Green's Relations on Semigroups of Transformations Preserving Two Equivalence Relations

SUN Lei^{1,2}, PEI Hui Sheng³

(1. School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China;

2. School of Sciences, Xi'an Jiaotong University, Shaanxi 710049, China;

3. Department of Mathematics, Xinyang Normal University, Henan 464000, China)

(E-mail: sunlei97@163.com)

Abstract Let \mathcal{T}_X be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, let

 $T_F(X) = \{ f \in \mathcal{T}_X : \forall (x, y) \in F, (f(x), f(y)) \in F \}.$

Then $T_F(X)$ is a subsemigroup of \mathcal{T}_X . Let E be another equivalence on X and $T_{FE}(X) = T_F(X) \cap T_E(X)$. In this paper, under the assumption that the two equivalences F and E are comparable and $E \subseteq F$, we describe the regular elements and characterize Green's relations for the semigroup $T_{FE}(X)$.

Keywords transformation semigroup; equivalence; regular element; Green's relations.

Document code A MR(2000) Subject Classification 20M20 Chinese Library Classification 0152.7

1. Introduction

Green's relations are five equivalences that have played an important role in the development of semigroup theory^[1]. Let X be a set with $|X| \ge 3$ and \mathcal{T}_X be the full transformation semigroup on the set X. In [2], the author observed a kind of transformation semigroup determined by an equivalence F on X, that is,

$$T_F(X) = \{ f \in \mathcal{T}_X : \forall (x, y) \in F, (f(x), f(y)) \in F \}.$$

It is easy to see that $T_F(X) = \mathcal{T}_X$ if $F = \{(x, x), x \in X\}$ or $F = X \times X$. Some interesting properties for $T_F(X)$ were studied in some papers. For example, in [3] and [4], the author observed some subsemigroups of $T_F(X)$ which induce certain lattices. In [5] and [6] some special congruences on $T_F(X)$ were investigated, and Green's relations on $T_F(X)$ were described in [7] and so on.

Let E be another equivalence on X. In [2] the author also studied the semigroup

$$T_{FE}(X) = T_F(X) \cap T_E(X),$$

Received date: 2007-03-31; Accepted date: 2008-10-06

Foundation item: the Natural Science Found of Henan Province (No. 0511010200); the Doctoral Fund of Henan Polytechnic University (No. B2009-56); the Natural Science Research Project for Education Department of Henan Province (No. 2009A110007).

and determined the suitable lattice of $T_{FE}(X)$.

The regular elements and Green's relation on the semigroups $T(X, \rho, R)$ consisting of transformations preserving an equivalence relation and a cross-section, and on the semigroups $\mathcal{O}_E(X)$ consisting of transformations preserving order and an equivalence relation were considered in [8] and [9], respectively. Clearly, $T_{FE}(X)$ is a subsemigroup of both $T_F(X)$ and $T_E(X)$ and so $f \in T_{FE}(X)$ should preserve two equivalences on X. Naturally, we may ask how to describe the regular elements and Green's relations on $T_{FE}(X)$? However, this is a difficult problem, mainly because we have great difficulty in constructing the desired maps. In this paper, we consider a special case, that is, F and E are comparable. For convenience, we assume, in the remainder, that $T_{FE}(X)$ will denote $T_F(X) \cap T_E(X)$ and that $E \subseteq F$, which is crucial for all that follows. Under the above assumption, each E-class is contained in some F-class, while each F-class is a union of some E-classes.

This paper is organized as follows. In Section 2, we observe the conditions under which an element $f \in T_{FE}(X)$ is regular. In Section 3, Green's relations on $T_{FE}(X)$ are considered and the relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} are completely characterized for arbitrary elements.

