# Green's Relations on Semigroups of Transformations Preserving Two Equivalence Relations 

SUN Lei ${ }^{1,2}$, PEI Hui Sheng ${ }^{3}$<br>(1. School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China;<br>2. School of Sciences, Xi'an Jiaotong University, Shaanxi 710049, China;<br>3. Department of Mathematics, Xinyang Normal University, Henan 464000, China)<br>(E-mail: sunlei97@163.com)


#### Abstract

Let $\mathcal{T}_{X}$ be the full transformation semigroup on a set $X$. For a non-trivial equivalence $F$ on $X$, let $$
T_{F}(X)=\left\{f \in \mathcal{T}_{X}: \forall(x, y) \in F,(f(x), f(y)) \in F\right\}
$$

Then $T_{F}(X)$ is a subsemigroup of $\mathcal{T}_{X}$. Let $E$ be another equivalence on $X$ and $T_{F E}(X)=$ $T_{F}(X) \cap T_{E}(X)$. In this paper, under the assumption that the two equivalences $F$ and $E$ are comparable and $E \subseteq F$, we describe the regular elements and characterize Green's relations for the semigroup $T_{F E}(X)$.


Keywords transformation semigroup; equivalence; regular element; Green's relations.
Document code A
MR(2000) Subject Classification 20M20
Chinese Library Classification O152.7

## 1. Introduction

Green's relations are five equivalences that have played an important role in the development of semigroup theory ${ }^{[1]}$. Let $X$ be a set with $|X| \geq 3$ and $\mathcal{T}_{X}$ be the full transformation semigroup on the set $X$. In [2], the author observed a kind of transformation semigroup determined by an equivalence $F$ on $X$, that is,

$$
T_{F}(X)=\left\{f \in \mathcal{T}_{X}: \forall(x, y) \in F,(f(x), f(y)) \in F\right\} .
$$

It is easy to see that $T_{F}(X)=\mathcal{T}_{X}$ if $F=\{(x, x), x \in X\}$ or $F=X \times X$. Some interesting properties for $T_{F}(X)$ were studied in some papers. For example, in [3] and [4], the author observed some subsemigroups of $T_{F}(X)$ which induce certain lattices. In [5] and [6] some special congruences on $T_{F}(X)$ were investigated, and Green's relations on $T_{F}(X)$ were described in [7] and so on.

Let $E$ be another equivalence on $X$. In [2] the author also studied the semigroup

$$
T_{F E}(X)=T_{F}(X) \cap T_{E}(X)
$$

Received date: 2007-03-31; Accepted date: 2008-10-06
Foundation item: the Natural Science Found of Henan Province (No. 0511010200); the Doctoral Fund of Henan Polytechnic University (No. B2009-56); the Natural Science Research Project for Education Department of Henan Province (No. 2009A110007).
and determined the suitable lattice of $T_{F E}(X)$.
The regular elements and Green's relation on the semigroups $T(X, \rho, R)$ consisting of transformations preserving an equivalence relation and a cross-section, and on the semigroups $\mathcal{O}_{E}(X)$ consisting of transformations preserving order and an equivalence relation were considered in [8] and [9], respectively. Clearly, $T_{F E}(X)$ is a subsemigroup of both $T_{F}(X)$ and $T_{E}(X)$ and so $f \in T_{F E}(X)$ should preserve two equivalences on $X$. Naturally, we may ask how to describe the regular elements and Green's relations on $T_{F E}(X)$ ? However, this is a difficult problem, mainly because we have great difficulty in constructing the desired maps. In this paper, we consider a special case, that is, $F$ and $E$ are comparable. For convenience, we assume, in the remainder, that $T_{F E}(X)$ will denote $T_{F}(X) \cap T_{E}(X)$ and that $E \subseteq F$, which is crucial for all that follows. Under the above assumption, each $E$-class is contained in some $F$-class, while each $F$-class is a union of some $E$-classes.

This paper is organized as follows. In Section 2, we observe the conditions under which an element $f \in T_{F E}(X)$ is regular. In Section 3, Green's relations on $T_{F E}(X)$ are considered and the relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and $\mathcal{J}$ are completely characterized for arbitrary elements.

Now we recall some concepts and notations which will be used in the sequel. Denote by $X / F$ the quotient set. The symbol $\pi(f)$ will denote the partition of $X$ induced by $f \in \mathcal{T}_{X}$, namely,

$$
\pi(f)=\left\{f^{-1}(y): y \in f(X)\right\}
$$

Also, for a subset $A \subseteq X$, we denote

$$
\pi_{A}(f)=\{M \in \pi(f): M \cap A \neq \emptyset\}
$$

Lemma 1.1 ${ }^{[7]}$ Let $f \in \mathcal{T}_{X}$. Then $f \in T_{F}(X)$ if and only if for each $B \in X / F$, there exists some $B^{\prime} \in X / F$ such that $f(B) \subseteq B^{\prime}$. Consequently, if $f \in T_{F}(X)$, then for each $A \in X / F$, the set $f^{-1}(A)$ is a union of some $F$-classes or $f^{-1}(A)=\emptyset$.

