Derivations of Certain Linear Lie Algebras over Commutative Rings

OU Shi Kun¹, WANG Deng Yin², XIA Chun Guang²

(1. College of Science, Jiangxi University of Science and Technology, Jiangxi 341000, China;

2. Department of Mathematics, China University of Mining and Technology,

Jiangsu 221008, China)

(E-mail: ok6096@126.com)

Abstract Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this paper, we first determine the intermediate algebras between h and b, then for such an intermediate algebra, we give an explicit description on its derivations, provided that R is a commutative ring with identity and 2 is invertible in R.

Keywords Lie algebra; the derivation of linear Lie algebra; a commutative ring.

Document code A MR(2000) Subject Classification 15A33; 17B40 Chinese Library Classification 0153.2

1. Introduction

Let R be a commutative ring with identity, R^* the subset of R consisting of all invertible elements in $R, 2 \in R^*$, $E^{(m)}$ the $m \times m$ identity matrix over R ($E^{(m)}$ is abbreviated to E), $R^{m \times n}$ the set of all $m \times n$ matrices over R and gl(m, R) the general linear Lie algebra consisting of all $m \times m$ matrices over R with bracket production: [X, Y] = XY - YX. For $A \in R^{m \times n}$, A' denotes the transpose of A. Let t(m, R) (resp., d(m, R)) be the subalgebra of gl(m, R) consisting of all upper triangular(resp., diagonal) matrices. For $\rho = \pm 1$ and $\delta = 0, 1$, we set

$$L_{\rho,\delta} = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ -\beta' & A & B \\ -\alpha' & 0 & -A' \end{pmatrix} \middle| \alpha, \beta \in R^{1 \times m}, \ A \in t(m,R), \ B \in R^{m \times m}, \text{ satisfies} \\ \alpha = 2^{-1}\delta(1+\rho)\alpha, \ \beta = 2^{-1}\delta(1+\rho)\beta, \ B' = -\rho B \right\},$$

which is a subalgebra of gl(2m + 1, R). We see that the symplectic algebra sp(2m, R) (resp., the orthogonal algebra o(2m, R)) is embedded into $L_{-1,0}$ (resp., $L_{1,0}$) and sp(2m, R) (resp., o(2m, R)) is isomorphic to $L_{-1,0}$ (resp., $L_{1,0}$), and $L_{1,1}$ is the orthogonal algebra o(2m + 1, R)(we refer to [1, pp 1-4] for the definitions of the symplectic algebra and the orthogonal algebra). Thus, to determine a problem of the symplectic algebra or the orthogonal algebra one really

Received date: 2007-04-03; Accepted date: 2008-04-16

needs to consider the corresponding one of the Lie algebra $L_{\rho,\delta}$ after all. We now give several special subalgebras of $L_{\rho,\delta}$ for later use. Set

$$h_{\rho,\delta} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda' \end{pmatrix} \middle| \Lambda \in d(m,R) \right\};$$

$$b_{\rho,\delta} = \left\{ \begin{pmatrix} 0 & 0 & \beta \\ -\beta' & A & B \\ 0 & 0 & -A' \end{pmatrix} \middle| \beta \in R^{1 \times m}, \ A \in t(m,R), \ B \in R^{m \times m}, \ \text{satisfies} \right.$$

$$\beta = 2^{-1}\delta(1+\rho)\beta, \ B' = -\rho B \right\};$$

$$t_{\rho,\delta} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -A' \end{pmatrix} \middle| A \in t(m,R) \right\};$$

$$w_{\rho,\delta} = \left\{ \begin{pmatrix} 0 & 0 & \beta \\ -\beta' & 0 & B \\ 0 & 0 & 0 \end{pmatrix} \middle| \beta \in R^{1 \times m}, \ B \in R^{m \times m} \ \text{satisfies} \right.$$

$$\beta = 2^{-1}\delta(1+\rho)\beta, \ B' = -\rho B \Big\}.$$

By definition, $h_{\rho,\delta}$ is a maximal torus of $L_{\rho,\delta}$ and $b_{\rho,\delta}$ is a standard Borel subalgebra of $L_{\rho,\delta}$ containing $h_{\rho,\delta}$.

The automorphisms or derivations of linear Lie algebras over commutative rings were recently studied in [2–10]. In this paper, on the basis of main theorem in [3], we give an explicit description on the derivations of each intermediate algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$, provided that R is a commutative ring with identity and 2 is invertible in R.

2. The intermediate algebras between $h_{\rho,\delta}$ and $b_{\rho,\delta}$

In the following, we always assume that R is a commutative ring with identity and $2 \in R^*$.

For $1 \leq i \leq j \leq m$, $1 \leq t \leq m$, let $E_{i,j}$ denote the $(2m + 1) \times (2m + 1)$ matrix, whose (i + 1, j + 1)-entry is 1, all other entries are 0; $E_{i,-j}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (i + 1, m + j + 1)-entry is 1, all other entries are 0; $E_{j,-i}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (j + 1, m + i + 1)-entry is 1, all other entries are 0; $E_{-j,-i}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (m + j + 1, m + i + 1)-entry is 1, all other entries are 0; $E_{0,-t}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (1, m + t + 1)-entry is 1, all other entries are 0; $E_{0,-t}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (t + 1, 1)-entry is 1, all other entries are 0; $E_{t,0}$ the $(2m + 1) \times (2m + 1)$ matrix, whose (t + 1, 1)-entry is 1, all other entries are 0. Set $T_{i,j} = E_{i,j} - E_{-j,-i}$; $T_{i,-j} = E_{i,-j} - \rho E_{j,-i}$; $T_{0,-t} = \delta(1 + \rho)(E_{0,-t} - E_{t,0})$. Let I(R) denote the set of all ideals of R.

Definition 2.1 Let $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ be a subset of I(R) consisting of ideals of R. We call Δ a flag of ideals of R, if the following conditions are satisfied: Derivations of certain linear Lie algebras over commutative rings

- (1) $A_{i,k}A_{k,j} \subseteq A_{i,j}$ (if $1 \le i < k < j \le m$);
- (2) $A_{i,k}A_{k,-j} \subseteq A_{i,-j}$ (if $1 \le i < k < j \le m$);
- (3) $A_{i,k}A_{j,-k} \subseteq A_{i,-j}$ (if $1 \le i < j < k \le m$);
- (4) $A_{j,k}A_{i,-k} \subseteq A_{i,-j}$ (if $1 \le i < j < k \le m$);
- (5) $(1-\rho)A_{i,k}A_{k,-k} \subseteq (1-\rho)A_{i,-k}$ (if $1 \le i < k \le m$);
- (6) $(1-\rho)A_{i,k}A_{i,-k} \subseteq (1-\rho)A_{i,-i}$ (if $1 \le i < k \le m$);
- (7) $\delta(1+\rho)A_{0,-i}A_{0,-k} \subseteq \delta(1+\rho)A_{i,-k}$ (if $1 \le i < k \le m$);
- (8) $\delta(1+\rho)A_{i,k}A_{0,-k} \subseteq \delta(1+\rho)A_{0,-i}$ (if $1 \le i < k \le m$).