Now we recall some concepts and notations which will be used in the sequel. Denote by X/F the quotient set. The symbol $\pi(f)$ will denote the partition of X induced by $f \in \mathcal{T}_X$, namely,

$$\pi(f) = \{ f^{-1}(y) : y \in f(X) \}$$

Also, for a subset $A \subseteq X$, we denote

$$\pi_A(f) = \{ M \in \pi(f) : M \cap A \neq \emptyset \}.$$

Lemma 1.1^[7] Let $f \in \mathcal{T}_X$. Then $f \in \mathcal{T}_F(X)$ if and only if for each $B \in X/F$, there exists some $B' \in X/F$ such that $f(B) \subseteq B'$. Consequently, if $f \in \mathcal{T}_F(X)$, then for each $A \in X/F$, the set $f^{-1}(A)$ is a union of some F-classes or $f^{-1}(A) = \emptyset$.

For each $f \in T_F(X)$, let

$$F(f) = \{ f^{-1}(A) : A \in X/F \text{ and } f^{-1}(A) \neq \emptyset \}.$$

Then F(f) is also a partition of X. It is clear that $\pi(f)$ refines F(f) and that $x, y \in V \in F(f)$ if and only if $(f(x), f(y)) \in F$. Moreover, for each $V \in F(f)$, there exists some $A \in X/F$ such that $f(V) = A \cap f(X)$. We have similar notations for $f \in T_E(X)$. For standard terms and concepts in semigroup theory, one may consult [1].

2. The regular elements of $T_{FE}(X)$

In this section, we observe when an element $f \in T_{FE}(X)$ is regular.

Theorem 2.1 Let $f \in T_{FE}(X)$. Then f is regular if and only if for each $A \in X/F$, there exists some $B \in X/F$ such that $A \cap f(X) \subseteq f(B)$, while for each E-class $A' \subseteq A$, there exists some E-class $B' \subseteq B$ such that $A' \cap f(X) \subseteq f(B')$.

Proof Suppose that f is regular in $T_{FE}(X)$. Then there exists $g \in T_{FE}(X)$ such that f = fgf.

Let $A \in X/F$. If $A \cap f(X) = \emptyset$, then $A \cap f(X) \subseteq f(B)$ for some *F*-class *B*. If $A \cap f(X) \neq \emptyset$, take $y \in A \cap f(X)$ and $x \in X$ so that y = f(x). Let $g(A) \subseteq B \in X/F$. Then

$$y = f(x) = fgf(x) = fg(y) \in fg(A) \subseteq f(B)$$

and it follows that $A \cap f(X) \subseteq f(B)$. Let $A' \in X/E$ with $A' \subseteq A$. If $A' \cap f(X) = \emptyset$, then $A' \cap f(X) \subseteq f(B')$ for some $B' \in X/E$ with $B' \subseteq B$. Now suppose that $A' \cap f(X) \neq \emptyset$. Let $y' \in A' \cap f(X)$. Then there exists some $x' \in X$ such that y' = f(x'). Assume $g(A') \subseteq B' \in X/E$. Then

$$y'=f(x')=fgf(x')=fg(y')\in fg(A')\subseteq f(B'),$$

so $A' \cap f(X) \subseteq f(B')$. Noticing that $A' \subseteq A$, $g(A') \subseteq B'$ and $g(A) \subseteq B$, we have

$$g(A') \subseteq g(A) \subseteq B.$$

By the hypothesis $E \subseteq F$, we can deduce that $B' \subseteq B$ and the necessity follows.