For each $f \in T_{F}(X)$, let

$$
F(f)=\left\{f^{-1}(A): A \in X / F \text { and } f^{-1}(A) \neq \emptyset\right\}
$$

Then $F(f)$ is also a partition of $X$. It is clear that $\pi(f)$ refines $F(f)$ and that $x, y \in V \in F(f)$ if and only if $(f(x), f(y)) \in F$. Moreover, for each $V \in F(f)$, there exists some $A \in X / F$ such that $f(V)=A \cap f(X)$. We have similar notations for $f \in T_{E}(X)$. For standard terms and concepts in semigroup theory, one may consult [1].

## 2. The regular elements of $T_{F E}(X)$

In this section, we observe when an element $f \in T_{F E}(X)$ is regular.
Theorem 2.1 Let $f \in T_{F E}(X)$. Then $f$ is regular if and only if for each $A \in X / F$, there exists some $B \in X / F$ such that $A \cap f(X) \subseteq f(B)$, while for each $E$-class $A^{\prime} \subseteq A$, there exists some $E$-class $B^{\prime} \subseteq B$ such that $A^{\prime} \cap f(X) \subseteq f\left(B^{\prime}\right)$.

Proof Suppose that $f$ is regular in $T_{F E}(X)$. Then there exists $g \in T_{F E}(X)$ such that $f=f g f$.

Let $A \in X / F$. If $A \cap f(X)=\emptyset$, then $A \cap f(X) \subseteq f(B)$ for some $F$-class $B$. If $A \cap f(X) \neq \emptyset$, take $y \in A \cap f(X)$ and $x \in X$ so that $y=f(x)$. Let $g(A) \subseteq B \in X / F$. Then

$$
y=f(x)=f g f(x)=f g(y) \in f g(A) \subseteq f(B)
$$

and it follows that $A \cap f(X) \subseteq f(B)$. Let $A^{\prime} \in X / E$ with $A^{\prime} \subseteq A$. If $A^{\prime} \cap f(X)=\emptyset$, then $A^{\prime} \cap f(X) \subseteq f\left(B^{\prime}\right)$ for some $B^{\prime} \in X / E$ with $B^{\prime} \subseteq B$. Now suppose that $A^{\prime} \cap f(X) \neq \emptyset$. Let $y^{\prime} \in A^{\prime} \cap f(X)$. Then there exists some $x^{\prime} \in X$ such that $y^{\prime}=f\left(x^{\prime}\right)$. Assume $g\left(A^{\prime}\right) \subseteq B^{\prime} \in X / E$. Then

$$
y^{\prime}=f\left(x^{\prime}\right)=f g f\left(x^{\prime}\right)=f g\left(y^{\prime}\right) \in f g\left(A^{\prime}\right) \subseteq f\left(B^{\prime}\right)
$$

so $A^{\prime} \cap f(X) \subseteq f\left(B^{\prime}\right)$. Noticing that $A^{\prime} \subseteq A, g\left(A^{\prime}\right) \subseteq B^{\prime}$ and $g(A) \subseteq B$, we have

