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1. Introduction

Let R be a commutative ring with identity, R∗ the subset of R consisting of all invertible

elements in R, 2 ∈ R∗, E(m) the m×m identity matrix over R (E(m) is abbreviated to E), Rm×n

the set of all m× n matrices over R and gl(m,R) the general linear Lie algebra consisting of all

m×m matrices over R with bracket production: [X,Y ] = XY −Y X . For A ∈ Rm×n, A′ denotes

the transpose of A. Let t(m,R) (resp., d(m,R)) be the subalgebra of gl(m,R) consisting of all

upper triangular(resp., diagonal) matrices. For ρ = ±1 and δ = 0, 1, we set

Lρ,δ =
{




0 α β

−β′ A B

−α′ 0 −A′




∣∣∣ α, β ∈ R1×m, A ∈ t(m,R), B ∈ Rm×m, satisfies

α = 2−1δ(1 + ρ)α, β = 2−1δ(1 + ρ)β, B′ = −ρB
}
,

which is a subalgebra of gl(2m + 1, R). We see that the symplectic algebra sp(2m,R) (resp.,

the orthogonal algebra o(2m,R)) is embedded into L−1,0 (resp., L1,0 ) and sp(2m,R) (resp.,

o(2m,R)) is isomorphic to L−1,0 (resp., L1,0 ), and L1,1 is the orthogonal algebra o(2m+ 1, R)

(we refer to [1, pp 1-4 ] for the definitions of the symplectic algebra and the orthogonal algebra).

Thus, to determine a problem of the symplectic algebra or the orthogonal algebra one really
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needs to consider the corresponding one of the Lie algebra Lρ,δ after all. We now give several

special subalgebras of Lρ,δ for later use. Set

hρ,δ =
{




0 0 0

0 Λ 0

0 0 −Λ′




∣∣∣Λ ∈ d(m,R)
}

;

bρ,δ =
{




0 0 β

−β′ A B

0 0 −A′




∣∣∣ β ∈ R1×m, A ∈ t(m,R), B ∈ Rm×m, satisfies

β = 2−1δ(1 + ρ)β, B′ = −ρB
}
;

tρ,δ =
{




0 0 0

0 A 0

0 0 −A′




∣∣∣ A ∈ t(m,R)
}
;

wρ,δ =
{




0 0 β

−β′ 0 B

0 0 0




∣∣∣ β ∈ R1×m, B ∈ Rm×m satisfies

β = 2−1δ(1 + ρ)β, B′ = −ρB
}
.

By definition, hρ,δ is a maximal torus of Lρ,δ and bρ,δ is a standard Borel subalgebra of Lρ,δ

containing hρ,δ.

The automorphisms or derivations of linear Lie algebras over commutative rings were recently

studied in [2–10]. In this paper, on the basis of main theorem in [3], we give an explicit description

on the derivations of each intermediate algebra between hρ,δ and bρ,δ, provided that R is a

commutative ring with identity and 2 is invertible in R.

2. The intermediate algebras between hρ,δ and bρ,δ

In the following, we always assume that R is a commutative ring with identity and 2 ∈ R∗.

For 1 ≤ i ≤ j ≤ m, 1 ≤ t ≤ m, let Ei,j denote the (2m + 1) × (2m + 1) matrix, whose

(i + 1, j + 1)-entry is 1, all other entries are 0; Ei,−j the (2m + 1) × (2m + 1) matrix, whose

(i+ 1,m+ j + 1)-entry is 1, all other entries are 0; Ej,−i the (2m+ 1)× (2m+ 1) matrix, whose

(j+1,m+ i+1)-entry is 1, all other entries are 0; E−j,−i the (2m+1)× (2m+1) matrix, whose

(m+ j + 1,m+ i+ 1)-entry is 1, all other entries are 0; E0,−t the (2m+ 1) × (2m+ 1) matrix,

whose (1,m+ t+1)-entry is 1, all other entries are 0; Et,0 the (2m+1)× (2m+1) matrix, whose

(t + 1, 1)-entry is 1, all other entries are 0. Set Ti,j = Ei,j − E−j,−i; Ti,−j = Ei,−j − ρEj,−i;

T0,−t = δ(1 + ρ)(E0,−t − Et,0). Let I(R) denote the set of all ideals of R.

Definition 2.1 Let ∆ = {Ai,j, Ak,−l, A0,−t ∈ I(R) | 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m}

be a subset of I(R) consisting of ideals of R. We call ∆ a flag of ideals of R, if the following

conditions are satisfied:
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(1) Ai,kAk,j ⊆ Ai,j (if 1 ≤ i < k < j ≤ m);

(2) Ai,kAk,−j ⊆ Ai,−j (if 1 ≤ i < k < j ≤ m );

(3) Ai,kAj,−k ⊆ Ai,−j (if 1 ≤ i < j < k ≤ m);

(4) Aj,kAi,−k ⊆ Ai,−j (if 1 ≤ i < j < k ≤ m);

(5) (1 − ρ)Ai,kAk,−k ⊆ (1 − ρ)Ai,−k (if 1 ≤ i < k ≤ m);

(6) (1 − ρ)Ai,kAi,−k ⊆ (1 − ρ)Ai,−i (if 1 ≤ i < k ≤ m);

(7) δ(1 + ρ)A0,−iA0,−k ⊆ δ(1 + ρ)Ai,−k (if 1 ≤ i < k ≤ m);

(8) δ(1 + ρ)Ai,kA0,−k ⊆ δ(1 + ρ)A0,−i (if 1 ≤ i < k ≤ m).