Conversely, suppose the condition holds and we need to find some $g \in T_{FE}(X)$ such that f = fgf. Let $A \in X/F$ and $A \cap f(X) \subseteq f(B)$ for some $B \in X/F$. Suppose $B = \bigcup_{i \in I} B_i$ where $B_i \in X/E$. Thus $A \cap f(X) \subseteq f(\bigcup_{i \in I} B_i)$. If $A \cap f(X) = \emptyset$, then we define g(x) = x for each $x \in A$. If $A \cap f(X) \neq \emptyset$, fix $b \in B$ and $b'_i \in B_i$ for each i. For each $x \in A$, there exists some $A' \in X/E$ such that $x \in A' \subseteq A$. Moreover, by the hypothesis, there exists E-class $B_i \subseteq B$ such that $A' \cap f(X) \subseteq f(B_i)$. We first consider the case that $A' \cap f(X) \neq \emptyset$. If $x \in A' \cap f(X)$, then $x = f(b_i)$ for some $b_i \in B_i$ and define $g(x) = b_i$. If $x \notin A' \cap f(X)$, then define $g(x) = b'_i$. Secondly, if $A' \cap f(X) = \emptyset$, then we define g(x) = b for each $x \in A'$. Thus we have defined g on each $A \in X/F$, consequently, on all of X. One routinely verifies that $g \in T_{FE}(X)$. To see that f = fgf, take any $x \in X$ and let $y = f(x) \in A' \cap f(X) \subseteq A \cap f(X)$ where $A \in X/F$ and $A' \in X/E$. By the definition of g, we have $g(y) = b_i$ where $b_i \in B_i \subseteq B$ with $f(b_i) = y$. Thus $f(g(f(x))) = f(g(y)) = f(b_i) = y = f(x)$, which implies f = fgf and f is regular in $T_{FE}(X)$.

3. Green's relations on $T_{FE}(X)$

In this section, we characterize Green's relations on $T_{FE}(X)$ and begin with the relation \mathcal{L} . Recall that, in [7], a map $\phi : Y \to Z$ where $Y, Z \subseteq X$ is said to be *F*-preserving if *F* is an equivalence on *X* and $(\phi(y), \phi(y')) \in F$ for each $(y, y') \in F$ with $y, y' \in Y$. If ϕ satisfies that $(\phi(y), \phi(y')) \in F$ if and only if $(y, y') \in F$, then ϕ is said to be F^* -preserving.

Definition 3.1 If ϕ is both *F*-preserving and *E*-preserving, then ϕ is said to be *FE*-preserving. If ϕ is both *F*^{*}-preserving and *E*^{*}-preserving, then ϕ is said to be *F*^{*}*E*^{*}-preserving.

Remark 1 An element $f \in T_{FE}(X)$ being either E^* -preserving and F-preserving, or F^* -preserving and E-preserving, is not necessarily F^*E^* -preserving. For example, let $X = \{1, 2, \ldots\}$, $X/F = \{A_1, A_2\}$ and $X/E = \{A_1, B_1, B_2, B_3, \ldots\}$, where $A_1 = \{1, 2\}, A_2 = \{3, 4, \ldots\}, B_1 = \{1, 2\}, A_2 = \{3, 4, \ldots\}, B_1 = \{1, 2\}, A_2 = \{1, 2\}, A_3 = \{1, 2\}, A_4 = \{1,$

 $\{3,4\}, B_2 = \{5,6\}, B_3 = \{7,8\}, \dots$ It is clear that $E \subseteq F$. Let

Then both g and h are FE-preserving. It is not hard to verify that g is E^* -preserving, but not F^* -preserving while h is F^* -preserving, but not E^* -preserving. So both g and h are not F^*E^* -preserving.

Theorem 3.2 Let $f, g \in T_{FE}(X)$. Then the following statements are equivalent:

- (1) $(f,g) \in \mathcal{L};$
- (2) $\pi(f) = \pi(g), F(f) = F(g) \text{ and } E(f) = E(g);$
- (3) There exists an F^*E^* -preserving bijection $\phi : f(X) \to g(X)$ such that $g = \phi f$.

Proof (1) \Longrightarrow (2). Suppose $(f,g) \in \mathcal{L}$ in $T_{FE}(X)$. Then $(f,g) \in \mathcal{L}$ in both $T_F(X)$ and $T_E(X)$. By Theorem 3.1 of [7], it follows readily that $\pi(f) = \pi(g)$, F(f) = F(g) and E(f) = E(g).

(2) \Longrightarrow (3). Define $\phi : f(X) \to g(X)$ by $\phi(x) = g(f^{-1}(x))$ for each $x \in f(X)$. Then ϕ is well-defined (since $\pi(f) = \pi(g)$) and $g = \phi f$. It is routine to show ϕ is F^*E^* -preserving.