$$
g\left(A^{\prime}\right) \subseteq g(A) \subseteq B
$$

By the hypothesis $E \subseteq F$, we can deduce that $B^{\prime} \subseteq B$ and the necessity follows.
Conversely, suppose the condition holds and we need to find some $g \in T_{F E}(X)$ such that $f=f g f$. Let $A \in X / F$ and $A \cap f(X) \subseteq f(B)$ for some $B \in X / F$. Suppose $B=\cup_{i \in I} B_{i}$ where $B_{i} \in X / E$. Thus $A \cap f(X) \subseteq f\left(\cup_{i \in I} B_{i}\right)$. If $A \cap f(X)=\emptyset$, then we define $g(x)=x$ for each $x \in A$. If $A \cap f(X) \neq \emptyset$, fix $b \in B$ and $b_{i}^{\prime} \in B_{i}$ for each $i$. For each $x \in A$, there exists some $A^{\prime} \in X / E$ such that $x \in A^{\prime} \subseteq A$. Moreover, by the hypothesis, there exists $E$-class $B_{i} \subseteq B$ such that $A^{\prime} \cap f(X) \subseteq f\left(B_{i}\right)$. We first consider the case that $A^{\prime} \cap f(X) \neq \emptyset$. If $x \in A^{\prime} \cap f(X)$, then $x=f\left(b_{i}\right)$ for some $b_{i} \in B_{i}$ and define $g(x)=b_{i}$. If $x \notin A^{\prime} \cap f(X)$, then define $g(x)=b_{i}^{\prime}$. Secondly, if $A^{\prime} \cap f(X)=\emptyset$, then we define $g(x)=b$ for each $x \in A^{\prime}$. Thus we have defined $g$ on each $A \in X / F$, consequently, on all of $X$. One routinely verifies that $g \in T_{F E}(X)$. To see that $f=f g f$, take any $x \in X$ and let $y=f(x) \in A^{\prime} \cap f(X) \subseteq A \cap f(X)$ where $A \in X / F$ and $A^{\prime} \in X / E$. By the definition of $g$, we have $g(y)=b_{i}$ where $b_{i} \in B_{i} \subseteq B$ with $f\left(b_{i}\right)=y$. Thus $f(g(f(x)))=f(g(y))=f\left(b_{i}\right)=y=f(x)$, which implies $f=f g f$ and $f$ is regular in $T_{F E}(X)$. The proof is completed.

## 3. Green's relations on $T_{F E}(X)$

In this section, we characterize Green's relations on $T_{F E}(X)$ and begin with the relation $\mathcal{L}$. Recall that, in [7], a map $\phi: Y \rightarrow Z$ where $Y, Z \subseteq X$ is said to be $F$-preserving if $F$ is an equivalence on $X$ and $\left(\phi(y), \phi\left(y^{\prime}\right)\right) \in F$ for each $\left(y, y^{\prime}\right) \in F$ with $y, y^{\prime} \in Y$. If $\phi$ satisfies that $\left(\phi(y), \phi\left(y^{\prime}\right)\right) \in F$ if and only if $\left(y, y^{\prime}\right) \in F$, then $\phi$ is said to be $F^{*}$-preserving.

Definition 3.1 If $\phi$ is both $F$-preserving and $E$-preserving, then $\phi$ is said to be $F E$-preserving. If $\phi$ is both $F^{*}$-preserving and $E^{*}$-preserving, then $\phi$ is said to be $F^{*} E^{*}$-preserving.

Remark 1 An element $f \in T_{F E}(X)$ being either $E^{*}$-preserving and $F$-preserving, or $F^{*}$ preserving and $E$-preserving, is not necessarily $F^{*} E^{*}$-preserving. For example, let $X=\{1,2, \ldots\}$, $X / F=\left\{A_{1}, A_{2}\right\}$ and $X / E=\left\{A_{1}, B_{1}, B_{2}, B_{3}, \ldots\right\}$, where $A_{1}=\{1,2\}, A_{2}=\{3,4, \ldots\}, B_{1}=$
$\{3,4\}, B_{2}=\{5,6\}, B_{3}=\{7,8\}, \ldots$. It is clear that $E \subseteq F$. Let

$$
g=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
3 & 4 & 5 & 6 & 7 & 8 & \cdots
\end{array}\right), \quad h=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
1 & 2 & 5 & 6 & 5 & 6 & 7 & 8 & \cdots
\end{array}\right)
$$

Then both $g$ and $h$ are $F E$-preserving. It is not hard to verify that $g$ is $E^{*}$-preserving, but not $F^{*}$-preserving while $h$ is $F^{*}$-preserving, but not $E^{*}$-preserving. So both $g$ and $h$ are not $F^{*} E^{*}$-preserving.

Theorem 3.2 Let $f, g \in T_{F E}(X)$. Then the following statements are equivalent:
(1) $(f, g) \in \mathcal{L}$;
(2) $\pi(f)=\pi(g), F(f)=F(g)$ and $E(f)=E(g)$;
(3) There exists an $F^{*} E^{*}$-preserving bijection $\phi: f(X) \rightarrow g(X)$ such that $g=\phi f$.