Example 2.2 If all $A_{i,j}, A_{k,-l}, A_{0,-t}$ $(1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m)$ are taken to be 0 (resp., R), then $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ is a flag of ideals of R.

Example 2.3 Let $A_{1,2}, A_{2,3}, \ldots, A_{m-1,m}, A_{m,-m}, A_{0,-m}$ be any ideals of R, respectively, and set

$$A_{i,j} = \prod_{1 \le k \le j-i} A_{i+k-1,i+k}, \quad 1 \le i < j \le m;$$

$$A_{k,-m} = A_{k,m}A_{m,-m}, \quad 1 \le k < m;$$

$$A_{k,-l} = A_{l,m}A_{k,-m}, \quad 0 \le k \le l < m.$$

Then $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ is a flag of ideals of R.

Example 2.4 Let $A_{1,2}, A_{2,3}, \ldots, A_{m-1,m}, A_{m,-m}, A_{0,-m}$ be any ideals of R, respectively, and set

$$A_{i,j} = \bigcap_{1 \le k \le j-i} A_{i+k-1,i+k}, \quad 1 \le i < j \le m;$$

$$A_{k,-m} = A_{k,m} \bigcap A_{m,-m}, \quad 1 \le k < m;$$

$$A_{k,-l} = A_{l,m} \bigcap A_{k,-m}, \quad 0 \le k \le l < m.$$

Then $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ is a flag of ideals of R.

Theorem 2.5 Let $2 \in R^*$. Then $\ell_{\rho,\delta}$ is an intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$ if and only if there exists a flag $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ of ideals of R such that

$$\ell_{\rho,\delta} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t} T_{0,-t}.$$

Proof Suppose that $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ is a flag of ideals of R and $\ell_{\rho,\delta} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j}T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l}T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t}T_{0,-t}$. Let

$$X = \sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta},$$

$$Y = \sum_{1 \le i \le j \le m} b_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} b_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta},$$

where $a_{i,i}, b_{i,i}$ lie in R (i = 1, 2, ..., m), $a_{i,j}, b_{i,j}$ lie in $A_{i,j}$ $(1 \le i < j \le m)$, $a_{k,-l}, b_{k,-l}$ lie in $A_{k,-l}$ $(1 \le k \le l \le m)$, and $a_{0,-t}, b_{0,-t}$ lie in $A_{0,-t}$ $(1 \le t \le m)$. It is obvious that $rX + sY \in \ell_{\rho,\delta}$ for any $r, s \in R$. Note that

$$[X,Y] = \sum_{1 \le i < j \le m} c_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} d_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} f_{0,-t} T_{0,-t},$$
(2.1)

$$c_{i,j} = \sum_{i \le n \le j} (a_{i,n} b_{n,j} - b_{i,n} a_{n,j}),$$
(2.2)

$$d_{k,-l} = \left(\sum_{k \le n \le l} a_{k,n} b_{n,-l} - \rho \sum_{l \le n \le m} a_{k,n} b_{l,-n} - \sum_{l \le n \le m} \delta_n a_{k,-n} b_{l,n}\right) - \left(\sum_{k \le n \le l} b_{k,n} a_{n,-l} - \rho \sum_{l \le n \le m} b_{k,n} a_{l,-n} - \sum_{l \le n \le m} \delta_n b_{k,-n} a_{l,n}\right) + \delta(1+\rho) (b_{0,-k} a_{0,-l} - a_{0,-k} b_{0,-l}),$$

$$(2.3)$$

$$f_{0,-t} = \sum_{t \le n \le m} (a_{t,n} b_{0,-n} - b_{t,n} a_{0,-n}), \tag{2.4}$$

where δ_n is defined to be $1 - \rho$ when n = k, otherwise, $\delta_n = 1$. Because Δ is a flag of ideals of R, we know that $c_{i,j} \in A_{i,j}$ $(1 \leq i < j \leq m)$, $d_{k,-l} \in A_{k,-l}$ $(1 \leq k \leq l \leq m)$, and $f_{0,-t} \in A_{0,-t}$ $(1 \leq t \leq m)$. Thus $[X,Y] \in \ell_{\rho,\delta}$. Hence $\ell_{\rho,\delta}$ is a subalgebra of $b_{\rho,\delta}$ containing $h_{\rho,\delta}$.

On the other hand, let $\ell_{\rho,\delta}$ be an intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$. For $1 \leq i < j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m$, we define

$$A_{i,j} = \{ a \in R | aT_{i,j} \in \ell_{\rho,\delta} \}, \quad A_{k,-l} = \{ a \in R | aT_{k,-l} \in \ell_{\rho,\delta} \},$$
$$A_{0,-t} = \{ a \in R | aT_{0,-t} \in \ell_{\rho,\delta} \}$$

and let

$$\overline{\Delta} = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \le i < j \le m, \ 1 \le k \le l \le m, \ 1 \le t \le m\},\$$
$$\overline{\ell} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t} T_{0,-t}.$$

In the following, we will prove that $\overline{\Delta}$ is a flag of ideals of R, and $\overline{\ell} = \ell_{\rho,\delta}$. It is obvious that all $A_{i,j}, A_{k,-l}, A_{0,-t}$ are ideals of R.

If $1 \leq i < k < j \leq m$ and $a_{i,k} \in A_{i,k}, a_{k,j} \in A_{k,j}, a_{k,-j} \in A_{k,-j}$, then by

$$[a_{i,k}T_{i,k}, a_{k,j}T_{k,j}] = a_{i,k}a_{k,j}T_{i,j} \in \ell_{\rho,\delta},$$
$$[a_{i,k}T_{i,k}, a_{k,-j}T_{k,-j}] = a_{i,k}a_{k,-j}T_{i,-j} \in \ell_{\rho,\delta},$$

we have that $a_{i,k}a_{k,j} \in A_{i,j}$ and $a_{i,k}a_{k,-j} \in A_{i,-j}$, which lead to $A_{i,k}A_{k,j} \subseteq A_{i,j}$ and $A_{i,k}A_{k,-j} \subseteq A_{i,-j}$, respectively.