Example 2.2 If all Ai,j , Ak,−l, A0,−t (1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m) are taken to

be 0 (resp., R), then ∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)|1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m}

is a flag of ideals of R.

Example 2.3 Let A1,2, A2,3, . . . , Am−1,m, Am,−m, A0,−m be any ideals of R, respectively, and

set

Ai,j =
∏

1≤k≤j−i

Ai+k−1,i+k , 1 ≤ i < j ≤ m;

Ak,−m = Ak,mAm,−m, 1 ≤ k < m;

Ak,−l = Al,mAk,−m, 0 ≤ k ≤ l < m.

Then ∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)| 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} is a flag of

ideals of R.

Example 2.4 Let A1,2, A2,3, . . . , Am−1,m, Am,−m, A0,−m be any ideals of R, respectively, and

set

Ai,j =
⋂

1≤k≤j−i

Ai+k−1,i+k , 1 ≤ i < j ≤ m;

Ak,−m = Ak,m

⋂
Am,−m, 1 ≤ k < m;

Ak,−l = Al,m

⋂
Ak,−m, 0 ≤ k ≤ l < m.

Then ∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)| 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} is a flag of

ideals of R.

Theorem 2.5 Let 2 ∈ R∗. Then ℓρ,δ is an intermediate Lie algebra between hρ,δ and bρ,δ if and

only if there exists a flag ∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)| 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤

t ≤ m} of ideals of R such that

ℓρ,δ = hρ,δ +
∑

1≤i<j≤m

Ai,jTi,j +
∑

1≤k≤l≤m

Ak,−lTk,−l +
∑

1≤t≤m

A0,−tT0,−t.

Proof Suppose that ∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)| 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m,

1 ≤ t ≤ m} is a flag of ideals of R and ℓρ,δ = hρ,δ +
∑

1≤i<j≤m Ai,jTi,j +
∑

1≤k≤l≤mAk,−lTk,−l +∑
1≤t≤mA0,−tT0,−t. Let

X =
∑

1≤i≤j≤m

ai,jTi,j +
∑

1≤k≤l≤m

ak,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t ∈ ℓρ,δ,
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Y =
∑

1≤i≤j≤m

bi,jTi,j +
∑

1≤k≤l≤m

bk,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t ∈ ℓρ,δ,

where ai,i, bi,i lie in R (i = 1, 2, . . . ,m), ai,j , bi,j lie in Ai,j (1 ≤ i < j ≤ m), ak,−l, bk,−l lie in

Ak,−l (1 ≤ k ≤ l ≤ m), and a0,−t, b0,−t lie in A0,−t (1 ≤ t ≤ m). It is obvious that rX+sY ∈ ℓρ,δ

for any r, s ∈ R. Note that

[X,Y ] =
∑

1≤i<j≤m

ci,jTi,j +
∑

1≤k≤l≤m

dk,−lTk,−l +
∑

1≤t≤m

f0,−tT0,−t, (2.1)

ci,j =
∑

i≤n≤j

(ai,nbn,j − bi,nan,j), (2.2)

dk,−l =(
∑

k≤n≤l

ak,nbn,−l − ρ
∑

l≤n≤m

ak,nbl,−n −
∑

l≤n≤m

δnak,−nbl,n)−

(
∑

k≤n≤l

bk,nan,−l − ρ
∑

l≤n≤m

bk,nal,−n −
∑

l≤n≤m

δnbk,−nal,n)+

δ(1 + ρ)(b0,−ka0,−l − a0,−kb0,−l), (2.3)

f0,−t =
∑

t≤n≤m

(at,nb0,−n − bt,na0,−n), (2.4)

where δn is defined to be 1 − ρ when n = k, otherwise, δn = 1. Because ∆ is a flag of ideals

of R, we know that ci,j ∈ Ai,j (1 ≤ i < j ≤ m), dk,−l ∈ Ak,−l (1 ≤ k ≤ l ≤ m), and

f0,−t ∈ A0,−t (1 ≤ t ≤ m). Thus [X,Y ] ∈ ℓρ,δ. Hence ℓρ,δ is a subalgebra of bρ,δ containing hρ,δ.