 $(3) \Longrightarrow (1)$. Suppose that (3) holds. We need to find some $h, k \in T_{FE}(X)$ such that g = hfand f = kg. For $A \in X/F$, assume $A = \bigcup_{i \in I} B_i$ where $B_i \in X/E$. Denote $A' = A \cap f(X)$. If $A' = \emptyset$, then define h(x) = x for each $x \in A$. Now assume $A' \neq \emptyset$. Since ϕ is F^* -preserving, there exists $D \in X/F$ such that $\phi(A') \subseteq D \cap g(X)$. Fix $d \in D$. Notice that ϕ is also E^* -preserving. For each $i \in I$ with $B_i \cap f(X) \neq \emptyset$, there exists some $C_i \in X/E$ such that $\phi(B_i \cap f(X)) \subseteq C_i \subseteq D$. Fix $c_i \in C_i$ for each $i \in I$ with $B_i \cap f(X) \neq \emptyset$ and define

$$h(x) = \begin{cases} \phi(x), & x \in A', \\ c_i, & x \in A - A', x \in B_i \in X/E \text{ and } B_i \cap f(X) \neq \emptyset, \\ d, & x \in A - A', x \in B_i \in X/E \text{ and } B_i \cap f(X) = \emptyset. \end{cases}$$

In this way, we have defined the map h on each F-class A and, consequently, on all of X. It is not difficult to check that $h \in T_F(X)$ and $h \in T_E(X)$, namely, $h \in T_{FE}(X)$. Finally, we verify that g = hf. Let $x \in X$ and assume $f(x) \in A \cap f(X)$ for $A \in X/F$. Then $hf(x) = \phi(f(x)) = g(x)$ and g = hf. Similarly, one may find some $k \in T_{FE}(X)$ such that f = kg. So $(f,g) \in \mathcal{L}$.

In what follows we investigate the relation \mathcal{R} . We need some preparations before stating the conclusion. Let $f, g \in T_F(X)$. Recall that a map $\psi : \pi(f) \to \pi(g)$ is said to be F-admissible, if for each $A \in X/F$, there exists some $B \in X/F$ such that $B \cap \psi(P) \neq \emptyset$ for each $P \in \pi_A(f)$. If ψ is bijective and both ψ and ψ^{-1} are F-admissible, then ψ is said to be F^* -admissible. This concept was useful in describing the relation \mathcal{R} on $T_F(X)$ in [7]. To describe the relation \mathcal{R} on $T_{FE}(X)$, we need the following terminology.

Definition 3.3 Let $\psi : \pi(f) \to \pi(g)$ be a map with $f, g \in T_{FE}(X)$. Suppose for each $A \in X/F$, there exists $B \in X/F$ such that $B \cap \psi(P) \neq \emptyset$ for each $P \in \pi_A(f)$, while for each $A' \in X/E$ with $A' \subseteq A$, there exists $B' \in X/E$ with $B' \subseteq B$ such that $B' \cap \psi(P') \neq \emptyset$ for each $P' \in \pi_{A'}(f)$. Then ψ is said to be FE-admissible. If ψ is bijective and both ψ and ψ^{-1} are FE-admissible, then ψ is said to be F^*E^* -admissible.

