# Derivation and Global Convergence for Memoryless Non-quasi-Newton Method 

JIAO Bao Cong ${ }^{1}$, YU Jing Jing ${ }^{1,2}$, CHEN Lan Ping ${ }^{1}$<br>(1. School of Mathematical Sciences, Capital Normal University, Beijing 100037, China;<br>2. Department of Electrical Engineering, Qingdao Harbor Vocational Technology College, Shandong 266404, China)<br>(E-mail: jiaobc3093@126.com; yujingjing9204@163.com; chenlanp@mail.cnu.edu)


#### Abstract

In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems.


Keywords memoryless non-quasi-Newton method; Wolfe line search; global convergence.

## Document code A

MR(2000) Subject Classification 65K10; 90C30
Chinese Library Classification O174.13; O221.2

## 1. Introduction

The problem we consider is unconstrained optimization calculation:

$$
\begin{equation*}
\min f(x), \quad x \in R^{n} \tag{1.1}
\end{equation*}
$$

where $f: R^{n} \rightarrow R, f \in C^{2}$.
It is known that the memoryless quasi-Newton methods have been successfully used for solving problem (1.1). The memoryless quasi-Newton methods were originated with the work of Perry ${ }^{[1]}$ and Shanno ${ }^{([2,3])}$ in the 1970s, and have been developed and studied then by many authors: Perry ${ }^{[1]}$, Powell ${ }^{[4]}$, and Dai ${ }^{[9]}$ et al.. However, it still remains unanswered for the general objective functions ${ }^{[2,5,6]}$. At the same time Huang(1970) proposed a class of update formulas, where the updated matrix need not satisfy quasi-Newton equation, only need the generated search directions are conjugacy when the method is used for the convex quadratic functions. This implies that the method possesses property of quadratic termination. In 1991, Yuan ${ }^{[7]}$ proposed a quasi Newton method. Zhao and Duan ${ }^{[8]}$ established a non-quasi-Newton

[^0]equation and proposed a pseudo-Newton method in 1996. Chen and Jiao ${ }^{[10]}$ proposed a new non-quasi-Newton method in 1997. In this paper we derive a new class of memoryless formula from non-quasi-Newton equation, in which the update matrices are symmetric positive definite, and prove that the method with inexact line search converges globally. Numerical experiments indicate that it is able to efficently solve larger scale optimization problems.

## 2. Derivation of memoryless non-quasi-Newton method

Suppose that the objective function $f(x) \in C^{2}, g(x)=\nabla f(x), g_{k}=g\left(x_{k}\right), f_{k}=f\left(x_{k}\right)$, $\gamma_{k}=g_{k+1}-g_{k}$ and $\delta_{k}=x_{k+1}-x_{k}$, when $\left\|\delta_{k}\right\|$ is sufficiently small ( $\|\cdot\|$ denotes its Euclidean norm). Hesse matrix $G_{k}$ for $x_{k}$ possesses the property:

$$
\begin{equation*}
R_{k} \approx \frac{1}{2} \delta_{k}^{\mathrm{T}} G_{k} \delta_{k} \tag{2.1}
\end{equation*}
$$

where $R_{k}=f_{k+1}-f_{k}-g_{k} \mathrm{~T} \delta_{k}$. Specially, the above formula equality holds true strictly for quadratic functions. Consider Hestenes-Stiefel conjugate gradient method iteration formula:

$$
\begin{gather*}
x_{k+1}=x_{k}+\lambda_{k} d_{k}  \tag{2.2}\\
d_{1}=-g_{1} \\
d_{k+1}=-g_{k+1}+\frac{\gamma_{k}^{\mathrm{T}} g_{k+1}}{\gamma_{k}^{\mathrm{T}} d_{k}} d_{k}, \quad k \geq 2 \tag{2.3}
\end{gather*}
$$

where $\lambda_{k}$ is a search steplength. Notice that (2.3) can be written as the following form,

$$
d_{k+1}=-\left(I-\frac{d_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} d_{k}}\right) g_{k+1}
$$

where $I$ is a unit matrix. Since $\delta_{k}=x_{k+1}-x_{k}=\lambda_{k} d_{k}$, we have

$$
\begin{gather*}
\frac{d_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} d_{k}}=\frac{\delta_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}, \\
d_{k+1}=-\left(I-\frac{\delta_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}\right) g_{k+1} . \tag{2.4}
\end{gather*}
$$

Denote $H_{k+1}=I-\frac{\delta_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}$. Then

$$
d_{k+1}=-H_{k+1} g_{k+1}
$$

To make $H_{k+1}$ inherit the positive definiteness of $H_{k}$, we update $H_{k+1}$ by adding an update term. For convenience, the updated matrix is still denoted by $H_{k+1}$. Hence

$$
\begin{equation*}
H_{k+1}=I-\frac{\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}+\frac{\left\|\gamma_{k}\right\|^{2}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \delta_{k} \delta_{k}^{\mathrm{T}}+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{2 R_{k}} \tag{2.5}
\end{equation*}
$$

