.
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Definition 2.9 Let Bp = E ∪
⋃p

i=1 Pi be a book with p sheets, where Pi is the i-th sheet. If

h : Bp −→ Bp is a homeomorphism satisfying

(1) h|E = id, and

(2) h(Pi) = Pσ(i)
, where σ is a permutation of {1, 2, . . . , p},

then we call h a sheet translation.

3. The uniqueness of book presentation of K2m

First we prove several properties for book presentations of K2m.

Theorem 3.1 If there is a Hamilton cycle γ in K2m so that ∆ = γ − (Vs, Vt) is a Hamilton

path, then the B.P.H.∆ with minimum sheets has 2m−2 possibilities.

Proof For a Hamilton cycle γ in K2m, assume the vertices in order along γ are V1, V2, . . . , V2m.

Let ∆ = γ− (V1, V2m). Given an edge (Vi, Vj), the length of (Vi, Vj) is denoted by |j− i| and the

set of edges with length l are denoted by E(l). By Lemma 3, the B.P.H.∆ of K2m − (V1, V2m)

with minimum sheets contains m sheets, denoted by P1, P2, . . . , Pm. There are m edges with

length m in K2m − (V1, V2m), namely, (V1, Vm+1), (V2, Vm+2), . . . , (Vm, V2m). And these m edges

cannot pairwise lie in one sheet. That is, they must be in m distinguished sheets respectively.

Without loss of generality, assume (V1, Vm+1) ⊂ P1, (V2, Vm+2) ⊂ P2, . . . , (Vm, V2m) ⊂ Pm.

In the following we will divide it into m − 2 steps and construct all possible B.P.H.∆ of

K2m − (V1, V2m) by adding m+ i edges and m− i edges in each step.

Firstly, add two edges with length m + 1 and m − 1. There are m − 1 edges with length

m+1, i.e., E(m+1) = {(V1, Vm+2), (V2, Vm+3), . . . , (Vm−1, V2m)}; and there are m+1 edges with

length m− 1, i.e., E(m− 1) = {(V1, Vm), (V2, Vm+1), . . . , (Vm+1, V2m)}. Because of the existence

of edges with length m, there are only two possibilities for each edge above, and once one edge

is fixed, the other edges position will be fixed. For instance the edge (V1, Vm+2) can only be put

into sheet P1 or P2.

If (V1, Vm+2) is put into sheet P1, we have one possibility:

(V1, Vm+2) ⊂ P1; (Vm+1, V2m) ⊂ Pm; (Vm, V2m−1) ⊂ Pm−1; · · · ; (V2, Vm+1) ⊂ P1; (V1, Vm) ⊂

Pm; (Vm−1, V2m) ⊂ Pm−1; · · · ; (V2, Vm+2) ⊂ P2.

If (V1, Vm+2) is put into sheet P2, we have the other possibility:

(V1, Vm+2) ⊂ P2; (V2, Vm+3) ⊂ P3; · · · ; (Vm−1, V2m) ⊂ Pm; (V1, Vm) ⊂ P1; (V2, Vm+1) ⊂ P2;

· · · ; (Vm, V2m−1) ⊂ Pm; (Vm+1, V2m) ⊂ P1.

Then we have the following two case.

Case 1 The location of the edges are: (V1, Vm+2), (V2, Vm+1) ⊂ P1; (V2, Vm+3), (V3, Vm+2) ⊂ P2;

· · · ; (Vm−1, V2m), (Vm, V2m−1) ⊂ Pm−1; (V1, Vm), (Vm+1, V2m) ⊂ Pm.

Case 2 The location of the edges are: (V1, Vm), (Vm+1, V2m) ⊂ P1; (V1, Vm+2), (V2, Vm+1) ⊂ P2;

· · · ; (Vm−2, V2m−1), (Vm−1, V2m−2) ⊂ Pm−1; (Vm−1, V2m), (Vm, V2m−1) ⊂ Pm.

Note that in both Cases 1 and 2, only two edges are added in one sheet and each pair of the
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two edges are fixed which implies that Cases 1 and 2 are equivalent up to ambient isotopy.

Secondly, we will prove the following conclusions by induction.

(1) Each step induces two different possibility;

(2) Two different edges will be added in each sheet each step;

(3) The two different possibilities are ambient isotopy.

Suppose in the i-th step, the sheets with edges of length m+ i and m− i satisfy:

(V1, Vm+i+1), (Vi+1, Vm+1) ⊂ Px1 ;

(V2, Vm+i+2), (Vi+2, Vm+2) ⊂ Px2 ;

· · ·

(Vm−i, V2m), (Vm, V2m−i) ⊂ Pxm−i
;

(V1, Vm−i+1), (Vm+1, V2m−i+1) ⊂ Pxm−i+1 ;

· · ·

(Vi, Vm), (Vm+i, V2m) ⊂ Pxm
,

where {x1, x2, . . . , xm} is a permutation of {1, 2, . . . ,m}.