Remark 2 If $\psi : \pi(f) \to \pi(g)$ is *FE*-admissible, then ψ is both *F*-admissible and *E*-admissible. However, the converse is not, in general, true. For example, let $X = \{1, 2, ...\}, X/F = \{A_1, A_2\}$ and $X/E = \{B_1, B_2, B_3, ...\}$, where $A_1 = \{1, 2, 3, 4\}, A_2 = \{5, 6, ...\}, B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{5, 6\}, \ldots$ It is clear that $E \subseteq F$. Let

 $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\ 5 & 6 & 7 & 8 & 9 & 10 & \cdots \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\ 5 & 6 & 7 & 7 & 5 & 5 & 6 & 6 & 7 & 8 & 9 & 10 & \cdots \end{pmatrix}.$ Clearly, $f, g \in T_{FE}(X)$, while $\pi(f) = \{\{1\}, \{2\}, \ldots\}$ and $\pi(g) = \{\{1, 5, 6\}, \{2, 7, 8\}, \{3, 4, 9\}$

 $\{10\}, \{11\}, \ldots\}$. Define $\psi : \pi(f) \to \pi(g)$ as follows:

$$\psi(\{1\}) = \{1, 5, 6\}, \ \psi(\{2\}) = \{2, 7, 8\}, \ \psi(\{3\}) = \{3, 4, 9\},$$
$$\psi(\{4\}) = \{10\}, \ \psi(\{5\}) = \{11\}, \ \psi(\{6\} = \{12\}, \dots.$$

It is not hard to verify that ψ is both *F*-admissible and *E*-admissible, but not *FE*-admissible. In fact, for *E*-classes B_1 and B_2 which are contained in the *F*-class A_1 , there exist *E*-classes B_1 and B_5 such that $\psi(\pi_{B_1}(f)) \subseteq \pi_{B_1}(g)$ and $\psi(\pi_{B_2}(f)) \subseteq \pi_{B_5}(g)$. While there is no *E*-class $B \neq B_5$ such that $\psi(\pi_{B_2}(f)) \subseteq \pi_B(g)$. Note that B_1 and B_5 are contained in the different *F*-classes. By Definition 3.3, ψ is not *FE*-admissible.

For each $h \in \mathcal{T}_X$, let h_* denote the map from $\pi(h)$ into h(X) defined by $h_*(P) = h(P)$ for $P \in \pi(h)$.

Theorem 3.4 Let $f, g \in T_{FE}(X)$. Then the following statements are equivalent:

(1) $(f,g) \in \mathcal{R};$

(2) For each $A \in X/F$, there exist B, $C \in X/F$ such that $f(A) \subseteq g(B)$, $g(A) \subseteq f(C)$ and for each $A' \in X/E$ with $A' \subseteq A$, there exist B', $C' \in X/E$ with $B' \subseteq B$, $C' \subseteq C$ such that $f(A') \subseteq g(B')$ and $g(A') \subseteq f(C')$;

(3) There exists an F^*E^* -admissible bijection $\psi : \pi(f) \to \pi(g)$ such that $f_* = g_*\psi$.

Proof $(1) \Longrightarrow (2)$. It is clear.

(2) \Longrightarrow (3). By the hypothesis, we have f(X) = g(X). Define $\psi : \pi(f) \to \pi(g)$ by $\psi(P) = g^{-1}(f_*(P))$ for each $P \in \pi(f)$. Obviously, ψ is well-defined and $f_* = g_*\psi$ and, by Theorem 3.2 of [7], ψ is *F*-admissible. What remains for us is to show that ψ is *E*-admissible. Now for each $A' \in X/E$ with $A' \subseteq A \in X/F$, by the hypothesis, there exists $B' \in X/E$ with $B' \subseteq B \in X/F$ such that $f(A') \subseteq g(B')$. Let $\pi_{A'}(f) = \{P_i : i \in I\}$ and $\{x'_i\} = f_*(P_i)(i \in I)$. Then $x'_i \in f(A') \subseteq g(B')$, so $B' \cap g^{-1}(x'_i) \neq \emptyset$. Consequently,

$$B' \cap \psi(P_i) = B' \cap g^{-1}(f_*(P_i)) = B' \cap g^{-1}(x'_i) \neq \emptyset$$

for each $P_i \in \pi_{A'}(f)$ which means that ψ is *FE*-admissible. Similarly, one may show that ψ^{-1} is also *FE*-admissible. And $\psi : \pi(f) \to \pi(g)$ is F^*E^* -admissible, as required.