We denote the inverse of $H_{k+1}$ by $B_{k+1}=H_{k+1}{ }^{-1}$. Then

$$
\begin{equation*}
B_{k+1}=I-\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\left\|\delta_{k}\right\|^{2}}+\frac{2 R_{k}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \gamma_{k} \gamma_{k}^{\mathrm{T}} \tag{2.6}
\end{equation*}
$$

We require $B_{k+1}$ to satisfy the non-quasi-Newton equation ${ }^{[8]}$

$$
\begin{equation*}
\delta_{k}^{\mathrm{T}} B_{k+1} \delta_{k}=2 R_{k} \tag{2.7}
\end{equation*}
$$

In order to decrease the iterative error, multiplying $H_{k+1}$ by a coefficient $t_{k}$, we obtain

$$
H_{k+1}=t_{k}\left(I-\frac{\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}+\frac{\left\|\gamma_{k}\right\|^{2}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \delta_{k} \delta_{k}^{\mathrm{T}}\right)+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{2 R_{k}}
$$

where $t_{k}=\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}}$. Then

$$
\begin{equation*}
H_{k+1}=\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} I+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}-\frac{\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}}{\left\|\gamma_{k}\right\|^{2}}+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{2 R_{k}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k+1}=\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} I-\frac{\left\|\gamma_{k}\right\|^{2}}{\left\|\delta_{k}\right\|^{2} \gamma_{k}^{\mathrm{T}} \delta_{k}} \delta_{k} \delta_{k}^{\mathrm{T}}+\frac{2 R_{k}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \gamma_{k} \gamma_{k}^{\mathrm{T}} \tag{2.9}
\end{equation*}
$$

In fact, (2.9) satisfies non-quasi-Newton equation(2.7).
We call (2.8) and (2.9) the memoryless non-quasi-Newton update formulas. For quadratic functions, (2.8) and (2.9) are the Perry-Shanno memoryless quasi-Newton formulas. For nonquadratic functions, $(2.8),(2.9)$ are not the same as the Perry-Shanno memoryless quasi-Newton formulas.

The following theorem shows the $B_{k}$ is a positive definite matrix in update Formula (2.9).
Theorem 2.1 If $R_{k}>0$ and $\delta_{k}^{\mathrm{T}} \gamma_{k}>0$ for all $k \geq 1$, then $B_{k+1}$ is a positive definite matrix.
Proof For all $z \in R^{n}, z \neq 0$, we have

$$
\begin{gathered}
z^{\mathrm{T}} \frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}\left(I-\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\left\|\delta_{k}\right\|^{2}}\right) z=\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}\left(\|z\|^{2}-\frac{\left(z^{\mathrm{T}} \delta_{k}\right)^{2}}{\left\|\delta_{k}\right\|^{2}}\right) \geq 0 \\
z^{\mathrm{T}}\left(\frac{2 R_{k}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \gamma_{k} \gamma_{k}^{\mathrm{T}}\right) z=\frac{2 R_{k}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}}\left(z^{\mathrm{T}} \gamma_{k}\right)^{2} \geq 0
\end{gathered}
$$

and it is impossible that the equality in the above two inequalities holds simultaneously. Therefore, $z^{\mathrm{T}} B_{k+1} z>0$; that is, $B_{k+1}$ is a positive definite matrix.

## 3. The global convergent of memoryless non-quasi-Newton method

We make the following assumptions:
H1 (i) $f \in C^{2}$, and the level set $D_{1}=\left\{x \in R^{n} \mid f(x) \leq f\left(x_{1}\right)\right\}$ is bounded, that is, there exists

$$
L_{1}>0 \quad \text { such that } \quad\|x\| \leq \frac{1}{2} L_{1}, \quad \forall x \in D_{1}
$$

(ii) There exist positive numbers $M>m>0$, for all $x \in D_{1}, u \in R^{n}$, such that

$$
\begin{equation*}
m\|u\|^{2} \leq u^{\mathrm{T}} G(x) u \leq M\|u\|^{2} \tag{3.1}
\end{equation*}
$$

where $G(x)$ is Hesse matrix of $f(x)$.
Consider the following iteration

$$
\begin{gather*}
x_{k+1}=x_{k}+\lambda_{k} d_{k}  \tag{3.2}\\
d_{1}=-g_{1} \tag{3.3}
\end{gather*}
$$

$$
\begin{align*}
d_{k+1} & =-H_{k+1} g_{k+1}=-B_{k+1}^{-1} g_{k+1} \\
& =\left(\frac{\delta_{k}^{\mathrm{T}} g_{k+1}}{\left\|\gamma_{k}\right\|^{2}}-\frac{\delta_{k}^{\mathrm{T}} g_{k+1}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}-\frac{\delta_{k}^{\mathrm{T}} g_{k+1}}{2 R_{k}}\right) \delta_{k}+\frac{\delta_{k}^{\mathrm{T}} g_{k+1}}{\left\|\gamma_{k}\right\|^{2}} \gamma_{k}-\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} g_{k+1}, \quad k \geq 2 \tag{3.4}
\end{align*}
$$

where

$$
\begin{gather*}
B_{k+1}=\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} I-\frac{\left\|\gamma_{k}\right\|^{2}}{\left\|\delta_{k}\right\|^{2} \gamma_{k}^{\mathrm{T}} \delta_{k}} \delta_{k} \delta_{k}^{\mathrm{T}}+\frac{2 R_{k}}{\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2}} \gamma_{k} \gamma_{k}^{\mathrm{T}},  \tag{3.5}\\
H_{k+1}=B_{k+1}^{-1}=\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} I+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}-\frac{\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}}{\left\|\gamma_{k}\right\|^{2}}+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{2 R_{k}} . \tag{3.6}
\end{gather*}
$$