Proof $(1) \Longrightarrow(2)$. Suppose $(f, g) \in \mathcal{L}$ in $T_{F E}(X)$. Then $(f, g) \in \mathcal{L}$ in both $T_{F}(X)$ and $T_{E}(X)$. By Theorem 3.1 of [7], it follows readily that $\pi(f)=\pi(g), F(f)=F(g)$ and $E(f)=E(g)$.
$(2) \Longrightarrow(3)$. Define $\phi: f(X) \rightarrow g(X)$ by $\phi(x)=g\left(f^{-1}(x)\right)$ for each $x \in f(X)$. Then $\phi$ is well-defined (since $\pi(f)=\pi(g))$ and $g=\phi f$. It is routine to show $\phi$ is $F^{*} E^{*}$-preserving.
$(3) \Longrightarrow(1)$. Suppose that (3) holds. We need to find some $h, k \in T_{F E}(X)$ such that $g=h f$ and $f=k g$. For $A \in X / F$, assume $A=\cup_{i \in I} B_{i}$ where $B_{i} \in X / E$. Denote $A^{\prime}=A \cap f(X)$. If $A^{\prime}=\emptyset$, then define $h(x)=x$ for each $x \in A$. Now assume $A^{\prime} \neq \emptyset$. Since $\phi$ is $F^{*}$-preserving, there exists $D \in X / F$ such that $\phi\left(A^{\prime}\right) \subseteq D \cap g(X)$. Fix $d \in D$. Notice that $\phi$ is also $E^{*}$-preserving. For each $i \in I$ with $B_{i} \cap f(X) \neq \emptyset$, there exists some $C_{i} \in X / E$ such that $\phi\left(B_{i} \cap f(X)\right) \subseteq C_{i} \subseteq D$. Fix $c_{i} \in C_{i}$ for each $i \in I$ with $B_{i} \cap f(X) \neq \emptyset$ and define

$$
h(x)= \begin{cases}\phi(x), & x \in A^{\prime} \\ c_{i}, & x \in A-A^{\prime}, x \in B_{i} \in X / E \text { and } B_{i} \cap f(X) \neq \emptyset \\ d, & x \in A-A^{\prime}, x \in B_{i} \in X / E \text { and } B_{i} \cap f(X)=\emptyset\end{cases}
$$

In this way, we have defined the map $h$ on each $F$-class $A$ and, consequently, on all of $X$. It is not difficult to check that $h \in T_{F}(X)$ and $h \in T_{E}(X)$, namely, $h \in T_{F E}(X)$. Finally, we verify that $g=h f$. Let $x \in X$ and assume $f(x) \in A \cap f(X)$ for $A \in X / F$. Then $h f(x)=\phi(f(x))=g(x)$ and $g=h f$. Similarly, one may find some $k \in T_{F E}(X)$ such that $f=k g$. So $(f, g) \in \mathcal{L}$.

In what follows we investigate the relation $\mathcal{R}$. We need some preparations before stating the conclusion. Let $f, g \in T_{F}(X)$. Recall that a map $\psi: \pi(f) \rightarrow \pi(g)$ is said to be $F$-admissible, if for each $A \in X / F$, there exists some $B \in X / F$ such that $B \cap \psi(P) \neq \emptyset$ for each $P \in \pi_{A}(f)$. If $\psi$ is bijective and both $\psi$ and $\psi^{-1}$ are $F$-admissible, then $\psi$ is said to be $F^{*}$-admissible. This concept was useful in describing the relation $\mathcal{R}$ on $T_{F}(X)$ in [7]. To describe the relation $\mathcal{R}$ on $T_{F E}(X)$, we need the following terminology.

Definition 3.3 Let $\psi: \pi(f) \rightarrow \pi(g)$ be a map with $f, g \in T_{F E}(X)$. Suppose for each $A \in X / F$, there exists $B \in X / F$ such that $B \cap \psi(P) \neq \emptyset$ for each $P \in \pi_{A}(f)$, while for each $A^{\prime} \in X / E$ with $A^{\prime} \subseteq A$, there exists $B^{\prime} \in X / E$ with $B^{\prime} \subseteq B$ such that $B^{\prime} \cap \psi\left(P^{\prime}\right) \neq \emptyset$ for each $P^{\prime} \in \pi_{A^{\prime}}(f)$. Then $\psi$ is said to be $F E$-admissible. If $\psi$ is bijective and both $\psi$ and $\psi^{-1}$ are $F E$-admissible,
then $\psi$ is said to be $F^{*} E^{*}$-admissible.
Remark 2 If $\psi: \pi(f) \rightarrow \pi(g)$ is $F E$-admissible, then $\psi$ is both $F$-admissible and $E$-admissible. However, the converse is not, in general, true. For example, let $X=\{1,2, \ldots\}, X / F=\left\{A_{1}, A_{2}\right\}$ and $X / E=\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$, where $A_{1}=\{1,2,3,4\}, A_{2}=\{5,6, \ldots\}, B_{1}=\{1,2\}, B_{2}=\{3,4\}$, $B_{3}=\{5,6\}, \ldots$. It is clear that $E \subseteq F$. Let
$f=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \cdots \\ 5 & 6 & 7 & 8 & 9 & 10 & \cdots\end{array}\right), \quad g=\left(\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\ 5 & 6 & 7 & 7 & 5 & 5 & 6 & 6 & 7 & 8 & 9 & 10 & \cdots\end{array}\right)$.
Clearly, $f, g \in T_{F E}(X)$, while $\pi(f)=\{\{1\},\{2\}, \ldots\}$ and $\pi(g)=\{\{1,5,6\},\{2,7,8\},\{3,4,9\}$, $\{10\},\{11\}, \ldots\}$. Define $\psi: \pi(f) \rightarrow \pi(g)$ as follows:

$$
\begin{gathered}
\psi(\{1\})=\{1,5,6\}, \psi(\{2\})=\{2,7,8\}, \psi(\{3\})=\{3,4,9\}, \\
\psi(\{4\})=\{10\}, \psi(\{5\})=\{11\}, \psi(\{6\}=\{12\}, \ldots .
\end{gathered}
$$

It is not hard to verify that $\psi$ is both $F$-admissible and $E$-admissible, but not $F E$-admissible. In fact, for $E$-classes $B_{1}$ and $B_{2}$ which are contained in the $F$-class $A_{1}$, there exist $E$-classes $B_{1}$ and $B_{5}$ such that $\psi\left(\pi_{B_{1}}(f)\right) \subseteq \pi_{B_{1}}(g)$ and $\psi\left(\pi_{B_{2}}(f)\right) \subseteq \pi_{B_{5}}(g)$. While there is no $E$-class $B \neq B_{5}$ such that $\psi\left(\pi_{B_{2}}(f)\right) \subseteq \pi_{B}(g)$. Note that $B_{1}$ and $B_{5}$ are contained in the different $F$-classes. By Definition 3.3, $\psi$ is not $F E$-admissible.

For each $h \in \mathcal{T}_{X}$, let $h_{*}$ denote the map from $\pi(h)$ into $h(X)$ defined by $h_{*}(P)=h(P)$ for $P \in \pi(h)$.

Theorem 3.4 Let $f, g \in T_{F E}(X)$. Then the following statements are equivalent:
(1) $(f, g) \in \mathcal{R}$;
(2) For each $A \in X / F$, there exist $B, C \in X / F$ such that $f(A) \subseteq g(B), g(A) \subseteq f(C)$ and for each $A^{\prime} \in X / E$ with $A^{\prime} \subseteq A$, there exist $B^{\prime}, C^{\prime} \in X / E$ with $B^{\prime} \subseteq B, C^{\prime} \subseteq C$ such that $f\left(A^{\prime}\right) \subseteq g\left(B^{\prime}\right)$ and $g\left(A^{\prime}\right) \subseteq f\left(C^{\prime}\right) ;$
(3) There exists an $F^{*} E^{*}$-admissible bijection $\psi: \pi(f) \rightarrow \pi(g)$ such that $f_{*}=g_{*} \psi$.

Proof $(1) \Longrightarrow(2)$. It is clear.
$(2) \Longrightarrow(3)$. By the hypothesis, we have $f(X)=g(X)$. Define $\psi: \pi(f) \rightarrow \pi(g)$ by $\psi(P)=$ $g^{-1}\left(f_{*}(P)\right)$ for each $P \in \pi(f)$. Obviously, $\psi$ is well-defined and $f_{*}=g_{*} \psi$ and, by Theorem 3.2 of [7], $\psi$ is $F$-admissible. What remains for us is to show that $\psi$ is $E$-admissible. Now for each $A^{\prime} \in X / E$ with $A^{\prime} \subseteq A \in X / F$, by the hypothesis, there exists $B^{\prime} \in X / E$ with $B^{\prime} \subseteq B \in X / F$ such that $f\left(A^{\prime}\right) \subseteq g\left(B^{\prime}\right)$. Let $\pi_{A^{\prime}}(f)=\left\{P_{i}: i \in I\right\}$ and $\left\{x_{i}^{\prime}\right\}=f_{*}\left(P_{i}\right)(i \in I)$. Then $x_{i}^{\prime} \in f\left(A^{\prime}\right) \subseteq g\left(B^{\prime}\right)$, so $B^{\prime} \cap g^{-1}\left(x_{i}^{\prime}\right) \neq \emptyset$. Consequently,

$$
B^{\prime} \cap \psi\left(P_{i}\right)=B^{\prime} \cap g^{-1}\left(f_{*}\left(P_{i}\right)\right)=B^{\prime} \cap g^{-1}\left(x_{i}^{\prime}\right) \neq \emptyset
$$