(3) \Longrightarrow (1). Suppose that (3) holds. We need to find $h, k \in T_{FE}(X)$ such that f = gh and g = fk. Since ψ is F-admissible, for each $A \in X/F$, there exists $B \in X/F$ such that $B \cap \psi(P) \neq \emptyset$

for each $P \in \pi_A(f)$. Assume $A = \bigcup_{i \in I} A_i$ where $A_i \in X/E$ and let $P_x = f^{-1}(f(x))$ for every $x \in A_i$. Then $x \in P_x \in \pi_{A_i}(f)$. Therefore there exists some $B_i \in X/E$ with $B_i \subseteq B$ such that $B_i \cap \psi(P_x) \neq \emptyset$ for each $P_x \in \pi_{A_i}(f)$. Choose $y \in B_i \cap \psi(P_x)$ and define h(x) = y. Then $gh(x) = g(y) = g_*(\psi(P_x))$ and $\psi(P_x) = g^{-1}(gh(x))$. Now we have defined the map h on each F-class A, consequently, on all of X. It is clear that $h \in T_{FE}(X)$ and f = gh. Similarly, one can find some $k \in T_{FE}(X)$ such that g = fk. Consequently, $(f, g) \in \mathcal{R}$.

Using Theorems 3.2 and 3.4, we can establish the next result.

Theorem 3.5 Let $f, g \in T_{FE}(X)$. Then the following statements are equivalent:

(1) $(f,g) \in \mathcal{H};$

(2) $\pi(f) = \pi(g), F(f) = F(g), E(f) = E(g)$. For each $A \in X/F$, there exist $B, C \in X/F$ such that $f(A) \subseteq g(B)$ and $g(A) \subseteq f(C)$, while for each $A' \in X/E$ with $A' \subseteq A$, there exist $B', C' \in X/E$ with $B' \subseteq B, C' \subseteq C$ such that $f(A') \subseteq g(B'), g(A') \subseteq f(C')$;

(3) There exist an F^*E^* -preserving bijection $\phi : f(X) \to g(X)$ and an F^*E^* -admissible bijection $\psi : \pi(f) \to \pi(g)$ such that $g = \phi f$ and $f_* = g_*\psi$.

Next we consider the relation \mathcal{D} .

Theorem 3.6 Let $f, g \in T_{FE}(X)$. Then the following statements are equivalent:

(1) $(f,g) \in \mathcal{D};$

(2) There exist an F^*E^* -admissible bijection $\psi : \pi(f) \to \pi(g)$ and an F^*E^* -preserving bijection $\phi : f(X) \to g(X)$ such that $\phi f_* = g_* \psi$.

The proof is similar to that of Theorem 3.4 of [7] and it is omitted.

Now we discuss the last relation \mathcal{J} . Recall that, in a semigroup $S, J_a \leq J_b$ means that $S^1 a S^1 \subseteq S^1 b S^1$ where J_x denotes the \mathcal{J} -class containing $x \in S$.

Lemma 3.7 Let $f, g \in T_{FE}(X)$. Then $J_f \leq J_g$ if and only if there exists an FE-preserving surjection $\phi : g(X) \to f(X)$ such that for each $A \in X/F$, there exists $B \in X/F$ such that $f(A) \subseteq \phi(g(B))$, while for each $C \in X/E$ with $C \subseteq A$, there exists $D \in X/E$ with $D \subseteq B$ such that $f(C) \subseteq \phi(g(D))$.