In this paper, we require the steplength $\lambda_{k}$ to satisfy Wolfe linesearch, that is,

$$
\begin{gather*}
f\left(x_{k}+\lambda_{k} d_{k}\right) \leq f\left(x_{k}\right)+\beta \lambda_{k} g_{k}^{\mathrm{T}} d_{k},  \tag{3.7}\\
g\left(x_{k}+\lambda_{k} d_{k}\right)^{\mathrm{T}} d_{k} \geq \sigma g_{k}^{\mathrm{T}} d_{k}, \tag{3.8}
\end{gather*}
$$

where $\beta \in\left(0, \frac{1}{2}\right), \sigma \in(\beta, 1)$. The sketch of the memoryless non-quasi-Newton method is as follows:

Step 1. Choose starting point $x_{1}, d_{1}=-g_{1}=-\nabla f\left(x_{1}\right), \varepsilon>0, k:=1$.
Step 2. If $\left\|g_{k}\right\| \leq \varepsilon$, then stop; otherwise, determine a steplength $\lambda_{k}$ by using Wolfe linesearch. Set $x_{k+1}:=x_{k}+\lambda_{k} d_{k}$.

Step 3. Determine $\delta_{k}=x_{k+1}-x_{k}, g_{k+1}=\nabla f\left(x_{k+1}\right), \gamma_{k}=g_{k+1}-g_{k}$. If $-g_{k}^{\mathrm{T}} d_{k} \leq \varepsilon$, then $d_{k+1}=-g_{k+1}$, set $k:=k+1$, go to Step 2; otherwise, go to Step 4.

Step 4. Compute $d_{k+1}$ by using (3.4), set $k:=k+1$, go to Step 2.
In the following, we will write the non-memoryless quasi-Newton method as Method A.
Lemma 3.1 Assume that Assumption H1 holds. Then Method A satisfies

$$
\begin{gather*}
\frac{m}{M} \leq \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{2 R_{k}} \leq \frac{M}{m}  \tag{3.9}\\
\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \leq \frac{M^{2}}{m} \tag{3.10}
\end{gather*}
$$

Proof Since

$$
\gamma_{k}=\int_{0}^{1} G\left(x_{k}+t \delta_{k}\right) \delta_{k} \mathrm{~d} t
$$

from which and Assumption H1, we have

$$
\begin{gathered}
\left\|\gamma_{k}\right\| \leq M\left\|\delta_{k}\right\| \\
m\left\|\delta_{k}\right\|^{2} \leq \gamma_{k}^{\mathrm{T}} \delta_{k}=\delta_{k}^{\mathrm{T}} \int_{0}^{1} G\left(x_{k}+t \delta_{k}\right) \mathrm{d} t \delta_{k} \leq M\left\|\delta_{k}\right\|^{2} \\
\frac{m}{2}\left\|\delta_{k}\right\|^{2} \leq R_{k}=\int_{0}^{1} \int_{0}^{\mathrm{T}} \delta_{k}^{\mathrm{T}} G\left(x_{k}+\alpha \delta_{k}\right) \delta_{k} \mathrm{~d} \alpha \mathrm{~d} t \leq \frac{M}{2}\left\|\delta_{k}\right\|^{2} \\
\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \leq \frac{M\left\|\gamma_{k}\right\|\left\|\delta_{k}\right\|}{m\left\|\delta_{k}\right\|^{2}} \leq \frac{M^{2}}{m}
\end{gathered}
$$

Thus

$$
\frac{m}{M} \leq \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{2 R_{k}} \leq \frac{M}{m}
$$

Theorem 3.2 If for any $k \geq 1$, steplengthes $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are generated by Method A. Then there exists a positive constant $c_{1}>0$ such that

$$
\begin{equation*}
\prod_{j=1}^{k} \lambda_{j} \geq c_{1}^{k} \tag{3.11}
\end{equation*}
$$

Proof By (3.6), we have

$$
\begin{equation*}
\operatorname{tr}\left(H_{k+1}\right)=(n-2) \frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}}+\left(1+\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{2 R_{k}}\right) \frac{\left\|\delta_{k}\right\|^{2}}{\delta_{k}^{\mathrm{T}} \gamma_{k}} \tag{3.12}
\end{equation*}
$$