If $1 \leq i < j < k \leq m$ and $a_{i,k} \in A_{i,k}, a_{j,-k} \in A_{j,-k}, a_{j,k} \in A_{j,k}, a_{i,-k} \in A_{i,-k}$, then by

$$[a_{i,k}T_{i,k}, a_{j,-k}T_{j,-k}] = -a_{i,k}a_{j,-k}T_{i,-j} \in \ell_{\rho,\delta},$$

Derivations of certain linear Lie algebras over commutative rings

$$[a_{j,k}T_{j,k}, a_{i,-k}T_{i,-k}] = a_{j,k}a_{i,-k}T_{i,-j} \in \ell_{\rho,\delta},$$

we have that $a_{i,k}a_{j,-k} \in A_{i,-j}$ and $a_{j,k}a_{i,-k} \in A_{i,-j}$, which lead to $A_{i,k}A_{j,-k} \subseteq A_{i,-j}$ and $A_{j,k}A_{i,-k} \subseteq A_{i,-j}$, respectively.

If $\rho = 1$, the conditions (5) and (6) in Definition 2.1 obviously hold. If $\rho = -1$, suppose that $1 \leq i < k \leq m$, $a_{i,k} \in A_{i,k}$, $a_{k,-k} \in A_{k,-k}$, $a_{i,-k} \in A_{i,-k}$. Then by

$$[a_{i,k}T_{i,k}, a_{k,-k}T_{k,-k}] = 2a_{i,k}a_{k,-k}T_{i,-k} \in \ell_{\rho,\delta},$$
$$[a_{i,k}T_{i,k}, a_{i,-k}T_{i,-k}] = -a_{i,k}a_{i,-k}T_{i,-i} \in \ell_{\rho,\delta},$$

we have that $A_{i,k}A_{k,-k} \subseteq A_{i,-k}$ and $A_{i,k}A_{i,-k} \subseteq A_{i,-i}$, respectively. We see that (5) and (6) hold for $\rho = \pm 1$.

If $\rho = -1$ or $\delta = 0$, the conditions (7) and (8) in Definition 2.1 obviously hold. If $\rho = \delta = 1$, suppose that $1 \le i < k \le m$, and $a_{0,-i} \in A_{0,-i}$, $a_{0,-k} \in A_{0,-k}$, $a_{i,k} \in A_{i,k}$. Then by

$$[a_{0,-i}T_{0,-i}, a_{0,-k}T_{0,-k}] = -2a_{0,-i}a_{0,-k}T_{i,-k} \in \ell_{\rho,\delta},$$
$$[a_{i,k}T_{i,k}, a_{0,-k}T_{0,-k}] = a_{i,k}a_{0,-k}T_{0,-i} \in \ell_{\rho,\delta},$$

we have that $A_{0,-i}A_{0,-k} \subseteq A_{i,-k}$ and $A_{i,k}A_{0,-k} \subseteq A_{0,-i}$, respectively. We see that (7) and (8) hold for $\rho = \pm 1$.

These imply that $\overline{\Delta}$ is a flag of ideals of R and $\overline{\ell}$ is an intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$. It is obvious that $\overline{\ell} \subseteq \ell_{\rho,\delta}$. Let $X = H + \sum_{1 \leq i < j \leq m} a_{i,j} T_{i,j} + \sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l} + \sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta}$, where $H \in h_{\rho,\delta}$. For any $1 \leq i < j \leq m$, by

$$\begin{split} & [T_{j,j}, [T_{i,i}, X]] = -a_{i,j} T_{i,j} + a_{i,-j} T_{i,-j} \in \ell_{\rho,\delta}, \\ & [T_{j,j} + T_{i,i}, [T_{j,j}, [T_{i,i}, X]]] = 2a_{i,-j} T_{i,-j} \in \ell_{\rho,\delta}, \end{split}$$

we have that $a_{i,-j} \in A_{i,-j}$ and $a_{i,j} \in A_{i,j}$. It follows that $\sum_{1 \le k \le m} (a_{k,-k}T_{k,-k} + a_{0,-k}T_{0,-k}) \in \ell_{\rho,\delta}$, leading to $[T_{t,t}, \sum_{1 \le k \le m} (a_{k,-k}T_{k,-k} + a_{0,-k}T_{0,-k})] = 2a_{t,-t}T_{t,-t} + a_{0,-t}T_{0,-t} \in \ell_{\rho,\delta}$ for all $1 \le t \le m$. Since either $T_{t,-t} = 0$ (if $\rho = 1$) or $T_{0,-t} = 0$ (if $\rho = -1$), we know that $a_{t,-t}T_{t,-t}$, $a_{0,-t}T_{0,-t} \in \ell_{\rho,\delta}$, which implies $a_{t,-t} \in A_{t,-t}$, $a_{0,-t} \in A_{0,-t}$, $1 \le t \le m$. We see that $X \in \overline{\ell}$. Thus $\ell_{\rho,\delta} \subseteq \overline{\ell}$, which leads to $\ell_{\rho,\delta} = \overline{\ell}$. This completes the proof. \Box

3. Derivations of a subalgebra of $\ell_{\rho,\delta}$

For *R*-modules *M* and *K*, we denote by $\operatorname{Hom}_R(M, K)$ the set of all homomorphisms from *M* to *K*. $\operatorname{Hom}_R(M, M)$ is abbreviated to $\operatorname{End}_R(M)$. For $1 \leq i \leq m, \chi_i : d(m, R) \to R$, defined by $\chi_i(\operatorname{diag}(d_1, d_2, \ldots, d_m)) = d_i$, is a standard homomorphism from d(m, R) to *R*. It is easy to see that $\operatorname{Hom}_R(d(m, R), R)$ is a free *R*-module of rank *m* with a basis $\{\chi_i | i = 1, 2, \ldots, m\}$.

Let

$$\ell_{\rho,\delta} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t} T_{0,-t}$$

be any given intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$, with $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i < j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ a flag of ideals of R. In the following,

we shall determine its derivation algebra. As a start, we first consider the derivation algebra of a subalgebra of $\ell_{\rho,\delta}$. Let $p = \ell_{\rho,\delta} \cap t_{\rho,\delta}$. Then $p = h_{\rho,\delta} + \sum_{1 \leq i < j \leq m} A_{i,j}T_{i,j}$. In fact, pis an intermediate algebra between $h_{\rho,\delta}$ and $t_{\rho,\delta}$. It is easy to see that the map $\varphi : t_{\rho,\delta} \to (0 \ 0 \ 0)$

$$t(m,R)$$
, defined by $\begin{pmatrix} 0 & A & 0 \\ 0 & 0 & -A' \end{pmatrix} \mapsto A$ (where $A \in t(m,R)$), is an isomorphism of Lie

algebras, under which the image of p is $d(m, R) + \sum_{1 \le i < j \le m} A_{i,j} E_{i,j}^{(m)}$ (where $E_{i,j}^{(m)}$ denotes the $m \times m$ matrix, whose (i, j)-entry is 1, all other entries are 0). In [3], the derivation algebra of $d(m, R) + \sum_{1 \le i < j \le m} A_{i,j} E_{i,j}^{(m)}$ was determined. We now transfer it to p for later use.