On the other hand, let ℓρ,δ be an intermediate Lie algebra between hρ,δ and bρ,δ. For 1 ≤

i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m, we define

Ai,j = {a ∈ R| aTi,j ∈ ℓρ,δ}, Ak,−l = {a ∈ R| aTk,−l ∈ ℓρ,δ},

A0,−t = {a ∈ R| aT0,−t ∈ ℓρ,δ}

and let

∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R) | 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m},

ℓ = hρ,δ +
∑

1≤i<j≤m

Ai,jTi,j +
∑

1≤k≤l≤m

Ak,−lTk,−l +
∑

1≤t≤m

A0,−tT0,−t.

In the following, we will prove that ∆ is a flag of ideals of R, and ℓ = ℓρ,δ. It is obvious that all

Ai,j , Ak,−l, A0,−t are ideals of R.

If 1 ≤ i < k < j ≤ m and ai,k ∈ Ai,k, ak,j ∈ Ak,j , ak,−j ∈ Ak,−j , then by

[ai,kTi,k, ak,jTk,j ] = ai,kak,jTi,j ∈ ℓρ,δ,

[ai,kTi,k, ak,−jTk,−j] = ai,kak,−jTi,−j ∈ ℓρ,δ,

we have that ai,kak,j ∈ Ai,j and ai,kak,−j ∈ Ai,−j , which lead to Ai,kAk,j ⊆ Ai,j and Ai,kAk,−j ⊆

Ai,−j , respectively.

If 1 ≤ i < j < k ≤ m and ai,k ∈ Ai,k, aj,−k ∈ Aj,−k, aj,k ∈ Aj,k, ai,−k ∈ Ai,−k, then by

[ai,kTi,k, aj,−kTj,−k] = −ai,kaj,−kTi,−j ∈ ℓρ,δ,
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[aj,kTj,k, ai,−kTi,−k] = aj,kai,−kTi,−j ∈ ℓρ,δ,

we have that ai,kaj,−k ∈ Ai,−j and aj,kai,−k ∈ Ai,−j , which lead to Ai,kAj,−k ⊆ Ai,−j and

Aj,kAi,−k ⊆ Ai,−j , respectively.

If ρ = 1, the conditions (5) and (6) in Definition 2.1 obviously hold. If ρ = −1, suppose that

1 ≤ i < k ≤ m, ai,k ∈ Ai,k, ak,−k ∈ Ak,−k, ai,−k ∈ Ai,−k. Then by

[ai,kTi,k, ak,−kTk,−k] = 2ai,kak,−kTi,−k ∈ ℓρ,δ,

[ai,kTi,k, ai,−kTi,−k] = −ai,kai,−kTi,−i ∈ ℓρ,δ,

we have that Ai,kAk,−k ⊆ Ai,−k and Ai,kAi,−k ⊆ Ai,−i, respectively. We see that (5) and (6)

hold for ρ = ±1.

If ρ = −1 or δ = 0, the conditions (7) and (8) in Definition 2.1 obviously hold. If ρ = δ = 1,

suppose that 1 ≤ i < k ≤ m, and a0,−i ∈ A0,−i, a0,−k ∈ A0,−k, ai,k ∈ Ai,k. Then by

[a0,−iT0,−i, a0,−kT0,−k] = −2a0,−ia0,−kTi,−k ∈ ℓρ,δ,

[ai,kTi,k, a0,−kT0,−k] = ai,ka0,−kT0,−i ∈ ℓρ,δ,

we have that A0,−iA0,−k ⊆ Ai,−k and Ai,kA0,−k ⊆ A0,−i, respectively. We see that (7) and (8)

hold for ρ = ±1.

These imply that ∆ is a flag of ideals of R and ℓ is an intermediate Lie algebra between hρ,δ

and bρ,δ. It is obvious that ℓ ⊆ ℓρ,δ. Let X = H +
∑

1≤i<j≤m ai,jTi,j +
∑

1≤k≤l≤m ak,−lTk,−l +
∑

1≤t≤m a0,−tT0,−t ∈ ℓρ,δ, where H ∈ hρ,δ. For any 1 ≤ i < j ≤ m, by

[Tj,j, [Ti,i, X ]] = −ai,jTi,j + ai,−jTi,−j ∈ ℓρ,δ,

[Tj,j + Ti,i, [Tj,j, [Ti,i, X ]]] = 2ai,−jTi,−j ∈ ℓρ,δ,

we have that ai,−j ∈ Ai,−j and ai,j ∈ Ai,j . It follows that
∑

1≤k≤m(ak,−kTk,−k + a0,−kT0,−k) ∈

ℓρ,δ, leading to [Tt,t,
∑

1≤k≤m(ak,−kTk,−k + a0,−kT0,−k)] = 2at,−tTt,−t + a0,−tT0,−t ∈ ℓρ,δ for all

1 ≤ t ≤ m. Since either Tt,−t = 0 (if ρ = 1) or T0,−t = 0 (if ρ = −1), we know that at,−tTt,−t,

a0,−tT0,−t ∈ ℓρ,δ, which implies at,−t ∈ At,−t, a0,−t ∈ A0,−t, 1 ≤ t ≤ m. We see that X ∈ ℓ.