Since $\left(\delta_{k}^{\mathrm{T}} \gamma_{k}\right)^{2} \leq\left\|\delta_{k}\right\|^{2}\left\|\gamma_{k}\right\|^{2}$, we have

$$
\begin{align*}
& \operatorname{tr}\left(H_{k+1}\right) \leq\left(n-1+\frac{M}{m}\right) \frac{\left\|\delta_{k}\right\|^{2}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}=c_{2} \frac{\left\|\delta_{k}\right\|^{2}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}  \tag{3.13}\\
& \operatorname{tr}\left(H_{k+1}\right) \geq\left(n-1+\frac{m}{M}\right) \frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}}=c_{3} \frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} \tag{3.14}
\end{align*}
$$

where $c_{2}=n-1+\frac{M}{m}, c_{3}=n-1+\frac{m}{M}$.
By $\delta_{k}=\lambda_{k} d_{k}=\lambda_{k}\left(-H_{k} g_{k}\right)$ and (3.8), we have

$$
\begin{equation*}
\operatorname{tr}\left(H_{k+1}\right) \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \frac{\left\|H_{k} g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \tag{3.15}
\end{equation*}
$$

Because $H_{k}$ is a positive definite matrix, we have

$$
\frac{\left\|H_{k} g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \operatorname{tr}\left(H_{k}\right)
$$

Since $H_{1}=I$, we deduce the relation

$$
\begin{equation*}
\operatorname{tr}\left(H_{k+1}\right) \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \operatorname{tr}\left(H_{k}\right) \leq \ldots \leq\left(\frac{c_{2}}{1-\sigma}\right)^{k}\left(\prod_{j=1}^{k} \lambda_{j}\right) \operatorname{tr}\left(H_{1}\right)=\left(\frac{c_{2}}{1-\sigma}\right)^{k}\left(\prod_{j=1}^{k} \lambda_{j}\right) n \tag{3.16}
\end{equation*}
$$

By Lemma 3.1 and (3.14), we have

$$
\begin{equation*}
\operatorname{tr}\left(H_{k+1}\right) \geq c_{3} \frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} \geq \frac{c_{3} m}{M^{2}} \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17), it follows that

$$
\frac{c_{3} m}{M^{2}} \leq\left(\frac{c_{2}}{1-\sigma}\right)^{k}\left(\prod_{j=1}^{k} \lambda_{j}\right) n
$$

By the above arguments we have

$$
\prod_{j=1}^{k} \lambda_{j} \geq \frac{\frac{c_{3} m}{M^{2}}}{\left(\frac{c_{2}}{1-\sigma}\right)^{k} n} \geq c_{1}^{k}
$$

where $c_{1}=\frac{1-\sigma}{c_{2}} \min \left\{1, \frac{c_{3} m}{M^{2} n}\right\}$.
Theorem 3.3 Assume that the Assumption H1 holds. Let $\left\{x_{k}\right\}$ be generated by Method $A$. Then,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \inf \left\|g_{k}\right\|=0 \tag{3.18}
\end{equation*}
$$

Proof The proof is by contradiction. Assume that the opposite of (3.18) holds, that is, there is a positive constant $\mu>0$, such that $\left\|g_{k}\right\| \geq \mu, \forall k$. Due to (3.5) and Lemma 3.1, we know

$$
\begin{equation*}
\operatorname{tr}\left(B_{k+1}\right)=\left(n-1+\frac{2 R_{k}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}\right) \frac{\left\|\gamma_{k}\right\|^{2}}{\delta_{k}^{\mathrm{T}} \gamma_{k}} \leq\left(n-1+\frac{M}{m}\right) \frac{M^{2}}{m}=c_{4}, \tag{3.19}
\end{equation*}
$$

since $B_{k}$ is a positive definite matrix, we have

$$
\frac{\left\|g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \operatorname{tr}\left(B_{k}\right)
$$

Therefore,

$$
\begin{gather*}
\frac{\mu^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \frac{\left\|g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \operatorname{tr}\left(B_{k}\right) \leq c_{4}, \\
g_{k}^{\mathrm{T}} H_{k} g_{k} \geq \frac{\mu^{2}}{c_{4}}=c_{5}  \tag{3.20}\\
\prod_{j=1}^{k} g_{j}^{\mathrm{T}} H_{j} g_{j} \geq c_{5}^{k} \tag{3.21}
\end{gather*}
$$

Multiplying (3.11) with (3.21) and using the algebraic-geometric mean inequality, we have

$$
\begin{equation*}
\left(\frac{\sum_{j=1}^{k} \lambda_{j} g_{j}^{\mathrm{T}} H_{j} g_{j}}{k}\right)^{k} \geq \prod_{j=1}^{k} \lambda_{j} g_{j}^{\mathrm{T}} H_{j} g_{j} \geq\left(c_{1} c_{5}\right)^{k}=c_{6}^{k} \tag{3.22}
\end{equation*}
$$

It implies

$$
\sum_{j=1}^{k} \lambda_{j} g_{j}^{\mathrm{T}} H_{j} g_{j} \geq k c_{6}
$$

Let $k \rightarrow+\infty$. We have

$$
\sum_{j=1}^{+\infty} \lambda_{j} g_{j}^{\mathrm{T}} H_{j} g_{j} \geq+\infty
$$