The standard derivations of p are as follows.

(A) Inner derivations of p

Let $X \in p$. Then $ad_p X : p \to p$, defined by $Y \mapsto [X, Y]$, is a derivation of p, called the inner derivation of p induced by X.

(B) Extremal derivations of p

Definition 3.1 Let $\phi = \{\phi_{i,j} \in \text{End}_R(A_{i,j}), |1 \leq i < j \leq m\}$ be a set consisting of homomorphisms of *R*-modules. ϕ is called suitable for extremal derivations of *p* if

$$\phi_{i,j}(a_{i,k}a_{k,j}) = \phi_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\phi_{k,j}(a_{k,j})$$

for any $1 \leq i < k < j \leq m$ (if exists), any $a_{i,k} \in A_{i,k}$ and any $a_{k,j} \in A_{k,j}$.

Using $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}) | 1 \le i < j \le m\}$ which is suitable for extremal derivations, we define $\eta_{p,\phi} : p \to p$ by

$$\eta_{p,\phi} \left(\sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} \right) = \sum_{1 \le i < j \le m} \phi_{i,j}(a_{i,j}) T_{i,j}$$

where $a_{i,i} \in R$ and $a_{i,j} \in A_{i,j}$ if i < j.

Lemma 3.2 $\eta_{p,\phi}$ is a derivation of p, provided that $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}) | 1 \le i < j \le m\}$ is suitable for extremal derivations (we call $\eta_{p,\phi}$ an extremal derivation of p).

(C) Central derivations of p

If $1 \le i < j \le m$, let $B_{i,j}$ be the annihilator of $A_{i,j}$ in R: $B_{i,j} = \{r \in R | rA_{i,j} = 0\}$.

Definition 3.3 Let $\sigma : h_{\rho,\delta} \to h_{\rho,\delta}$ be a homomorphism of *R*-modules. σ is called suitable for central derivations of *p*, if $\chi_i(\varphi(\sigma(H))) - \chi_j(\varphi(\sigma(H))) \in B_{i,j}$ for all $1 \le i < j \le m$ and all $H \in h_{\rho,\delta}$.

Using the homomorphism $\sigma : h_{\rho,\delta} \to h_{\rho,\delta}$ which is suitable for central derivations of p, we define $\tau_{p,\sigma} : p \to p$ by $\tau_{p,\sigma}(X) = \sigma(H_X), X \in p$, where H_X denotes the projection of X to $h_{\rho,\delta}$ (if $X = \sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} \in p$. Then $H_X = \sum_{1 \le i \le m} a_{i,i} T_{i,i}$).

Lemma 3.4^[3] $\tau_{p,\sigma}$ is a derivation of p, provided that σ is suitable for central derivations of p (we call $\tau_{p,\sigma}$ a central derivation of p).

Theorem 3.5^[3] Let m > 1, R an arbitrary commutative ring with identity, and $p = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j} T_{i,j}$ an intermediate Lie algebra between $h_{\rho,\delta}$ and $t_{\rho,\delta}$ with $\Delta = \{A_{i,j} \in I(R) | 1 \le i < j \le m\}$ a subset of I(R) satisfying $A_{i,k}A_{k,j} \subseteq A_{i,j}$ (if k exists such that $1 \le i < k < j \le m$). Then any derivation ψ_p of p may be written as the sum of an inner derivation, an extremal derivation and a central derivation.

4. Standard derivations of $\ell_{\rho,\delta}$

Let

$$\ell_{\rho,\delta} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t} T_{0,-t}$$

be any given intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$, with $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i < j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ a flag of ideals of R. In this section, we will define some standard derivations of $\ell_{\rho,\delta}$.

(A) Inner derivations of $\ell_{\rho,\delta}$

Let $X \in \ell_{\rho,\delta}$. Then $adX : \ell_{\rho,\delta} \to \ell_{\rho,\delta}$, sending Y to [X,Y], is a derivation of $\ell_{\rho,\delta}$, called the inner derivation of $\ell_{\rho,\delta}$ induced by X.

(B) Extremal derivations of $\ell_{\rho,\delta}$

Definition 4.1 Let $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}), \phi_{k,-l} \in \operatorname{End}_R(A_{k,-l}), \phi_{0,-t} \in \operatorname{End}_R(A_{0,-t}) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ be a set consisting of homomorphisms of *R*-modules. We call ϕ suitable for extremal derivations of $\ell_{\rho,\delta}$ if the following conditions are satisfied:

- (1) $\phi_{i,j}(a_{i,k}a_{k,j}) = \phi_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\phi_{k,j}(a_{k,j})$ (if $1 \le i < k < j \le m$),
- (2) $\phi_{i,-j}(a_{i,k}a_{k,-j}) = \phi_{i,k}(a_{i,k})a_{k,-j} + a_{i,k}\phi_{k,-j}(a_{k,-j})$ (if $1 \le i < k < j \le m$),
- (3) $\phi_{i,-j}(a_{i,k}a_{j,-k}) = \phi_{i,k}(a_{i,k})a_{j,-k} + a_{i,k}\phi_{j,-k}(a_{j,-k})$ (if $1 \le i < j < k \le m$),
- (4) $\phi_{i,-j}(a_{j,k}a_{i,-k}) = \phi_{j,k}(a_{j,k})a_{i,-k} + a_{j,k}\phi_{i,-k}(a_{i,-k})$ (if $1 \le i < j < k \le m$),
- (5) $(1-\rho)\phi_{i,-k}(a_{i,k}a_{k,-k}) = (1-\rho)[\phi_{i,k}(a_{i,k})a_{k,-k} + a_{i,k}\phi_{k,-k}(a_{k,-k})]$ (if $1 \le i < k \le m$),
- (6) $(1-\rho)\phi_{i,-i}(a_{i,k}a_{i,-k}) = (1-\rho)[\phi_{i,k}(a_{i,k})a_{i,-k} + a_{i,k}\phi_{i,-k}(a_{i,-k})]$ (if $1 \le i < k \le m$),

(7) $\delta(1-\rho)\phi_{i,-k}(a_{0,-i}a_{0,-k}) = \delta(1-\rho)[\phi_{0,-i}(a_{0,-i})a_{0,-k} + a_{0,-i}\phi_{0,-k}(a_{0,-k})]$ (if $1 \le i < k \le m$),

(8) $\delta(1-\rho)\phi_{0,-i}(a_{i,k}a_{0,-k}) = \delta(1-\rho)[\phi_{i,k}(a_{i,k})a_{0,-k} + a_{i,k}\phi_{0,-k}(a_{0,-k})]$ (if $1 \le i < k \le m$), where $a_{i,k} \in A_{i,k}, \ldots, a_{k,-j} \in A_{k,-j}, \ldots$.