for each $P_{i} \in \pi_{A^{\prime}}(f)$ which means that $\psi$ is $F E$-admissible. Similarly, one may show that $\psi^{-1}$ is also $F E$-admissible. And $\psi: \pi(f) \rightarrow \pi(g)$ is $F^{*} E^{*}$-admissible, as required.
$(3) \Longrightarrow(1)$. Suppose that (3) holds. We need to find $h, k \in T_{F E}(X)$ such that $f=g h$ and $g=f k$. Since $\psi$ is $F$-admissible, for each $A \in X / F$, there exists $B \in X / F$ such that $B \cap \psi(P) \neq \emptyset$
for each $P \in \pi_{A}(f)$. Assume $A=\cup_{i \in I} A_{i}$ where $A_{i} \in X / E$ and let $P_{x}=f^{-1}(f(x))$ for every $x \in A_{i}$. Then $x \in P_{x} \in \pi_{A_{i}}(f)$. Therefore there exists some $B_{i} \in X / E$ with $B_{i} \subseteq B$ such that $B_{i} \cap \psi\left(P_{x}\right) \neq \emptyset$ for each $P_{x} \in \pi_{A_{i}}(f)$. Choose $y \in B_{i} \cap \psi\left(P_{x}\right)$ and define $h(x)=y$. Then $g h(x)=g(y)=g_{*}\left(\psi\left(P_{x}\right)\right)$ and $\psi\left(P_{x}\right)=g^{-1}(g h(x))$. Now we have defined the map $h$ on each $F$-class $A$, consequently, on all of $X$. It is clear that $h \in T_{F E}(X)$ and $f=g h$. Similarly, one can find some $k \in T_{F E}(X)$ such that $g=f k$. Consequently, $(f, g) \in \mathcal{R}$.

Using Theorems 3.2 and 3.4, we can establish the next result.
Theorem 3.5 Let $f, g \in T_{F E}(X)$. Then the following statements are equivalent:
(1) $(f, g) \in \mathcal{H}$;
(2) $\pi(f)=\pi(g), F(f)=F(g), E(f)=E(g)$. For each $A \in X / F$, there exist $B, C \in X / F$ such that $f(A) \subseteq g(B)$ and $g(A) \subseteq f(C)$, while for each $A^{\prime} \in X / E$ with $A^{\prime} \subseteq A$, there exist $B^{\prime}, C^{\prime} \in X / E$ with $B^{\prime} \subseteq B, C^{\prime} \subseteq C$ such that $f\left(A^{\prime}\right) \subseteq g\left(B^{\prime}\right), g\left(A^{\prime}\right) \subseteq f\left(C^{\prime}\right)$;
(3) There exist an $F^{*} E^{*}$-preserving bijection $\phi: f(X) \rightarrow g(X)$ and an $F^{*} E^{*}$-admissible bijection $\psi: \pi(f) \rightarrow \pi(g)$ such that $g=\phi f$ and $f_{*}=g_{*} \psi$.

Next we consider the relation $\mathcal{D}$.
Theorem 3.6 Let $f, g \in T_{F E}(X)$. Then the following statements are equivalent:
(1) $(f, g) \in \mathcal{D}$;
(2) There exist an $F^{*} E^{*}$-admissible bijection $\psi: \pi(f) \rightarrow \pi(g)$ and an $F^{*} E^{*}$-preserving bijection $\phi: f(X) \rightarrow g(X)$ such that $\phi f_{*}=g_{*} \psi$.

The proof is similar to that of Theorem 3.4 of [7] and it is omitted.
Now we discuss the last relation $\mathcal{J}$. Recall that, in a semigroup $S$, $J_{a} \leq J_{b}$ means that $S^{1} a S^{1} \subseteq S^{1} b S^{1}$ where $J_{x}$ denotes the $\mathcal{J}$-class containing $x \in S$.

Lemma 3.7 Let $f, g \in T_{F E}(X)$. Then $J_{f} \leq J_{g}$ if and only if there exists an $F E$-preserving surjection $\phi: g(X) \rightarrow f(X)$ such that for each $A \in X / F$, there exists $B \in X / F$ such that $f(A) \subseteq \phi(g(B))$, while for each $C \in X / E$ with $C \subseteq A$, there exists $D \in X / E$ with $D \subseteq B$ such that $f(C) \subseteq \phi(g(D))$.