By $d_{j}=-H_{j} g_{j}$ and (3.7), we obtain

$$
+\infty \leq \sum_{j=1}^{+\infty} \lambda_{j} g_{j}^{\mathrm{T}} H_{j} g_{j}=\sum_{j=1}^{+\infty}\left(-\lambda_{j} g_{j}^{\mathrm{T}} d_{j}\right) \leq \frac{1}{\beta} \sum_{j=1}^{+\infty}\left(f_{j}-f_{j+1}\right)
$$

which contradicts Assumption H1(i). Therefore,

$$
\lim _{k \rightarrow+\infty} \inf \left\|g_{k}\right\|=0
$$

## 4. Hybrid memoryless non-quasi-Newton method

In this section, we will derive a hybrid method for obtaining a globally convergent iteration under the weaker condtions based on the memoryless non-quasi-Newton method in Section 3. First, we let

$$
\bar{K}=\left\{k \left\lvert\, \frac{R_{k}}{\left\|\delta_{k}\right\|^{2}}>\frac{\varepsilon_{1}\left\|g_{k}\right\|^{\alpha}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}\right.\right\}, \alpha>0, \varepsilon_{1}>0
$$

Denote the memoryless non-quasi-Newton formula by $H_{k+1}^{\text {NEW }}$ and Perry-Shanno memoryless quasi-Newton formula by $H_{k+1}^{P S}$, i.e.,

$$
\begin{aligned}
H_{k+1}^{\mathrm{NEW}} & =\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} I+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}-\frac{\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}}{\left\|\gamma_{k}\right\|^{2}}+\frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{2 R_{k}} \\
H_{k+1}^{P S} & =\frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} I+2 \frac{\delta_{k} \delta_{k}^{\mathrm{T}}}{\delta_{k}^{\mathrm{T}} \gamma_{k}}-\frac{1}{\left\|\gamma_{k}\right\|^{2}}\left(\gamma_{k} \delta_{k}^{\mathrm{T}}+\delta_{k} \gamma_{k}^{\mathrm{T}}\right)
\end{aligned}
$$

Let

$$
H_{k+1}= \begin{cases}H_{k+1}^{\mathrm{NEW}}, & \text { if } k \in \bar{K}  \tag{4.1}\\ H_{k+1}^{\mathrm{PS}}, & \text { otherwise }\end{cases}
$$

We make the following assumptions
H2 (i) $f(x) \in C^{2}$, and is a convex function in $D_{2}$, where the level set $D_{2}=\left\{x \in R^{n} \mid f(x) \leq\right.$ $\left.f\left(x_{1}\right)\right\}$ is bounded; that is, there exists a positive constant $L_{2}>0$ such that $\|x\| \leq \frac{1}{2} L_{2}, \forall x \in D_{2}$.
(ii) $g(x)$ satisfies Lipschitz condition: $\exists L_{3}>0,\|g(x)-g(y)\| \leq L_{3}\|x-y\|, \forall x, y \in D_{2}$.

Replace $H_{k+1}$ with (4.1) in Method A, then we obtain the hybrid memoryless non-quasiNewton method and name it as Method B.

Theorem 4.1 Assume that Assumption $H_{2}$ holds. Let the sequence $\left\{x_{k}\right\}$ be generated by Method B. Suppose $\exists \mu>0$, such that $\left\|g_{k}\right\| \geq \mu$ hold for all $k$. Then there exist $M_{1}, M_{2}, M_{3}>0$, such that

$$
\begin{gather*}
M_{1} \leq \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{2 R_{k}} \leq M_{2}  \tag{4.2}\\
\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \leq M_{3} \tag{4.3}
\end{gather*}
$$

Proof Let $D_{2}^{*}$ denote the convex closure of the level set $D_{2}$, that is, $D_{2}^{*}$ is the smallest closed convex set containing $D_{2}$. Since $D_{2}$ is bounded, $D_{2}^{*}$ is bounded, too. By the continuity of Hesse matrix $G(x)$, there exists $M^{\prime}>0$, such that $\|G(x)\| \leq M^{\prime}$ for all $x \in D_{2}^{*}$. Since $H_{k+1}^{P S}$ is a positive definite matrix, Method B is a descented method. The minimization sequence $\left\{x_{k}\right\} \subset D_{2}$, then $x_{k}+\theta \delta_{k}=(1-\theta) x_{k}+\theta x_{k+1} \in D_{2}^{*}$ for all $0 \leq \theta \leq 1$. Therefore,

$$
\begin{aligned}
R_{k} & =f_{k+1}-f_{k}-g_{k}^{\mathrm{T}} \delta_{k}=\int_{0}^{1} \int_{0}^{\theta} \delta_{k}^{\mathrm{T}} G\left(x_{k}+\theta \delta_{k}\right) \mathrm{d} \alpha \mathrm{~d} \theta \\
& \leq \int_{0}^{1} \int_{0}^{\theta}\left\|\delta_{k}\right\|\left\|G\left(x_{k}+\theta \delta_{k}\right) \delta_{k}\right\| \mathrm{d} \alpha \mathrm{~d} \theta \\
& \leq \frac{M^{\prime}}{2}\left\|\delta_{k}\right\|^{2}
\end{aligned}
$$

If $k \in \bar{K}$, by (3.8), we know

$$
\begin{equation*}
\gamma_{k}^{\mathrm{T}} \delta_{k}>\varepsilon_{1} \frac{\left\|\delta_{k}\right\|^{2}\left\|g_{k}\right\|^{\alpha}}{R_{k}} \geq \frac{2 \varepsilon_{1} \mu^{\alpha}}{M^{\prime}} \tag{4.4}
\end{equation*}
$$