Using $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}), \phi_{k,-l} \in \operatorname{End}_R(A_{k,-l}), \phi_{0,-t} \in \operatorname{End}_R(A_{0,-t}) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ which is suitable for extremal derivations, we define $\eta_{\tilde{\phi}} : \ell_{\rho,\delta} \to \ell_{\rho,\delta}$ by

$$\eta_{\phi}^{\sim} \Big(\sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \Big) \\ = \sum_{1 \le i < j \le m} \phi_{i,j}(a_{i,j}) T_{i,j} + \sum_{1 \le k \le l \le m} \phi_{k,-l}(a_{k,-l}) T_{k,-l} + \sum_{1 \le t \le m} \phi_{0,-t}(a_{0,-t}) T_{0,-t},$$

where $a_{i,i} \in R$, $a_{i,j} \in A_{i,j}$, $a_{k,-l} \in A_{k,-l}$, $a_{0,-t} \in A_{0,-t}$.

Lemma 4.2 $\eta_{\tilde{\phi}}$ is a derivation of $\ell_{\rho,\delta}$, provided that $\tilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho,\delta}$.

Proof Let $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}), \phi_{k,-l} \in \operatorname{End}_R(A_{k,-l}), \phi_{0,-t} \in \operatorname{End}_R(A_{0,-t}) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ be suitable for extremal derivations of $\ell_{\rho,\delta}$, and set

$$\begin{split} X &= \sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta}, \\ Y &= \sum_{1 \le i \le j \le m} b_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} b_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta}, \end{split}$$

where $a_{i,i}, b_{i,i}$ lie in R, $a_{i,j}, b_{i,j}$ lie in $A_{i,j}$ $(1 \le i < j \le m)$, $a_{k,-l}, b_{k,-l}$ lie in $A_{k,-l}$ $(1 \le k \le l \le m)$, and $a_{0,-t}, b_{0,-t}$ lie in $A_{0,-t}$ $(1 \le t \le m)$. It is obvious that $\eta_{\phi}(rX + sY) = r\eta_{\phi}(X) + s\eta_{\phi}(Y)$ for any $r, s \in R$. Note that the equalities (2.1)–(2.4) hold. Because ϕ is suitable for extremal derivations of $\ell_{\rho,\delta}$, we know (by calculation) that

$$\eta_{\widetilde{\phi}}([X,Y]) = [\eta_{\widetilde{\phi}}(X),Y] + [X,\eta_{\widetilde{\phi}}(Y)].$$

So $\eta_{\tilde{\phi}}$ is a derivation of $\ell_{\rho,\delta}$.

Definition 4.3 The above $\eta_{\tilde{\phi}}$ is called an extremal derivation of $\ell_{\rho,\delta}$.

Remark 4.4 The restriction of $\eta_{\tilde{\phi}}$ to p exactly is $\eta_{p,\phi}$.

(C) Central derivations of $\ell_{\rho,\delta}$

For $1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m$, let $B_{i,j}$ (resp., $B_{k,-l}, B_{0,-t}$) be the annihilator of $A_{i,j}$ (resp., $A_{k,-l}, A_{0,-t}$) in R:

$$B_{i,j} = \{r \in R \mid rA_{i,j} = 0\}, \ B_{k,-l} = \{r \in R \mid rA_{k,-l} = 0\}, \ B_{0,-t} = \{r \in R \mid rA_{0,-t} = 0\}.$$

Definition 4.5 Let $\tilde{\sigma} : h_{\rho,\delta} \to h_{\rho,\delta}$ be a homomorphism of *R*-modules. We call $\tilde{\sigma}$ suitable for central derivations of $\ell_{\rho,\delta}$, if $\chi_i(\varphi(\tilde{\sigma}(H))) - \chi_j(\varphi(\tilde{\sigma}(H))) \in B_{i,j}, \chi_k(\varphi(\tilde{\sigma}(H))) + \chi_l(\varphi(\tilde{\sigma}(H))) \in B_{k,-l}$, and $\chi_t(\varphi(\tilde{\sigma}(H))) \in B_{0,-t}$ for all $1 \leq i < j \leq m$, all $1 \leq k \leq l \leq m$, all $1 \leq t \leq m$ and all $H \in h_{\rho,\delta}$.

Using the homomorphism $\tilde{\sigma} : h_{\rho,\delta} \to h_{\rho,\delta}$ which is suitable for central derivations of $\ell_{\rho,\delta}$, we define $\tau_{\tilde{\sigma}} : \ell_{\rho,\delta} \to \ell_{\rho,\delta}$ by

$$\tau_{\widetilde{\sigma}}(X) = \widetilde{\sigma}(H_X), \quad X \in \ell_{\rho,\delta},$$

where H_X denotes the projection of X to $h_{\rho,\delta}$ (if $X = \sum_{1 \le i \le j \le m} a_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \ell_{\rho,\delta}$, then $H_X = \sum_{1 \le i \le m} a_{i,i} T_{i,i}$).

Lemma 4.6 $\tau_{\tilde{\sigma}}$ is a derivation of $\ell_{\rho,\delta}$, provided that $\tilde{\sigma}$ is suitable for central derivations of $\ell_{\rho,\delta}$.

Proof By definition, $\tau_{\tilde{\sigma}}([X,Y]) = 0$ for any $X, Y \in \ell_{\rho,\delta}$. On the other hand, $[\tau_{\tilde{\sigma}}(X), Y] + [X, \tau_{\tilde{\sigma}}(Y)] = 0$, because $\tau_{\tilde{\sigma}}$ sends each element in $\ell_{\rho,\delta}$ to its center $Z(\ell_{\rho,\delta})$. This shows that $\tau_{\tilde{\sigma}}$ is a derivation of $\ell_{\rho,\delta}$.

Definition 4.7 We call $\tau_{\tilde{\sigma}}$ a central derivation of $\ell_{\rho,\delta}$.

5. Derivations of $\ell_{\rho,\delta}$

When m = 1, the derivation algebra of $\ell_{\rho,\delta}$ has been studied in [3] (the result is more trivial). In this paper, we only consider the case when m > 1.