Proof Suppose $J_f \leq J_g$. Then there exist $h, k \in T_{FE}(X)$ such that f = hgk. Take $A \in X/F$ with $A \cap g(X) \neq \emptyset$. Assume $A = \bigcup_{i \in I} B_i$, where $B_i \in X/E$. Denote $A' = A \cap g(X), A'' = A \cap gk(X), B'_i = B_i \cap g(X)$ and $B''_i = B_i \cap gk(X)$. Fix $a \in h(A'') \subseteq f(X)$ and $x_i \in B''_i$ for each i with $B''_i \neq \emptyset$. Define

$$\phi(x) = \begin{cases} h(x), & x \in A'', \\ h(x_i), & x \in A' - A'', x \in B'_i \text{ and } B''_i \neq \emptyset, \\ a, & x \in A' - A'', x \in B'_i \text{ and } B''_i = \emptyset. \end{cases}$$

In this way, we can define the map ϕ on g(X). To see $\phi(g(X)) \subseteq f(X)$, for each $x \in g(X)$, if $x \in gk(X)$, then $\phi(x) = h(x) \in hgk(X) = f(X)$; if $x \in g(X) - gk(X)$, $x \in B'_i$ and $B''_i \neq \emptyset$ for some *i*, then $\phi(x) = h(x_i) \in hgk(X) = f(X)$, too. So ϕ indeed maps g(X) into f(X). One routinely verifies that ϕ is *FE*-preserving. For each $A \in X/F$, let $k(A) \subseteq B$ for some $B \in X/F$.

Thus

$$f(A) = hgk(A) = \phi(gk(A)) \subseteq \phi(g(B)),$$

which implies that ϕ is surjective. Similarly, For each $C \in X/E$ with $C \subseteq A$, there exists some $D \in X/E$ such that $k(C) \subseteq D$ and $f(C) \subseteq \phi(g(D))$. By the hypothesis $E \subseteq F$ and $C \subseteq A$, it follows that $k(C) \subseteq k(A)$ and $D \subseteq B$.

Conversely, suppose there exists such a map ϕ . We shall construct some $h, k \in T_{FE}(X)$ such that f = hgk. Let $A \in X/F$ and assume $A = \bigcup_{i \in I} B_i$ where $B_i \in X/E$. Denote $A' = A \cap g(X)$. If $A' = \emptyset$, then define h(x) = x for each $x \in A$. If $A' \neq \emptyset$, let

$$\mathcal{B} = \{ B_i : B_i \cap g(X) \neq \emptyset \}.$$

Fix $x_i \in B_i \cap g(X)$ for each $B_i \in \mathcal{B}$. Since ϕ is *FE*- preserving, there exists some $D \in X/F$ such that $\phi(A') \subseteq D$. Fix $b \in D$ and define

$$h(x) = \begin{cases} \phi(x), & x \in A', \\ \phi(x_i), & x \in A - A' \text{ and } x \in B_i \in \mathcal{B}, \\ b, & x \in A - A' \text{ and } x \in B_i \notin \mathcal{B}. \end{cases}$$

It is not hard to verify that $h \in T_{FE}(X)$.

Now we construct k. By the hypothesis, for each $A \in X/F$ there exists $B \in X/F$ such that $f(A) \subseteq \phi(g(B))$, while for each $C \in X/E$ with $C \subseteq A$, there exists $D \in X/E$ with $D \subseteq B$ such that $f(C) \subseteq \phi(g(D))$. Thus, for each $x \in C \subseteq A$, there exists some $y \in D \subseteq B$ such that $f(x) = \phi(g(y))$. Define k(x) = y. Clearly, $k \in T_{FE}(X)$. One may routinely verify that f = hgk. This completes the proof.

As an immediate consequence of Lemma 3.7, we have the following

Theorem 3.8 Let $f, g \in T_{FE}(X)$. Then $(f, g) \in \mathcal{J}$ if and only if there exist FE-preserving surjections $\phi : g(X) \to f(X)$ and $\psi : f(X) \to g(X)$ such that for each $A \in X/F$, there exists $B, B' \in X/F$ such that $f(A) \subseteq \phi(g(B)), g(A) \subseteq \psi(f(B'))$, while for each $C \in X/E$ with $C \subseteq A$, there exists $D, D' \in X/E$ with $D \subseteq B$ and $D' \subseteq B'$ such that $f(C) \subseteq \phi(g(D)), g(C) \subseteq \psi(f(D'))$.