Thus ℓρ,δ ⊆ ℓ, which leads to ℓρ,δ = ℓ. This completes the proof. 2

3. Derivations of a subalgebra of ℓρ,δ

For R-modules M and K, we denote by HomR(M,K) the set of all homomorphisms from M

to K. HomR(M,M) is abbreviated to EndR(M). For 1 ≤ i ≤ m, χi : d(m,R) → R, defined by

χi(diag(d1, d2, . . . , dm)) = di, is a standard homomorphism from d(m,R) to R. It is easy to see

that HomR(d(m,R), R) is a free R-module of rank m with a basis {χi| i = 1, 2, . . . ,m}.

Let

ℓρ,δ = hρ,δ +
∑

1≤i<j≤m

Ai,jTi,j +
∑

1≤k≤l≤m

Ak,−lTk,−l +
∑

1≤t≤m

A0,−tT0,−t

be any given intermediate Lie algebra between hρ,δ and bρ,δ, with ∆ = {Ai,j , Ak,−l, A0,−t ∈

I(R) | 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} a flag of ideals of R. In the following,
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we shall determine its derivation algebra. As a start, we first consider the derivation algebra

of a subalgebra of ℓρ,δ. Let p = ℓρ,δ ∩ tρ,δ. Then p = hρ,δ +
∑

1≤i<j≤m Ai,jTi,j . In fact, p

is an intermediate algebra between hρ,δ and tρ,δ. It is easy to see that the map ϕ : tρ,δ →

t(m,R), defined by




0 0 0

0 A 0

0 0 −A′


 7→ A (where A ∈ t(m,R)), is an isomorphism of Lie

algebras, under which the image of p is d(m,R) +
∑

1≤i<j≤m Ai,jE
(m)
i,j (where E

(m)
i,j denotes the

m ×m matrix, whose (i, j)-entry is 1, all other entries are 0). In [3], the derivation algebra of

d(m,R) +
∑

1≤i<j≤m Ai,jE
(m)
i,j was determined. We now transfer it to p for later use.

The standard derivations of p are as follows.

(A) Inner derivations of p

Let X ∈ p. Then adp X : p→ p, defined by Y 7→ [X,Y ], is a derivation of p, called the inner

derivation of p induced by X .

(B) Extremal derivations of p

Definition 3.1 Let φ = {φi,j ∈ EndR(Ai,j), |1 ≤ i < j ≤ m} be a set consisting of homomor-

phisms of R-modules. φ is called suitable for extremal derivations of p if

φi,j(ai,kak,j) = φi,k(ai,k)ak,j + ai,kφk,j(ak,j)

for any 1 ≤ i < k < j ≤ m (if exists), any ai,k ∈ Ai,k and any ak,j ∈ Ak,j .

Using φ = {φi,j ∈ EndR(Ai,j)|1 ≤ i < j ≤ m} which is suitable for extremal derivations, we

define ηp,φ : p→ p by

ηp,φ

( ∑

1≤i≤j≤m

ai,jTi,j

)
=

∑

1≤i<j≤m

φi,j(ai,j)Ti,j ,

where ai,i ∈ R and ai,j ∈ Ai,j if i < j.

Lemma 3.2 ηp,φ is a derivation of p, provided that φ = {φi,j ∈ EndR(Ai,j)|1 ≤ i < j ≤ m} is

suitable for extremal derivations (we call ηp,φ an extremal derivation of p).

(C) Central derivations of p

If 1 ≤ i < j ≤ m, let Bi,j be the annihilator of Ai,j in R: Bi,j = {r ∈ R|rAi,j = 0}.

Definition 3.3 Let σ : hρ,δ → hρ,δ be a homomorphism of R-modules. σ is called suitable

for central derivations of p, if χi(ϕ(σ(H))) − χj(ϕ(σ(H))) ∈ Bi,j for all 1 ≤ i < j ≤ m and all

H ∈ hρ,δ.

Using the homomorphism σ : hρ,δ → hρ,δ which is suitable for central derivations of p, we

define τp,σ : p → p by τp,σ(X) = σ(HX), X ∈ p, where HX denotes the projection of X to

hρ,δ (if X =
∑

1≤i≤j≤m ai,jTi,j ∈ p. Then HX =
∑

1≤i≤m ai,iTi,i).

Lemma 3.4[3] τp,σ is a derivation of p, provided that σ is suitable for central derivations of p

(we call τp,σ a central derivation of p).
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Theorem 3.5[3] Let m > 1, R an arbitrary commutative ring with identity, and p = hρ,δ +
∑

1≤i<j≤m Ai,jTi,j an intermediate Lie algebra between hρ,δ and tρ,δ with ∆ = {Ai,j ∈ I(R)|1 ≤

i < j ≤ m} a subset of I(R) satisfying Ai,kAk,j ⊆ Ai,j (if k exists such that 1 ≤ i < k < j ≤ m).

Then any derivation ψp of p may be written as the sum of an inner derivation, an extremal

derivation and a central derivation.