Theorem 5.1 Let m > 1, R an arbitrary commutative ring with identity, and $\ell_{\rho,\delta}$ any given intermediate Lie algebra between $h_{\rho,\delta}$ and $b_{\rho,\delta}$. If $2 \in R^*$, then any derivation ψ of $\ell_{\rho,\delta}$ may be written in the form:

$$\psi = \operatorname{ad} X + \eta_{\widetilde{\phi}} + \tau_{\widetilde{\sigma}}$$

where ad X, $\eta_{\tilde{\phi}}$, and $\tau_{\tilde{\sigma}}$ are the inner, extremal and central derivations of $\ell_{\rho,\delta}$, respectively.

Proof Let $\ell_{\rho,\delta} = h_{\rho,\delta} + \sum_{1 \le i < j \le m} A_{i,j}T_{i,j} + \sum_{1 \le k \le l \le m} A_{k,-l}T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t}T_{0,-t}$ with $\Delta = \{A_{i,j}, A_{k,-l}, A_{0,-t} \in I(R) | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$ a flag of ideals of R. Let ψ be any derivation of $\ell_{\rho,\delta}$. Set $z = \ell_{\rho,\delta} \bigcap w_{\rho,\delta}$ and $p = \ell_{\rho,\delta} \bigcap t_{\rho,\delta}$. Then $z = \sum_{1 \le k \le l \le m} A_{k,-l}T_{k,-l} + \sum_{1 \le t \le m} A_{0,-t}T_{0,-t}, p = \sum_{1 \le i \le j \le m} A_{i,j}T_{i,j}$. Denote

$$J = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & -E \end{array} \right).$$

In the following, we will give the proof by steps.

Step 1 There exists $Z_0 \in z$ such that $(\psi + \operatorname{ad} Z_0)(h_{\rho,\delta}) \subseteq p$.

For any $\Lambda = \text{diag}(d_1, d_2, \dots, d_m) \in d(m, R)$, we suppose that

$$\psi \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda \end{pmatrix} \equiv \sum_{1 \le k \le l \le m} r_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} r_{0,-t} T_{0,-t} \pmod{p},$$

and suppose that

$$\psi(J) \equiv \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \pmod{p},$$

where $r_{k,-l}$, $a_{k,-l}$ lie in $A_{k,-l}$, and $r_{0,-t}$, $a_{0,-t}$ lie in $A_{0,-t}$. By applying ψ on

$$\left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda \end{pmatrix}, J \right] = 0,$$

we get that $r_{k,-l} = 2^{-1}(d_k+d_l)a_{k,-l}$ and $r_{0,-t} = d_t a_{0,-t}$. Choose $Z_0 = 2^{-1} \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \in \mathbb{Z}$. Then we have that

$$(\psi + \operatorname{ad} Z_0) \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda \end{array} \right) \equiv 0 \; (\operatorname{mod} p).$$

Hence $(\psi + \operatorname{ad} Z_0)(h_{\rho,\delta}) \subseteq p$. Now we denote $\psi + \operatorname{ad} Z_0$ by ψ_1 .

Step 2 z is stable under ψ_1 .

For any $Z_1 \in \sum_{1 \leq t \leq m} A_{0,-t}T_{0,-t}$, we first prove that $\psi_1(Z_1) \in z$. By applying ψ_1 on $[J, Z_1] = Z_1$, we see that $[\psi_1(J), Z_1] + [J, \psi_1(Z_1)] = \psi_1(Z_1)$. It is easy to know that $[\psi_1(J), Z_1] \in z$, $[J, \psi_1(Z_1)] \in z$. Then we get $\psi_1(Z_1) \subseteq z$.

For any $Z_2 \in \sum_{1 \le k \le l \le m} A_{k,-l} T_{k,-l}$, we next prove that $\psi_1(Z_2) \in z$. By applying ψ_1 on $[J, Z_2] = 2Z_2$, we see that

$$[\psi_1(J), Z_2] + [J, \psi_1(Z_2)] = 2\psi_1(Z_2)$$

- \

It is easy to see that the left hand side lies in z, which leads to $\psi_1(Z_2) \in z$.

Step 3 p is stable under ψ_1 .

For any
$$P \in p$$
, we suppose that $\psi_1(P) = \begin{pmatrix} 0 & 0 & \beta \\ -\beta & A & B \\ 0 & 0 & -A' \end{pmatrix} \in \ell_{\rho,\delta}$. By applying ψ_1 on $[J,P] = 0$, we have $[\psi_1(J),P] + [J,\psi_1(P)] = 0$. Because $\psi_1(h_{\rho,\delta}) \subseteq p$, we get $[\psi_1(J),P] \in p$. Set $[\psi_1(J),P] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & -A'_1 \end{pmatrix}$. On the other hand, $[J,\psi_1(P)] = \begin{pmatrix} 0 & 0 & \beta \\ -\beta & 0 & 2B \\ 0 & 0 & 0 \end{pmatrix}$. Then we see that $\begin{pmatrix} 0 & 0 & \beta \\ -\beta & A_1 & 2B \\ 0 & 0 & -A'_1 \end{pmatrix} = 0$. This implies that $A_1 = 0, B = 0, \beta = 0$. Thus $\psi_1(P) \in p$

leads to $\psi_1(p) \subseteq p$.

Step 4 There exists $P_0 \in p$ and there exists $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}), |1 \leq i < j \leq m\}$ which is suitable for extremal derivations of p, such that for any $\sum_{1 \leq i < j \leq m} a_{i,j} T_{i,j} \in p$,

$$(\psi_1 - \operatorname{ad} P_0) \Big(\sum_{1 \le i < j \le m} a_{i,j} T_{i,j} \Big) = \sum_{1 \le i < j \le m} \phi_{i,j}(a_{i,j}) T_{i,j}.$$

Since p is stable under ψ_1 , ψ_1 may induce a derivation $\psi_1|_p$ of p by restricting ψ_1 to p. Thus by Theorem 3.5, $\psi_1|_p$ can be written in the form:

$$\psi_1|_p = \operatorname{ad}_p P_0 + \eta_{p,\phi} + \tau_{p,\sigma},$$

where $P_0 \in p$, $\phi = \{\phi_{i,j} \in \operatorname{End}_R(A_{i,j}) | 1 \leq i < j \leq m\}$ is suitable for extremal derivations of p (satisfies the condition that $\phi_{i,j}(a_{i,k}a_{k,j}) = \phi_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\phi_{k,j}(a_{k,j}))$, and $\sigma : h_{\rho,\delta} \to h_{\rho,\delta}$ is suitable for central derivations of p satisfying the condition that $\chi_i(\varphi(\sigma(H))) - \chi_j(\varphi(\sigma(H))) \in B_{i,j}$ for all $1 \leq i < j \leq m$ and all $H \in h_{\rho,\delta}$. It is obvious that the restriction of adP_0 to p is $\operatorname{ad}_p P_0$. Then $(\psi_1 - \operatorname{ad} P_0)|_p = \eta_{p,\phi} + \tau_{p,\sigma}$. We denote $\psi_1 - \operatorname{ad} P_0$ by ψ_2 . Then

$$\psi_2\Big(\sum_{1\leq i< j\leq m} a_{i,j}T_{i,j}\Big) = \sum_{1\leq i< j\leq m} \phi_{i,j}(a_{i,j})T_{i,j},$$

for any $\sum_{1 \le i < j \le m} a_{i,j} T_{i,j} \in p$.