By the existence of the edges in E(m − i), E(m − i + 1), . . . , E(m + i − 1), E(m + i), each

edge in E(m + i + 1) or E(m − i − 1) can only be put in two ways. There are m − i− 1 edges

in E(m + i + 1), and they are: (V1, Vm+i+2), . . . , (Vm−i−1, V2m); there are m + i + 1 edges in

E(m− i− 1), and they are: (V1, Vm−i), . . . , (Vm+i+1, V2m).

(V1, Vm+i+2) can be put in two ways, one is in sheet Px1 , and the other is in sheet Px2 . If

(V1, Vm+i+2) is fixed in Px1 , the positions of E(m+ i+ 1) and E(m− i− 1) are fixed. Hence we

get Case I:

(V1, Vm+i+2) ⊂ Px1 ; (Vm+i+1, V2m) ⊂ Pxm
; (Vm+i, V2m−1) ⊂ Pxm−1 ; · · · ; (Vi+2, Vm+1) ⊂ Px1 ;

(Vi+1, Vm) ⊂ Pxm
; · · · ; (V1, Vm−i) ⊂ Pxm−i

; (Vm−i−1, V2m) ⊂ Pxm−i−1 ; · · · ; (V2, Vm+i+3) ⊂ Px2 .

Thus we have:

(V1, Vm+i+2), (Vi+2, Vm+1) ⊂ Px1 ; (V2, Vm+i+3), (Vi+3, Vm+2) ⊂ Px2 ; · · · ;

(Vm−i−1, V2m), (Vm, V2m−i−1) ⊂ Pxm−i−1 ; (V1, Vm−i), (Vm+1, V2m−i) ⊂ Pxm−i
;

(V2, Vm−i+1), (Vm+2, V2m−i+1) ⊂ Pxm−i+1 ; · · · ; (Vi+1, Vm), (Vm+i+1, V2m) ⊂ Pxm
.

If (V1, Vm+i+2) is fixed in Px2 , then we can put the edges into the book in the following ways,

which we call Case II:

(V1, Vm+i+2) ⊂ Px2 ; (V2, Vm+i+3) ⊂ Px3 ; · · · ; (Vm−i−1, V2m) ⊂ Pxm−i
;

(V1, Vm−i) ⊂ Pxm−i+1 ; · · · ; (Vi, Vm−1) ⊂ Pxm
; (Vi+1, Vm) ⊂ Px1 ; · · · ;

(Vm, V2m−i−1) ⊂ Pxm−i
; (Vm+1, V2m−i) ⊂ Pxm−i−1 ; · · · ;

(Vm+i, V2m−1) ⊂ Pxm
; (Vm+i+1, V2m) ⊂ Px1 .

That is,

(Vi+1, Vm), (Vm+i+1, V2m) ⊂ Px1 ; (V1, Vm+i+2), (Vm+i+1, V2m) ⊂ Px2 ; · · · ;

(Vm−i−1, V2m), (Vm, V2m−i−1) ⊂ Pxm−i
; (V1, Vm−i), (Vm+1, V2m−i) ⊂ Pxm−i+1 ; · · · ;

(Vi−1, Vm−1), (Vm+i, V2m−1) ⊂ Pxm
.
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In the above two cases, each sheet contains one pair of edges. For Case I, by an isotopy as

Px1

(V1,Vm+i+2),(Vi+2,Vm+1)
−−−−−−−−−−−−−−−−→ Px2

(V2,Vm+i+3),(Vi+3,Vm+2)
−−−−−−−−−−−−−−−−→ Px3 → · · ·

→ Pm

(Vi+1,Vm),(Vm+i+1,V2m)
−−−−−−−−−−−−−−−−→ Px1 ,

we get Case II.

The construction will end inm−2 steps, and each step is done in two different ways. Therefore

the B.P.H.∆ of K2m − (Vs, Vt) with minimum sheets has 2m−2 possibilities. 2

Theorem 3.2 The 2m−2 B.P.H.∆ in Theorem 3.1 are pairwise ambient isotopic.

Proof By the proof of Theorem 1, there are m − 2 steps and each step has two possibilities.

Without loss of generality, denote the character string by {x1, . . . , xm−2|xi = 0 or 1}. Choose two

B.P.H.∆, which are different only on the (i+ 1)−th step, denoted by {a1, . . . , ai+1, . . . , am−2},

{b1, . . . , bi+1, . . . , bm−2}, aj = bj , j 6= i+ 1; ai+1 = 0, bi+1 = 1.

Consider the (i+ 1)-st step in the construction in Theorem 1. The edges in sheet Pxj
whose

lengths are greater than or equal to m+ i+ 1, and less than or equal to m− i− 1 are denoted

by:

Sj = (E(m+ i+ 1) ∪ E(m− i− 1) ∪ · · · ∪ E(2m− 2) ∪ E(2)) ∩ Pxj
.

Change {a1, . . . , ai+1, . . . , am−2} by isotopy as Px1

S1−→ Pxi

S2−→ Px3 −→ · · · −→ Pm
Sm−→ Px1 ,

We will get {b1, . . . , bi+1, . . . , bm−2}.

For any two B.P.H.∆, if they are different in n steps in the construction, then they are

equivalent to each other by n ambient isotopies.