4. Standard derivations of ℓρ,δ

Let

ℓρ,δ = hρ,δ +
∑

1≤i<j≤m

Ai,jTi,j +
∑

1≤k≤l≤m

Ak,−lTk,−l +
∑

1≤t≤m

A0,−tT0,−t

be any given intermediate Lie algebra between hρ,δ and bρ,δ, with ∆ = {Ai,j , Ak,−l, A0,−t ∈

I(R) | 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} a flag of ideals of R. In this section, we will

define some standard derivations of ℓρ,δ.

(A) Inner derivations of ℓρ,δ

Let X ∈ ℓρ,δ. Then adX : ℓρ,δ → ℓρ,δ, sending Y to [X,Y ], is a derivation of ℓρ,δ, called the

inner derivation of ℓρ,δ induced by X .

(B) Extremal derivations of ℓρ,δ

Definition 4.1 Let φ̃ = {φi,j ∈ EndR(Ai,j), φk,−l ∈ EndR(Ak,−l), φ0,−t ∈ EndR(A0,−t)|1 ≤ i <

j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} be a set consisting of homomorphisms of R-modules. We call

φ̃ suitable for extremal derivations of ℓρ,δ if the following conditions are satisfied:

(1) φi,j(ai,kak,j) = φi,k(ai,k)ak,j + ai,kφk,j(ak,j) (if 1 ≤ i < k < j ≤ m),

(2) φi,−j(ai,kak,−j) = φi,k(ai,k)ak,−j + ai,kφk,−j(ak,−j) (if 1 ≤ i < k < j ≤ m),

(3) φi,−j(ai,kaj,−k) = φi,k(ai,k)aj,−k + ai,kφj,−k(aj,−k) (if 1 ≤ i < j < k ≤ m),

(4) φi,−j(aj,kai,−k) = φj,k(aj,k)ai,−k + aj,kφi,−k(ai,−k) (if 1 ≤ i < j < k ≤ m),

(5) (1 − ρ)φi,−k(ai,kak,−k) = (1 − ρ)[φi,k(ai,k)ak,−k + ai,kφk,−k(ak,−k)] (if 1 ≤ i < k ≤ m),

(6) (1 − ρ)φi,−i(ai,kai,−k) = (1 − ρ)[φi,k(ai,k)ai,−k + ai,kφi,−k(ai,−k)] (if 1 ≤ i < k ≤ m),

(7) δ(1 − ρ)φi,−k(a0,−ia0,−k) = δ(1 − ρ)[φ0,−i(a0,−i)a0,−k + a0,−iφ0,−k(a0,−k)] (if 1 ≤ i <

k ≤ m),

(8) δ(1− ρ)φ0,−i(ai,ka0,−k) = δ(1− ρ)[φi,k(ai,k)a0,−k + ai,kφ0,−k(a0,−k)] (if 1 ≤ i < k ≤ m),

where ai,k ∈ Ai,k, . . . , ak,−j ∈ Ak,−j , . . . .

Using φ̃ = {φi,j ∈ EndR(Ai,j), φk,−l ∈ EndR(Ak,−l), φ0,−t ∈ EndR(A0,−t)|1 ≤ i < j ≤ m, 1 ≤

k ≤ l ≤ m, 1 ≤ t ≤ m} which is suitable for extremal derivations, we define η
φ̃

: ℓρ,δ → ℓρ,δ by

η
φ̃

( ∑

1≤i≤j≤m

ai,jTi,j +
∑

1≤k≤l≤m

ak,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t

)

=
∑

1≤i<j≤m

φi,j(ai,j)Ti,j +
∑

1≤k≤l≤m

φk,−l(ak,−l)Tk,−l +
∑

1≤t≤m

φ0,−t(a0,−t)T0,−t,

where ai,i ∈ R, ai,j ∈ Ai,j , ak,−l ∈ Ak,−l, a0,−t ∈ A0,−t.
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Lemma 4.2 η
φ̃

is a derivation of ℓρ,δ, provided that φ̃ is suitable for extremal derivations of

ℓρ,δ.

Proof Let φ̃ = {φi,j ∈ EndR(Ai,j), φk,−l ∈ EndR(Ak,−l), φ0,−t ∈ EndR(A0,−t)|1 ≤ i < j ≤

m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} be suitable for extremal derivations of ℓρ,δ, and set

X =
∑

1≤i≤j≤m

ai,jTi,j +
∑

1≤k≤l≤m

ak,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t ∈ ℓρ,δ,

Y =
∑

1≤i≤j≤m

bi,jTi,j +
∑

1≤k≤l≤m

bk,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t ∈ ℓρ,δ,

where ai,i, bi,i lie in R, ai,j , bi,j lie in Ai,j (1 ≤ i < j ≤ m), ak,−l, bk,−l lie in Ak,−l (1 ≤ k ≤ l ≤

m), and a0,−t, b0,−t lie in A0,−t (1 ≤ t ≤ m). It is obvious that η
φ̃
(rX + sY ) = rη

φ̃
(X)+ sη

φ̃
(Y )

for any r, s ∈ R. Note that the equalities (2.1)–(2.4) hold. Because φ̃ is suitable for extremal

derivations of ℓρ,δ, we know (by calculation) that

η
φ̃
([X,Y ]) = [η

φ̃
(X), Y ] + [X, η

φ̃
(Y )].