From (i) in Assumption H2, we have $\left\|\delta_{k}\right\|^{2} \leq L_{2}^{2}$, then

$$
\begin{equation*}
\frac{\left\|\delta_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \leq \frac{M^{\prime} L_{2}^{2}}{2 \varepsilon_{1} \mu^{\alpha}} \tag{4.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\gamma_{k}^{\mathrm{T}} \delta_{k} \leq\left\|\gamma_{k}\right\|\left\|\delta_{k}\right\| \leq L_{3}\left\|\delta_{k}\right\|^{2} \tag{4.6}
\end{equation*}
$$

and (4.5), (4.6), we have

$$
\begin{equation*}
\frac{2 \varepsilon_{1} \mu^{\alpha}}{M^{\prime} L_{2}^{2}} \leq \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{\left\|\delta_{k}\right\|^{2}} \leq L_{3} \tag{4.7}
\end{equation*}
$$

By (4.7) and the definition of $\bar{K}$, we obtain

$$
\begin{equation*}
\frac{2 R_{k}}{\left\|\delta_{k}\right\|^{2}} \geq \frac{2 \varepsilon_{1}\left\|g_{k}\right\|^{\alpha}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \geq \frac{2 \varepsilon_{1} \mu^{\alpha}}{L_{2}^{2} L_{3}} . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), it implies that

$$
\frac{4 \varepsilon_{1} \mu^{\alpha}}{\left(M^{\prime} L_{2}\right)^{2}} \leq \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{2 R_{k}}=\frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{\left\|\delta_{k}\right\|^{2}} \frac{\left\|\delta_{k}\right\|^{2}}{2 R_{k}} \leq \frac{\left(L_{2} L_{3}\right)^{2}}{2 \varepsilon_{1} \mu^{\alpha}}
$$

Let $M_{1}=\frac{4 \varepsilon_{1} \mu^{\alpha}}{\left(M^{\prime} L_{2}\right)^{2}}, M_{2}=\frac{\left(L_{2} L_{3}\right)^{2}}{2 \varepsilon_{1} \mu^{\alpha}}$, then (4.2) holds. By (4.5), we have

$$
\begin{equation*}
\frac{\left\|\gamma_{k}\right\|^{2}}{\gamma_{k}^{\mathrm{T}} \delta_{k}} \leq \frac{M^{\prime} L_{3}^{2}\left\|\delta_{k}\right\|^{2}}{2 \varepsilon_{1} \mu_{2}^{\alpha}}=M^{\prime} M_{2} \tag{4.9}
\end{equation*}
$$

If $k \notin \bar{K}$, then there exists $\bar{G}$, such that $\int_{0}^{1} G\left(x_{k}+t \delta_{k}\right) \mathrm{d} t \delta_{k}=\bar{G} \delta_{k}, t \in(0,1)$; that is, $\gamma_{k}=$ $g_{k+1}-g_{k}=\bar{G} \delta_{k}$. By Assumption H2(i) we know, $\bar{G}$ is a semi-positive definite matrix. Thus we let $z_{k}=\bar{G}^{\frac{1}{2}} \delta_{k}$, where $\bar{G}^{\frac{1}{2}} \bar{G}^{\frac{1}{2}}=\bar{G}$. By Assumption H2, there exist $M^{\prime}>0,\left\|\bar{G}\left(x_{k}\right)\right\| \leq M^{\prime}, \forall x_{k} \in D_{2}$. Then

$$
\frac{\gamma_{k}^{\mathrm{T}} \gamma_{k}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}=\frac{\delta_{k}^{\mathrm{T}} \bar{G}^{2} \delta_{k}}{\delta_{k}^{\mathrm{T}} \bar{G} \delta_{k}}=\frac{z_{k}^{\mathrm{T}} \bar{G} z_{k}}{z_{k}^{\mathrm{T}} z_{k}} \leq M^{\prime} .
$$

We take $M_{3}=\max \left\{M^{\prime} M_{2}, M^{\prime}\right\}$, then (4.3) holds.
Theorem 4.2 If problem (1.1) satisfies Assumption H2, and the sequence $\left\{x_{k}\right\}$ is generated by Method B, then we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \inf \left\|g_{k}\right\|=0 \tag{4.10}
\end{equation*}
$$

Proof First we prove that $\exists c_{7}>0, \prod_{j=1}^{k} \lambda_{j} \geq c_{7}^{k}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are generated by Method B. By (4.2) and (3.14), we know

$$
\operatorname{tr}\left(H_{k+1}^{\mathrm{NEW}}\right) \geq\left(n-1+M_{1}\right) \frac{\delta_{k}^{\mathrm{T}} \gamma_{k}}{\left\|\gamma_{k}\right\|^{2}} \geq \frac{c_{3}^{\prime} m}{M_{3}}
$$