Step 5 $\psi_2(A_{k,-l}T_{k,-l}) \subseteq A_{k,-l}T_{k,-l}$ for all $1 \le k \le l \le m$ and $\psi_2(A_{0,-l}T_{0,-l}) \subseteq A_{0,-l}T_{0,-l}$ for

Derivations of certain linear Lie algebras over commutative rings

all $1 \leq l \leq m$.

For any $0 \le k \le l \le m$ $(l \ne 0)$ and $a_{k,-l} \in A_{k,-l}$, assume that

$$\psi_2(a_{k,-l}T_{k,-l}) = \sum_{1 \le i \le j \le m} r_{i,-j}T_{i,-j} + \sum_{1 \le t \le m} r_{0,-t}T_{0,-t},$$
(5.1)

with $r_{i,-j} \in A_{i,-j}$, $r_{0,-t} \in A_{0,-t}$. By applying ψ_2 on $[T_{l,l}, a_{k,-l}T_{k,-l}] = a_{k,-l}T_{k,-l}$, we have that

$$[\psi_2(T_{l,l}), a_{k,-l}T_{k,-l}] + [T_{l,l}, \psi_2(a_{k,-l}T_{k,-l})] = \psi_2(a_{k,-l}T_{k,-l})$$

Since $\psi_2(T_{l,l}) \in p$, we have $[\psi_2(T_{l,l}), a_{k,-l}T_{k,-l}] \in A_{i,-l}T_{i,-l}$. On the other hand, we have

$$[T_{l,l}, \psi_2(a_{k,-l}T_{k,-l})] = \sum_{l \le j \le m} r_{l,-j}T_{l,-j} + \sum_{1 \le i \le l-1} r_{i,-l}T_{i,-l} + r_{0,-l}T_{0,-l}.$$

These show that $r_{i,-j} = 0$ when $i \neq l$ and $j \neq l$, and $r_{0,-t} = 0$ when $t \neq l$ in (5.1).

If $k \neq l$, similarly, by applying ψ_2 on $[T_{k,k}, a_{k,-l}T_{k,-l}] = a_{k,-l}T_{k,-l}$, we can get that $r_{i,-j} = 0$ when $i \neq k$ and $j \neq k$, and $r_{0,-t} = 0$ when $t \neq k$ in (5.1). Thus, $\psi_2(a_{k,-l}T_{k,-l}) \in A_{k,-l}T_{k,-l}$, which shows that $\psi_2(A_{k,-l}T_{k,-l}) \in A_{k,-l}T_{k,-l}$ for any $0 \leq k < l \leq m$.

Now we consider the condition of k = l. For $\rho = 1$, which leads to $T_{l,-l} = 0$, $\psi_2(a_{l,-l}T_{l,-l}) \in A_{l,-l}T_{l,-l}$ obviously holds. For $\rho = -1$, we see that $T_{0,-t} = 0$ in (5.1), $1 \leq t \leq m$. Set $s \neq l$ $(1 \leq s \leq m)$. By applying ψ_2 on $[T_{s,s}, a_{l,-l}T_{l,-l}] = 0$, we have that

$$[\psi_2(T_{s,s}), a_{l,-l}T_{l,-l}] + \left[T_{s,s}, \sum_{l \le j \le m} r_{l,-j}T_{l,-j} + \sum_{1 \le i \le l-1} r_{i,-l}T_{i,-l}\right] = 0.$$

This shows that $r_{l,-j} = 0$ when j = s, and $r_{i,-l} = 0$ when i = s. Since $s \neq l$ is chosen arbitrarily, we see that $\psi_2(a_{l,-l}T_{l,-l}) \in A_{l,-l}T_{l,-l}$. Hence $\psi_2(A_{l,-l}T_{l,-l}) \subseteq A_{l,-l}T_{l,-l}$.

Now for any $1 \le k \le l \le m$, $1 \le t \le m$, we define $\phi_{k,-l} : A_{k,-l} \to A_{k,-l}$ and $\phi_{0,-t} : A_{0,-t} \to A_{0,-t}$ such that $\psi_2(a_{k,-l}T_{k,-l}) = \phi_{k,-l}(a_{k,-l})T_{k,-l}$ and $\psi_2(a_{0,-t}T_{0,-t}) = \phi_{0,-t}(a_{0,-t})T_{0,-t}$. Then $\phi_{k,-l}$ and $\phi_{0,-t}$ are endomorphisms of the *R*-modulars $A_{k,-l}$ and $A_{0,-t}$, respectively. Let

$$\widetilde{\phi} = \{\phi_{i,j}, \phi_{k,-l}, \phi_{0,-t} | 1 \le i < j \le m, 1 \le k \le l \le m, 1 \le t \le m\}$$

Step 6 ϕ is suitable for extremal derivations of $\ell_{\rho,\delta}$.

We know in Step 4 that $\phi_{i,j}(a_{i,k}a_{k,j}) = \phi_{i,k}(a_{i,k})a_{k,j} + a_{i,k}\phi_{k,j}(a_{k,j})$, where $1 \le i < k < j \le m$ and $a_{i,k} \in A_{i,k}, a_{k,j} \in A_{k,j}$.