So η
φ̃

is a derivation of ℓρ,δ.

Definition 4.3 The above η
φ̃

is called an extremal derivation of ℓρ,δ.

Remark 4.4 The restriction of η
φ̃

to p exactly is ηp,φ.

(C) Central derivations of ℓρ,δ

For 1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m, let Bi,j (resp., Bk,−l, B0,−t) be the annihilator

of Ai,j (resp., Ak,−l, A0,−t) in R:

Bi,j = {r ∈ R | rAi,j = 0}, Bk,−l = {r ∈ R | rAk,−l = 0}, B0,−t = {r ∈ R | rA0,−t = 0}.

Definition 4.5 Let σ̃ : hρ,δ → hρ,δ be a homomorphism of R-modules. We call σ̃ suitable for

central derivations of ℓρ,δ, if χi(ϕ(σ̃(H))) − χj(ϕ(σ̃(H))) ∈ Bi,j , χk(ϕ(σ̃(H))) + χl(ϕ(σ̃(H))) ∈

Bk,−l, and χt(ϕ(σ̃(H))) ∈ B0,−t for all 1 ≤ i < j ≤ m, all 1 ≤ k ≤ l ≤ m, all 1 ≤ t ≤ m and all

H ∈ hρ,δ.

Using the homomorphism σ̃ : hρ,δ → hρ,δ which is suitable for central derivations of ℓρ,δ, we

define τσ̃ : ℓρ,δ → ℓρ,δ by

τσ̃(X) = σ̃(HX), X ∈ ℓρ,δ,

whereHX denotes the projection ofX to hρ,δ (ifX =
∑

1≤i≤j≤m ai,jTi,j+
∑

1≤k≤l≤m ak,−lTk,−l+∑
1≤t≤m a0,−tT0,−t ∈ ℓρ,δ, then HX =

∑
1≤i≤m ai,iTi,i).

Lemma 4.6 τσ̃ is a derivation of ℓρ,δ, provided that σ̃ is suitable for central derivations of ℓρ,δ.

Proof By definition, τσ̃([X,Y ]) = 0 for any X,Y ∈ ℓρ,δ. On the other hand, [τσ̃(X), Y ] +

[X, τσ̃(Y )] = 0, because τσ̃ sends each element in ℓρ,δ to its center Z(ℓρ,δ). This shows that τσ̃ is

a derivation of ℓρ,δ.

Definition 4.7 We call τσ̃ a central derivation of ℓρ,δ.
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5. Derivations of ℓρ,δ

When m = 1, the derivation algebra of ℓρ,δ has been studied in [3] (the result is more trivial).

In this paper, we only consider the case when m > 1.

Theorem 5.1 Let m > 1, R an arbitrary commutative ring with identity, and ℓρ,δ any given

intermediate Lie algebra between hρ,δ and bρ,δ. If 2 ∈ R∗, then any derivation ψ of ℓρ,δ may be

written in the form:

ψ = adX + η
φ̃

+ τσ̃,

where adX , η
φ̃
, and τσ̃ are the inner, extremal and central derivations of ℓρ,δ, respectively.

Proof Let ℓρ,δ = hρ,δ +
∑

1≤i<j≤m Ai,jTi,j +
∑

1≤k≤l≤m Ak,−lTk,−l +
∑

1≤t≤mA0,−tT0,−t with

∆ = {Ai,j , Ak,−l, A0,−t ∈ I(R)|1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m} a flag of

ideals of R. Let ψ be any derivation of ℓρ,δ. Set z = ℓρ,δ

⋂
wρ,δ and p = ℓρ,δ

⋂
tρ,δ. Then

z =
∑

1≤k≤l≤mAk,−lTk,−l +
∑

1≤t≤mA0,−tT0,−t, p =
∑

1≤i≤j≤m Ai,jTi,j. Denote

J =




0 0 0

0 E 0

0 0 −E


 .

In the following, we will give the proof by steps.

Step 1 There exists Z0 ∈ z such that (ψ + adZ0)(hρ,δ) ⊆ p.

For any Λ = diag(d1, d2, . . . , dm) ∈ d(m,R), we suppose that

ψ




0 0 0

0 Λ 0

0 0 −Λ


 ≡

∑

1≤k≤l≤m

rk,−lTk,−l +
∑

1≤t≤m

r0,−tT0,−t (mod p),

and suppose that

ψ(J) ≡
∑

1≤k≤l≤m

ak,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t (mod p),

where rk,−l, ak,−l lie in Ak,−l, and r0,−t, a0,−t lie in A0,−t. By applying ψ on

[



0 0 0

0 Λ 0

0 0 −Λ


 , J

]
= 0,

we get that rk,−l = 2−1(dk+dl)ak,−l and r0,−t = dta0,−t. Choose Z0 = 2−1
∑

1≤k≤l≤m ak,−lTk,−l+∑
1≤t≤m a0,−tT0,−t ∈ z. Then we have that

(ψ + adZ0)




0 0 0

0 Λ 0

0 0 −Λ


 ≡ 0 (mod p).