$c_{3}^{\prime}=n-1+M_{1}$. Since

$$
\operatorname{tr}\left(H_{k+1}^{P S}\right)=(n-2) \frac{s_{k}^{\mathrm{T}} y_{k}}{\left\|y_{k}\right\|^{2}}+2 \frac{\left\|s_{k}\right\|^{2}}{s_{k}^{\mathrm{T}} y_{k}} \geq n \frac{\gamma_{k}^{\mathrm{T}} \delta_{k}}{\left\|\gamma_{k}\right\|^{2}} \geq \frac{n}{M^{\prime}}
$$

let $t_{1}=\min \left\{\frac{c_{3}^{\prime} m}{M_{3}}, \frac{n}{M^{\prime}}\right\}$. Then

$$
\begin{equation*}
\operatorname{tr}\left(H_{k+1}\right) \geq t_{1} \tag{4.11}
\end{equation*}
$$

Since $H_{k+1}$ is a positive definite matrix, by (3.15) and using the definition of $H_{k+1}^{\mathrm{PS}}$, we have

$$
\operatorname{tr}\left(H_{k+1}^{\mathrm{NEW}}\right) \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \frac{\left\|H_{k} g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \operatorname{tr}\left(H_{k}\right)
$$

$$
\operatorname{tr}\left(H_{k+1}^{\mathrm{PS}}\right) \leq \frac{n \lambda_{k}}{1-\sigma} \frac{\left\|H_{k} g_{k}\right\|^{2}}{g_{k}^{\mathrm{T}} H_{k} g_{k}} \leq \frac{n \lambda_{k}}{1-\sigma} \operatorname{tr}\left(H_{k}\right)
$$

By $c_{2}=n-1+\frac{n}{M} \geq n$, we have $\operatorname{tr}\left(H_{k+1}\right) \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \operatorname{tr}\left(H_{k}\right)$. Thus

$$
\operatorname{tr}\left(H_{k+1}\right) \leq \frac{c_{2} \lambda_{k}}{1-\sigma} \operatorname{tr}\left(H_{k}\right) \leq \ldots \leq\left(\frac{c_{2}}{1-\sigma}\right)^{k}\left(\prod_{j=1}^{k} \lambda_{j}\right) \operatorname{tr}\left(H_{1}\right)=\left(\frac{c_{2}}{1-\sigma}\right)^{k}\left(\prod_{j=1}^{k} \lambda_{j}\right) n
$$

From (4.11), we have

$$
\prod_{j=1}^{k} \lambda_{j} \geq \frac{t_{1}}{n\left(\frac{c_{2}}{1-\sigma}\right)^{k}} \geq\left(c_{7}\right)^{k}
$$

where $c_{7}=\frac{1-\sigma}{c_{2}} \min \left\{1, \frac{t_{1}}{n}\right\}$.
Assume there exists $\mu>0$, such that $\left\|g_{k}\right\| \geq \mu$. By (4.3) and (3.19), we have

$$
\operatorname{tr}\left(B_{k+1}^{\mathrm{NEW}}\right) \leq c_{4}, \quad \operatorname{tr}\left(B_{k+1}^{\mathrm{PS}}\right)=n \frac{\left\|\gamma_{k}\right\|^{2}}{\delta_{k}^{\mathrm{T}} \gamma_{k}} \leq \frac{n}{M^{\prime}}
$$

where $c_{4}=\left(n-1+\frac{M}{m}\right) \frac{M^{2}}{m}$. Set $t_{2}=\min \left\{c_{4}, \frac{n}{M^{\prime}}\right\}$. Then

$$
\operatorname{tr}\left(B_{k+1}\right) \leq t_{2}
$$

By a similar way to the proof of Theorem 3.3, we can obtain

$$
\lim _{k \rightarrow+\infty} \inf \left\|g_{k}\right\|=0
$$

## 5. Numerical experiments

In order to test the given methods in this paper, we performed some numerical experiments, and compared DY conjugate gradient method ${ }^{[12]}$ with both Wolfe linesearch and BFGS method. All of the test functions are from [11].

| Test function | Function name |
| :--- | :--- |
| BADSCD | powell badly scaled functing |
| FROTH | freudenstein and roth |
| BOX | box three-dimensional function |
| SING | powell singular function |
| KOWOSB | kowalik and osborne function |
| SINGX | extended powell singular function |
| WOOD | wood function |
| PENALTY I | penalty function I |
| VARDIM | variable dimensioned function |
| ROSEX | extended rosenbrock function |
| TRID | broyden tridiagonal function |

Table 5.1 List of test problems

Table 5.2 shows the number of iterations and Table 5.3 shows the CPU carry-out time (seconds). All of the methods terminate with $\left\|g\left(x_{k}\right)\right\| \leq 10^{-6}$. We take $\sigma=0.01, \beta=0.1, \varepsilon=10^{-6}$ in Wolfe linesearch. In Method B we take $\alpha$ as follows: if $\left\|g_{k}\right\| \geq 1$, then $\alpha=0.01$; if $\left\|g_{k}\right\|<1$, then $\alpha=1$. " F " denotes the number of iterations over 5000 or the CPU carry-out time over 600 seconds.