For $1 \leq i < k < j \leq m$ and $a_{i,k} \in A_{i,k}, a_{k,-j} \in A_{k,-j}$, by applying ψ_2 on

$$a_{i,k}a_{k,-j}T_{i,-j} = [a_{i,k}T_{i,k}, a_{k,-j}T_{k,-j}],$$

we have that $\phi_{i,-j}(a_{i,k}a_{k,-j}) = \phi_{i,k}(a_{i,k})a_{k,-j} + a_{i,k}\phi_{k,-j}(a_{k,-j}).$

For $1 \leq i < j < k \leq m$ and $a_{i,k} \in A_{i,k}, a_{j,-k} \in A_{j,-k}, a_{j,k} \in A_{j,k}, a_{i,-k} \in A_{i,-k}$, by applying ψ_2 on

$$a_{i,k}a_{j,-k}T_{i,-j} = -[a_{i,k}T_{i,k}, a_{j,-k}T_{j,-k}], \quad a_{j,k}a_{i,-k}T_{i,-j} = [a_{j,k}T_{j,k}, a_{i,-k}T_{i,-k}],$$

we have that

$$\phi_{i,-j}(a_{i,k}a_{j,-k}) = \phi_{i,k}(a_{i,k})a_{j,-k} + a_{i,k}\phi_{j,-k}(a_{j,-k}),$$

$$\phi_{i,-j}(a_{j,k}a_{i,-k}) = \phi_{j,k}(a_{j,k})a_{i,-k} + a_{j,k}\phi_{i,-k}(a_{i,-k}).$$

For $1 \le i < k \le m$, and $a_{i,k} \in A_{i,k}$, $a_{k,-k} \in A_{k,-k}$, $a_{i,-k} \in A_{i,-k}$, $a_{0,-i} \in A_{0,-i}$, $a_{0,-k} \in A_{0,-k}$, by applying ψ_2 on

$$(1 - \rho)a_{i,k}a_{k,-k}T_{i,-k} = [a_{i,k}T_{i,k}, a_{k,-k}T_{k,-k}],$$

$$(1 - \rho)a_{i,k}a_{i,-k}T_{i,-i} = 2[a_{i,k}T_{i,k}, a_{i,-k}T_{i,-k}],$$

$$\delta(1 + \rho)a_{0,-i}a_{0,-k}T_{i,-k} = -[a_{0,-i}T_{0,-i}, a_{0,-k}T_{0,-k}],$$

$$\delta(1 + \rho)a_{i,k}a_{0,-k}T_{0,-i} = 2[a_{i,k}T_{i,k}, a_{0,-k}T_{0,-k}],$$

we have that

$$(1-\rho)\phi_{i,-k}(a_{i,k}a_{k,-k}) = (1-\rho)[\phi_{i,k}(a_{i,k})a_{k,-k} + a_{i,k}\phi_{k,-k}(a_{k,-k})],$$

$$(1-\rho)\phi_{i,-i}(a_{i,k}a_{i,-k}) = (1-\rho)[\phi_{i,k}(a_{i,k})a_{i,-k} + a_{i,k}\phi_{i,-k}(a_{i,-k})],$$

$$\delta(1+\rho)\phi_{i,-k}(a_{0,-i}a_{0,-k}) = \delta(1+\rho)[\phi_{0,-i}(a_{0,-i})a_{0,-k} + a_{i,k}\phi_{0,-k}(a_{0,-k})],$$

$$\delta(1+\rho)\phi_{0,-i}(a_{i,k}a_{0,-k}) = \delta(1+\rho)[\phi_{i,k}(a_{i,k})a_{0,-k} + a_{i,k}\phi_{0,-k}(a_{0,-k})].$$

Hence $\tilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho,\delta}$. Using $\tilde{\phi}$, we construct the extremal derivation $\eta_{\tilde{\phi}}$ of $\ell_{\rho,\delta}$ by

$$\eta_{\widetilde{\phi}} \Big(H + \sum_{1 \le i < j \le m} a_{i,j} T_{i,j} + \sum_{1 \le k \le l \le m} a_{k,-l} T_{k,-l} + \sum_{1 \le t \le m} a_{0,-t} T_{0,-t} \Big) \\ = \sum_{1 \le i < j \le m} \phi_{i,j}(a_{i,j}) T_{i,j} + \sum_{1 \le k \le l \le m} \phi_{k,-l}(a_{k,-l}) T_{k,-l} + \sum_{1 \le t \le m} \phi_{0,-t}(a_{0,-t}) T_{0,-t},$$

where $H \in h_{\rho,\delta}$, $a_{i,j} \in A_{i,j}$, $a_{k,-l} \in A_{k,-l}$ and $a_{0,-t} \in A_{0,-t}$. Let ψ_3 denote $\psi_2 - \eta_{\widetilde{\phi}}$. Then $\psi_3(Z) = 0$ for any $Z \in z$ and $\psi_3(\sum_{1 \le i < j \le m} a_{i,j}T_{i,j}) = 0$ for $\sum_{1 \le i < j \le m} a_{i,j}T_{i,j} \in p$.

Step 7 ψ_3 is a central derivation of $\ell_{\rho,\delta}$.

For any $\Lambda = \operatorname{diag}(d_1, d_2, \dots, d_m) \in d(m, R)$, let $H = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda \end{pmatrix} \in h_{\rho,\delta}$. For any

 $a_{i,j} \in A_{i,j}, \, a_{k,-l} \in A_{k,-l}, \, a_{0,-t} \in A_{0,-t},$ by applying ψ_3 on

$$\begin{split} & [H, a_{i,j}T_{i,j}] = (d_i - d_j)a_{i,j}T_{i,j}, \\ & [H, a_{k,-l}T_{k,-l}] = (d_k + d_l)a_{k,-l}T_{k,-l}, \\ & [H, a_{0,-t}T_{0,-t}] = d_t a_{0,-t}T_{0,-t}, \end{split}$$

we have that

$$[\psi_3(H), a_{i,j}T_{i,j}] = 0, \quad [\psi_3(H), a_{k,-l}T_{k,-l}] = 0, \quad [\psi_3(H), a_{0,-t}T_{0,-t}] = 0,$$

which implies that $(\chi_i - \chi_j)(\varphi(\psi_3(H))) \cdot a_{i,j} = 0, (\chi_k + \chi_l)(\varphi(\psi_3(H))) \cdot a_{k,-l} = 0$ and $\chi_t(\varphi(\psi_3(H))) \cdot a_{0,-t} = 0$. It is easy to see that ψ_3 is exactly a central derivation of $\ell_{\rho,\delta}$.

Now we see that ψ is the sum of an inner derivation, an extremal derivation and a central derivation of $\ell_{\rho,\delta}$. The proof is completed.

References

- [1] HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag London, Ltd., London, 2006.
- WANG Dengyin, YU Qiu, ZHAO Yanxia. Automorphisms of a linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2007, 423(2-3): 324–331.
- [3] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369–377.
- [4] WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763–774.
- [5] CAO You'an, TAN Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105–122.
- [6] CAO You'an. Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring
 [J]. J. Algebra, 1997, 189(2): 506-513.
- [7] JφNDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205–218.
- [8] JØNDRUP S. The group of automorphisms of certain subalgebras of matrix algebras [J]. J. Algebra, 1991, 141(1): 106–114.
- JφNDRUP S. Automorphisms of upper triangular matrix rings [J]. Arch. Math. (Basel), 1987, 49(6): 497– 502.
- [10] BENKART G M, OSBORN J M. Derivations and automorphisms of nonassociative matrix algebras [J]. Trans. Amer. Math. Soc., 1981, 263(2): 411–430.