Proof Suppose $J_{f} \leq J_{g}$. Then there exist $h, k \in T_{F E}(X)$ such that $f=h g k$. Take $A \in X / F$ with $A \cap g(X) \neq \emptyset$. Assume $A=\cup_{i \in I} B_{i}$, where $B_{i} \in X / E$. Denote $A^{\prime}=A \cap g(X), A^{\prime \prime}=$ $A \cap g k(X), B_{i}^{\prime}=B_{i} \cap g(X)$ and $B_{i}^{\prime \prime}=B_{i} \cap g k(X)$. Fix $a \in h\left(A^{\prime \prime}\right) \subseteq f(X)$ and $x_{i} \in B_{i}^{\prime \prime}$ for each $i$ with $B_{i}^{\prime \prime} \neq \emptyset$. Define

$$
\phi(x)= \begin{cases}h(x), & x \in A^{\prime \prime} \\ h\left(x_{i}\right), & x \in A^{\prime}-A^{\prime \prime}, x \in B_{i}^{\prime} \text { and } B_{i}^{\prime \prime} \neq \emptyset \\ a, & x \in A^{\prime}-A^{\prime \prime}, x \in B_{i}^{\prime} \text { and } B_{i}^{\prime \prime}=\emptyset\end{cases}
$$

In this way, we can define the map $\phi$ on $g(X)$. To see $\phi(g(X)) \subseteq f(X)$, for each $x \in g(X)$, if $x \in g k(X)$, then $\phi(x)=h(x) \in h g k(X)=f(X)$; if $x \in g(X)-g k(X), x \in B_{i}^{\prime}$ and $B_{i}^{\prime \prime} \neq \emptyset$ for some $i$, then $\phi(x)=h\left(x_{i}\right) \in h g k(X)=f(X)$, too. So $\phi$ indeed maps $g(X)$ into $f(X)$. One routinely verifies that $\phi$ is $F E$-preserving. For each $A \in X / F$, let $k(A) \subseteq B$ for some $B \in X / F$.

Thus

$$
f(A)=h g k(A)=\phi(g k(A)) \subseteq \phi(g(B))
$$

which implies that $\phi$ is surjective. Similarly, For each $C \in X / E$ with $C \subseteq A$, there exists some $D \in X / E$ such that $k(C) \subseteq D$ and $f(C) \subseteq \phi(g(D))$. By the hypothesis $E \subseteq F$ and $C \subseteq A$, it follows that $k(C) \subseteq k(A)$ and $D \subseteq B$.

Conversely, suppose there exists such a map $\phi$. We shall construct some $h, k \in T_{F E}(X)$ such that $f=h g k$. Let $A \in X / F$ and assume $A=\cup_{i \in I} B_{i}$ where $B_{i} \in X / E$. Denote $A^{\prime}=A \cap g(X)$. If $A^{\prime}=\emptyset$, then define $h(x)=x$ for each $x \in A$. If $A^{\prime} \neq \emptyset$, let

$$
\mathcal{B}=\left\{B_{i}: B_{i} \cap g(X) \neq \emptyset\right\} .
$$

Fix $x_{i} \in B_{i} \cap g(X)$ for each $B_{i} \in \mathcal{B}$. Since $\phi$ is $F E$ - preserving, there exists some $D \in X / F$ such that $\phi\left(A^{\prime}\right) \subseteq D$. Fix $b \in D$ and define

$$
h(x)= \begin{cases}\phi(x), & x \in A^{\prime} \\ \phi\left(x_{i}\right), & x \in A-A^{\prime} \text { and } x \in B_{i} \in \mathcal{B}, \\ b, & x \in A-A^{\prime} \text { and } x \in B_{i} \notin \mathcal{B}\end{cases}
$$

It is not hard to verify that $h \in T_{F E}(X)$.
Now we construct $k$. By the hypothesis, for each $A \in X / F$ there exists $B \in X / F$ such that $f(A) \subseteq \phi(g(B))$, while for each $C \in X / E$ with $C \subseteq A$, there exists $D \in X / E$ with $D \subseteq B$ such that $f(C) \subseteq \phi(g(D))$. Thus, for each $x \in C \subseteq A$, there exists some $y \in D \subseteq B$ such that $f(x)=\phi(g(y))$. Define $k(x)=y$. Clearly, $k \in T_{F E}(X)$. One may routinely verify that $f=h g k$. This completes the proof.

As an immediate consequence of Lemma 3.7, we have the following
Theorem 3.8 Let $f, g \in T_{F E}(X)$. Then $(f, g) \in \mathcal{J}$ if and only if there exist $F E$-preserving surjections $\phi: g(X) \rightarrow f(X)$ and $\psi: f(X) \rightarrow g(X)$ such that for each $A \in X / F$, there exists $B, B^{\prime} \in X / F$ such that $f(A) \subseteq \phi(g(B)), g(A) \subseteq \psi\left(f\left(B^{\prime}\right)\right)$, while for each $C \in X / E$ with $C \subseteq A$, there exists $D, D^{\prime} \in X / E$ with $D \subseteq B$ and $D^{\prime} \subseteq B^{\prime}$ such that $f(C) \subseteq \phi(g(D)), g(C) \subseteq \psi\left(f\left(D^{\prime}\right)\right)$.