| Problem | Dimension | Method A <br> Ite. | Method B <br> Ite. | BFGS <br> Ite. |
| :--- | :--- | :--- | :--- | :--- |
| BADSCD | 2 | 101 | 96 | F |
| FROTH | 2 | 11 | 11 | 8 |
| BOX | 3 | 58 | 16 | 15 |
| SING | 4 | 263 | 189 | 21 |
| KOWOSB | 4 | 378 | 174 | 15 |
| SINGX | 5000 | 169 | $/ 209$ | F |
| WOOD | $1000 / 5000$ | $188 / 263$ | $188 / 266$ | $\mathrm{~F} / \mathrm{F}$ |
| PENALTY I | $1000 / 5000$ | $39 / 41$ | $39 / 41$ | $56 / 50$ |
| VARDIM | $50 / 100 / 200 / 1000$ | $11 / 13 / 14 / 16$ | $11 / 13 / 14 / 16$ | $13 / 10 / \mathrm{F} / 17$ |
| ROSEX | $50 / 100 / 1000 / 5000$ | $19 / 20 / 19 / 18$ | $19 / 20 / 19 / 18$ | $42 / 42 / 21 / \mathrm{F}$ |
| TRID | $100 / 200 / 1000 / 5000$ | $34 / 38 / 35 / 35$ | $34 / 38 / 35 / 35$ | $74 / 83 / 78 / 75$ |

Table 5.2 Test results

| Problem | Dimension | Method A <br> CPU(Sec.) | Method B <br> CPU(Sec.) | DY <br> CPU(Sec.) |
| :--- | :--- | :--- | :--- | :--- |
| BADSCD | 2 | 3 | 3 | 1 |
| FROTH | 2 | 2 | 2 | 65 |
| BOX | 3 | 3 | 2 | 3 |
| SING | 4 | 7 | 6 | 54 |
| KOWOSB | 4 | 5 | 5 | 7 |
| SINGX | 5000 | 512 | 581 | F |
| WOOD | $1000 / 5000$ | $223 / 1112$ | $217 / 1424$ | $\mathrm{~F} / \mathrm{F}$ |
| PENALTY I | $1000 / 5000$ | $57 / 259$ | $45 / 227$ | $30 / 112$ |
| VARDIM | $50 / 100 / 200 / 1000$ | $2 / 3 / 5 / 23$ | $1 / 2 / 4 / 20$ | $\mathrm{~F} / 3 / \mathrm{F} / \mathrm{F}$ |
| ROSEX | $50 / 100 / 1000 / 5000$ | $3 / 4 / 27 / 118$ | $1 / 3 / 24 / 64$ | $3 / 4 / 35 / 195$ |
| TRID | $100 / 200 / 1000 / 5000$ | $6 / 12 / 44 / 212$ | $4 / 9 / 41 / 149$ | $5 / 29 / 57 / 298$ |

Table 5.3 Test results (CPU)
From the numerical results in Tables 5.2 and 5.3 , we see that the non-quasi Newton method and the hybrid non-memoryless method are sometimes more efficient. Especially the memoryless non-quasi-Newton method requires little storage and computation. So it is able to efficiently solve large scale optimization problems.

## References

[1] PERRY J M. A class of conjugate gradient algorithms with a two step variable metric memory [J]. Discussion paper 269. Center for Mathematical Studies in Economic and Management Science,Northwestern University, 1977.
[2] SHANNO D F. On the convergence of a new conjugate gradient algorithm [J]. SIAM J. Numer. Anal., 1978, 15(6): 1247-1257.
[3] SHANNO D F. Conjugate gradient methods with inexact searches [J]. Math. Oper. Res., 1978, 3(3): $244-256$.
[4] POWELL M J D. Restart procedures for the conjugate gradient method [J]. Math. Programming, 1977, 12(2): 241-254.
[5] TOINT PH L. Global convergence of the patitioned BFGS algorithms for convex partially separable optimization [J]. Math. Programming, 1997, 77: 69-94.
[6] XI Shaolin. Nonliner Optimization Methods [M]. Beijing: Higher Education Press, 1992.
[7] YUAN Yaxiang. A modified BFGS algorithm for unconstrained optimization [J]. IMA J. Numer. Anal., 1991, 11(3): 325-332.
[8] ZHAO Yunbin, DUAN Yurong. Derivation and Property of Pesudo-Newton-N Class. Derivation and Property of Pesudo-Newton-N Class, Communication On Applied Mathematics and Computation, 1996,10(1), pp.8290.
[9] DAI Yuhong. Convergence properties of a memoryless quasi-Newton method [J]. J. Numer. Methods Comput. Appl., 2000, 21(1): 28-32
[10] CHEN Lanping, JIAO Baocong. A Class of Non-Quasi-Newton methods and its convergence [J]. Comm Appl. Computer, 1997, 11(2): 9-17.
[11] MORÉ J J, GARBOW B S, HILLSTROM K E. Testing unconstrained optimization software [J]. ACM Trans. Math. Software, 1981, 7(1): 17-41.
[12] DAI Yuhong, YUAN Yaxiang. A Nonlinear conjugate gradient method with a strong Global convergence propertie [J]. SIAM J Optimization, 1999, 10: 177-182.


[^0]:    Received date: 2007-05-26; Accepted date: 2008-07-06
    Foundation item: the National Natural Science Foundation of China (No. 60472071); the Science Foundation of Beijing Municipal Commission of Education (No. KM200710028001).