Hence (ψ + adZ0)(hρ,δ) ⊆ p. Now we denote ψ + adZ0 by ψ1.
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Step 2 z is stable under ψ1.

For any Z1 ∈
∑

1≤t≤mA0,−tT0,−t, we first prove that ψ1(Z1) ∈ z. By applying ψ1 on

[J, Z1] = Z1, we see that [ψ1(J), Z1]+ [J, ψ1(Z1)] = ψ1(Z1). It is easy to know that [ψ1(J), Z1] ∈

z, [J, ψ1(Z1)] ∈ z. Then we get ψ1(Z1) ⊆ z.

For any Z2 ∈
∑

1≤k≤l≤m Ak,−lTk,−l, we next prove that ψ1(Z2) ∈ z. By applying ψ1 on

[J, Z2] = 2Z2, we see that

[ψ1(J), Z2] + [J, ψ1(Z2)] = 2ψ1(Z2).

It is easy to see that the left hand side lies in z, which leads to ψ1(Z2) ∈ z.

Step 3 p is stable under ψ1.

For any P ∈ p, we suppose that ψ1(P ) =




0 0 β

−β A B

0 0 −A′


 ∈ ℓρ,δ. By applying ψ1 on

[J, P ] = 0, we have [ψ1(J), P ] + [J, ψ1(P )] = 0. Because ψ1(hρ,δ) ⊆ p, we get [ψ1(J), P ] ∈ p. Set

[ψ1(J), P ] =




0 0 0

0 A1 0

0 0 −A′
1


. On the other hand, [J, ψ1(P )] =




0 0 β

−β 0 2B

0 0 0


. Then we

see that




0 0 β

−β A1 2B

0 0 −A′
1


 = 0. This implies that A1 = 0, B = 0, β = 0. Thus ψ1(P ) ∈ p

leads to ψ1(p) ⊆ p.

Step 4 There exists P0 ∈ p and there exists φ = {φi,j ∈ EndR(Ai,j), |1 ≤ i < j ≤ m} which is

suitable for extremal derivations of p, such that for any
∑

1≤i<j≤m ai,jTi,j ∈ p,

(ψ1 − adP0)
( ∑

1≤i<j≤m

ai,jTi,j

)
=

∑

1≤i<j≤m

φi,j(ai,j)Ti,j .

Since p is stable under ψ1, ψ1 may induce a derivation ψ1|p of p by restricting ψ1 to p. Thus

by Theorem 3.5, ψ1|p can be written in the form:

ψ1|p = adp P0 + ηp,φ + τp,σ,

where P0 ∈ p, φ = {φi,j ∈ EndR(Ai,j)|1 ≤ i < j ≤ m} is suitable for extremal derivations of

p (satisfies the condition that φi,j(ai,kak,j) = φi,k(ai,k)ak,j + ai,kφk,j(ak,j)), and σ : hρ,δ → hρ,δ

is suitable for central derivations of p satisfying the condition that χi(ϕ(σ(H)))−χj (ϕ(σ(H))) ∈

Bi,j for all 1 ≤ i < j ≤ m and all H ∈ hρ,δ. It is obvious that the restriction of adP0 to p is

adpP0. Then (ψ1 − adP0)|p = ηp,φ + τp,σ. We denote ψ1 − adP0 by ψ2. Then

ψ2

( ∑

1≤i<j≤m

ai,jTi,j

)
=

∑

1≤i<j≤m

φi,j(ai,j)Ti,j ,

for any
∑

1≤i<j≤m ai,jTi,j ∈ p.

Step 5 ψ2(Ak,−lTk,−l) ⊆ Ak,−lTk,−l for all 1 ≤ k ≤ l ≤ m and ψ2(A0,−lT0,−l) ⊆ A0,−lT0,−l for
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all 1 ≤ l ≤ m.

For any 0 ≤ k ≤ l ≤ m (l 6= 0) and ak,−l ∈ Ak,−l, assume that

ψ2(ak,−lTk,−l) =
∑

1≤i≤j≤m

ri,−jTi,−j +
∑

1≤t≤m

r0,−tT0,−t, (5.1)

with ri,−j ∈ Ai,−j , r0,−t ∈ A0,−t. By applying ψ2 on [Tl,l, ak,−lTk,−l] = ak,−lTk,−l, we have that

[ψ2(Tl,l), ak,−lTk,−l] + [Tl,l, ψ2(ak,−lTk,−l)] = ψ2(ak,−lTk,−l).