Remark 3 In general, $\mathcal{J} \neq \mathcal{D}$ in the semigroup $T_{FE}(X)$. For example, let $X = \{0, 1, 2, 3, ...\}$ and $X/F = \{A_1, B_1, A_2, B_2, A_3, B_3, ...\}, X/E = \{C_1, C_2, B_1, A_2, B_2, A_3, B_3, ...\}$, where $A_1 = \{0, 2, 4, 6\}, B_1 = \{1, 3, 5\}, A_2 = \{8, 10\}, B_2 = \{7, 9\}, A_3 = \{12, 14\}, B_3 = \{11, 13\}, ..., C_1 = \{0, 2\}, C_2 = \{4, 6\}$. Then $E \subseteq F$. Let $f, g \in \mathcal{T}_X$ be such that

$$f(C_1) = f(C_2) = C_1, f(B_1) = C_2, f(A_2) = A_2, f(B_2) = A_3,$$

 $f(A_3) = A_4, f(B_3) = A_5, \dots$

and

$$g(C_1) = g(C_2) = \{1, 3\}, \ g(B_1) = \{5\}, \ g(A_2) = B_2,$$

 $g(B_2) = B_3, \ g(A_3) = B_4, \ g(B_3) = B_5, \dots$

Clearly, $f, g \in T_{FE}(X)$. Now we define $\psi : f(X) \to g(X)$ and $\phi : g(X) \to f(X)$, respectively, as follows:

$$\psi(C_1) = \{1, 3\}, \, \psi(C_2) = \{5\}, \, \psi(A_2) = B_2, \, \psi(A_3) = B_3, \dots$$

and

$$\phi(\{1,3\}) = C_1, \phi(\{5\}) = \{2\}, \phi(B_2) = C_2, \phi(B_3) = A_2, \phi(B_4) = A_3, \dots$$

Then ψ and ϕ satisfy the conditions in Theorem 3.8. Therefore, $(f,g) \in \mathcal{J}$. However, since $f(X) = \bigcup \{A_i : i = 1, 2, ...\}$ and $g(X) = \bigcup \{B_i : i = 1, 2, ...\}$, there is no F^*E^* -preserving bijection from f(X) onto g(X). In fact, suppose there exists such one, say ρ , then $\rho(A_1) = B_i$ for some *i*. Note that $|A_1| = 4$ and $|B_i| \leq 3$ for each *i*. So ρ is impossible to be bijective. Thus, by Theorem 3.6, $(f,g) \notin \mathcal{D}$.

References

- [1] HOWIE J M. Fundamentals of Semigroup Theory [M]. Oxford University Press, New York, 1995.
- [2] PEI Huisheng. Equivalences, α -semigroups and α -congruences [J]. Semigroup Forum, 1994, **49**(1): 49–58.
- [3] PEI Huisheng. A regular α -semigroup inducing a certain lattice [J]. Semigroup Forum, 1996, 53(1): 98–113.
- [4] PEI Huisheng. Some α -semigroups inducing certain lattices [J]. Semigroup Forum, 1998, 57(1): 48–59.
- [5] PEI Huisheng, GUO Yufang. Some congruences on S(X) [J]. Southeast Asian Bull. Math., 2000, 24(1): 73–83.
- [6] PEI Huisheng. A unique atom in $[C(\Omega), C_{\alpha}(\Omega)]$ [J]. East-West J. Math., 1999, 1(2): 197–205.
- [7] PEI Huisheng. Regularity and Green's relations for semigroups of transformations that preserve an equivalence [J]. Comm. Algebra, 2005, 33(1): 109–118.
- [8] ARAÚJO J, KONIEZNY J. Semigroups of transformations preserving an equivalence relation and a crosssection [J]. Comm. Algebra, 2004, 32(5): 1917–1935.
- [9] PEI Huisheng, ZOU Dingyu. Green's equivalences on semigroups of transformations preserving order and an equivalence relation [J]. Semigroup Forum, 2005, 71(2): 241–251.