This completes the proof. 2

By using Theorems 3.1 and 3.2, we can get

Theorem 3.3 Let ∆ be a Hamilton path in K2m. Then the B.P.H.∆ of K2m with minimum

sheets is unique up to sheet translation and ambient isotopy.

Proof By Theorems 3.1 and 3.2, the B.P.H.∆ of K2m − (V1, V2m) with minimum sheets is

unique up to sheet translation and ambient isotopy. By Lemma 2.8, the B.P.H.∆ of K2m with

minimum sheets needs m sheets, and (V1, V2m) can be ambient isotopy to any sheet. Therefore

the B.P.H.∆. ofK2m with minimum sheets is unique up to sheet translation and ambient isotopy.

The cases of a complete graph K2m+1 with vertices 2m+ 1 (m ≥ 2) are much more compli-

cated. So far only the book presentation of K5 is known to be unique up to sheet translation

and ambient isotopy[2]. In the following we show the same happens for K7.

Theorem 3.4 Let ∆ be a Hamilton path in K7. Then the B.P.H.∆ of K7 with minimum sheets

is unique up to sheet translation and ambient isotopy.
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Figure 2 The standard graph of K7

Proof One B.P.H.∆ of K7, which is called standard graph, is given in Figure 2. Without loss

of generality, denote the four sheets by A,B,C,D so that (1, 5) ⊂ A, (2, 6) ⊂ B, (3, 7) ⊂ C. For

any given embedding of K7, (1,5), (2,6) and (3,7) lie in three different sheets, which are denoted

by A′, B′, C′, reapectively, and the remainder one is denoted by D′. Next we only need to prove

that A,B,C,D and A′, B′, C′, D′ are equivalent by sheet translation and ambient isotopy.

At first if (5,7) is not in sheet A′, move (5,7) to sheet A′. Because (1,5) is fixed, only edge

(1,6) may be affected by the change. Thus if it is, move (1,6) to B′. Then only (2,7) may be

affected. If it is, change (2,7) to sheet C′. Then (1,3) may be affected, and if it is, move it

to sheet A′. Note that both two edges (2,4) and (2,5) may be affected. We discuss it in the

followings:

1) If only (2,4) is affected, move it to sheet B′. In this case, (3,5) and (3,6) may be affected.

1.1) If only (3,5) is affected, move it to sheet C′. In this case (4,6) and (4,7) may be affected.

1.1.1) If only (4,6) is affected, move it to sheet D′. Then (2,5) may be affected by this

change, if it is, move it to B′. Then no other edge will be affected. In this case (4,7) must lie in

sheet D′, and the remainings (1,4), (3,6) can be changed to the position in the standard graph

without affecting the others.

1.1.2) If only (4,7) is affected, (4,7) must lie on sheet C′ and (3,6) must lie on sheet D′. In

this case, change (3,7) from sheet C′ to sheet D′, which will not affect any other edge. In this

way, the mark of sheet C′ and D′ are exchanged. Then change (3,5) to the new sheet C′ and

(4,6) to sheet D′ if it is affected. At last move the remains to the position in the standard graph.

1.1.3) If both (4,6) and (4,7) are affected, move both two to sheet D′. In this change, (3,6),

(2,5) may be affected. As above we can put all edges to the position as in the standard graph.

1.2) If only (3,6) is affected, we discuss the sheet where (4,7) lies as follows:

1.2.1) If (4,7) is in sheet D′, move (3,4) to sheet C′ which will not affect the other edges.

Then we only need to move the remaining edges to the position as in the standard graph in order

by ambient isotopy.

1.2.2) If (4,7) is in sheet C′, move (3,6) to sheet D′. In this change (1,4) and (2,5) may be

affected, while they both cannot be put in one sheet. If (1,4) is affected, move it to sheet A′, then

(3,5) may be affected. If it is, move it to sheet D′. And in this change (4,6) may be affected. If

it is, move it to sheet C′ and it will not affect any other edge again. To be the standard graph,

the last step is to move (3,7) and (2,7) to sheet D′ and exchange the mark of C′ and D′; if (2,5)

is affected, move it to sheet B′, then (4,6) may be affected. If it is, move it to sheet C′. Then
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(1,4) and (3,5) must lie on sheetA′ and D′ respectively. And move (3,7) and (2,7) to sheet D′,

as above, exchange the mark of C′ and D′, it will be the standard graph.

1.3) If both (3,5) and (3,6) are affected, move them to sheet C′. In this changing (4,6) and

(4,7) may be affected, which is similar to the conditions in Case 1.1. By the similar discussions

we will get the standard graph.

2) If only (2,5) is affected, move it to sheet B′. In the change, only (3,6) can be affected.

By the similar discussions to Case 1.2, we again get the standard graph.

3) If both (2,4) and (2,5) are affected, move it to sheet B′. In the change, (3,5) and (3,6) may

be affected. It is the same as Case 1 except for that the edge (2,5) is in the standard position.

We can discuss similarly to Case 1 to get the standard graph.

This completes the proof. 2
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