Remark 3 In general, $\mathcal{J} \neq \mathcal{D}$ in the semigroup $T_{F E}(X)$. For example, let $X=\{0,1,2,3, \ldots\}$ and $X / F=\left\{A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, \ldots\right\}, X / E=\left\{C_{1}, C_{2}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, \ldots\right\}$, where $A_{1}=$ $\{0,2,4,6\}, B_{1}=\{1,3,5\}, A_{2}=\{8,10\}, B_{2}=\{7,9\}, A_{3}=\{12,14\}, B_{3}=\{11,13\}, \ldots, C_{1}=$ $\{0,2\}, C_{2}=\{4,6\}$. Then $E \subseteq F$. Let $f, g \in \mathcal{T}_{X}$ be such that

$$
\begin{gathered}
f\left(C_{1}\right)=f\left(C_{2}\right)=C_{1}, f\left(B_{1}\right)=C_{2}, f\left(A_{2}\right)=A_{2}, f\left(B_{2}\right)=A_{3} \\
f\left(A_{3}\right)=A_{4}, f\left(B_{3}\right)=A_{5}, \ldots
\end{gathered}
$$

and

$$
\begin{gathered}
g\left(C_{1}\right)=g\left(C_{2}\right)=\{1,3\}, g\left(B_{1}\right)=\{5\}, g\left(A_{2}\right)=B_{2} \\
g\left(B_{2}\right)=B_{3}, g\left(A_{3}\right)=B_{4}, g\left(B_{3}\right)=B_{5}, \ldots
\end{gathered}
$$

Clearly, $f, g \in T_{F E}(X)$. Now we define $\psi: f(X) \rightarrow g(X)$ and $\phi: g(X) \rightarrow f(X)$, respectively, as follows:

$$
\psi\left(C_{1}\right)=\{1,3\}, \psi\left(C_{2}\right)=\{5\}, \psi\left(A_{2}\right)=B_{2}, \psi\left(A_{3}\right)=B_{3}, \ldots
$$

and

$$
\phi(\{1,3\})=C_{1}, \phi(\{5\})=\{2\}, \phi\left(B_{2}\right)=C_{2}, \phi\left(B_{3}\right)=A_{2}, \phi\left(B_{4}\right)=A_{3}, \ldots
$$

Then $\psi$ and $\phi$ satisfy the conditions in Theorem 3.8. Therefore, $(f, g) \in \mathcal{J}$. However, since $f(X)=\cup\left\{A_{i}: i=1,2, \ldots\right\}$ and $g(X)=\cup\left\{B_{i}: i=1,2, \ldots\right\}$, there is no $F^{*} E^{*}$-preserving bijection from $f(X)$ onto $g(X)$. In fact, suppose there exists such one, say $\rho$, then $\rho\left(A_{1}\right)=B_{i}$ for some $i$. Note that $\left|A_{1}\right|=4$ and $\left|B_{i}\right| \leq 3$ for each $i$. So $\rho$ is impossible to be bijective. Thus, by Theorem $3.6,(f, g) \notin \mathcal{D}$.

## References

[1] HOWIE J M. Fundamentals of Semigroup Theory [M]. Oxford University Press, New York, 1995.
[2] PEI Huisheng. Equivalences, $\alpha$-semigroups and $\alpha$-congruences [J]. Semigroup Forum, 1994, 49(1): 49-58.
[3] PEI Huisheng. A regular $\alpha$-semigroup inducing a certain lattice [J]. Semigroup Forum, 1996, 53(1): 98-113.
[4] PEI Huisheng. Some $\alpha$-semigroups inducing certain lattices [J]. Semigroup Forum, 1998, 57(1): 48-59.
[5] PEI Huisheng, GUO Yufang. Some congruences on $S(X)$ [J]. Southeast Asian Bull. Math., 2000, 24(1): 73-83.
[6] PEI Huisheng. A unique atom in $\left[C(\Omega), C_{\alpha}(\Omega)\right][J]$. East-West J. Math., 1999, 1(2): 197-205.
[7] PEI Huisheng. Regularity and Green's relations for semigroups of transformations that preserve an equivalence [J]. Comm. Algebra, 2005, 33(1): 109-118.
[8] ARAÚJO J, KONIEZNY J. Semigroups of transformations preserving an equivalence relation and a crosssection [J]. Comm. Algebra, 2004, 32(5): 1917-1935.
[9] PEI Huisheng, ZOU Dingyu. Green's equivalences on semigroups of transformations preserving order and an equivalence relation [J]. Semigroup Forum, 2005, 71(2): 241-251.