Since ψ2(Tl,l) ∈ p, we have [ψ2(Tl,l), ak,−lTk,−l] ∈ Ai,−lTi,−l. On the other hand, we have

[Tl,l, ψ2(ak,−lTk,−l)] =
∑

l≤j≤m

rl,−jTl,−j +
∑

1≤i≤l−1

ri,−lTi,−l + r0,−lT0,−l.

These show that ri,−j = 0 when i 6= l and j 6= l, and r0,−t = 0 when t 6= l in (5.1).

If k 6= l, similarly, by applying ψ2 on [Tk,k, ak,−lTk,−l] = ak,−lTk,−l, we can get that ri,−j = 0

when i 6= k and j 6= k, and r0,−t = 0 when t 6= k in (5.1). Thus, ψ2(ak,−lTk,−l) ∈ Ak,−lTk,−l,

which shows that ψ2(Ak,−lTk,−l) ∈ Ak,−lTk,−l for any 0 ≤ k < l ≤ m.

Now we consider the condition of k = l. For ρ = 1, which leads to Tl,−l = 0, ψ2(al,−lTl,−l) ∈

Al,−lTl,−l obviously holds. For ρ = −1, we see that T0,−t = 0 in (5.1), 1 ≤ t ≤ m. Set

s 6= l (1 ≤ s ≤ m). By applying ψ2 on [Ts,s, al,−lTl,−l] = 0, we have that

[ψ2(Ts,s), al,−lTl,−l] +
[
Ts,s,

∑

l≤j≤m

rl,−jTl,−j +
∑

1≤i≤l−1

ri,−lTi,−l

]
= 0.

This shows that rl,−j = 0 when j = s, and ri,−l = 0 when i = s. Since s 6= l is chosen arbitrarily,

we see that ψ2(al,−lTl,−l) ∈ Al,−lTl,−l. Hence ψ2(Al,−lTl,−l) ⊆ Al,−lTl,−l.

Now for any 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m, we define φk,−l : Ak,−l → Ak,−l and φ0,−t : A0,−t →

A0,−t such that ψ2(ak,−lTk,−l) = φk,−l(ak,−l)Tk,−l and ψ2(a0,−tT0,−t) = φ0,−t(a0,−t)T0,−t. Then

φk,−l and φ0,−t are endomorphisms of the R-modulars Ak,−l and A0,−t, respectively. Let

φ̃ = {φi,j , φk,−l, φ0,−t|1 ≤ i < j ≤ m, 1 ≤ k ≤ l ≤ m, 1 ≤ t ≤ m}.

Step 6 φ̃ is suitable for extremal derivations of ℓρ,δ.

We know in Step 4 that φi,j(ai,kak,j) = φi,k(ai,k)ak,j + ai,kφk,j(ak,j), where 1 ≤ i < k < j ≤

m and ai,k ∈ Ai,k, ak,j ∈ Ak,j .

For 1 ≤ i < k < j ≤ m and ai,k ∈ Ai,k, ak,−j ∈ Ak,−j , by applying ψ2 on

ai,kak,−jTi,−j = [ai,kTi,k, ak,−jTk,−j ],

we have that φi,−j(ai,kak,−j) = φi,k(ai,k)ak,−j + ai,kφk,−j(ak,−j).

For 1 ≤ i < j < k ≤ m and ai,k ∈ Ai,k, aj,−k ∈ Aj,−k, aj,k ∈ Aj,k, ai,−k ∈ Ai,−k, by applying

ψ2 on

ai,kaj,−kTi,−j = −[ai,kTi,k, aj,−kTj,−k], aj,kai,−kTi,−j = [aj,kTj,k, ai,−kTi,−k],

we have that

φi,−j(ai,kaj,−k) = φi,k(ai,k)aj,−k + ai,kφj,−k(aj,−k),

φi,−j(aj,kai,−k) = φj,k(aj,k)ai,−k + aj,kφi,−k(ai,−k).
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For 1 ≤ i < k ≤ m, and ai,k ∈ Ai,k, ak,−k ∈ Ak,−k, ai,−k ∈ Ai,−k, a0,−i ∈ A0,−i, a0,−k ∈

A0,−k, by applying ψ2 on

(1 − ρ)ai,kak,−kTi,−k = [ai,kTi,k, ak,−kTk,−k],

(1 − ρ)ai,kai,−kTi,−i = 2[ai,kTi,k, ai,−kTi,−k],

δ(1 + ρ)a0,−ia0,−kTi,−k = −[a0,−iT0,−i, a0,−kT0,−k],

δ(1 + ρ)ai,ka0,−kT0,−i = 2[ai,kTi,k, a0,−kT0,−k],

we have that

(1 − ρ)φi,−k(ai,kak,−k) = (1 − ρ)[φi,k(ai,k)ak,−k + ai,kφk,−k(ak,−k)],

(1 − ρ)φi,−i(ai,kai,−k) = (1 − ρ)[φi,k(ai,k)ai,−k + ai,kφi,−k(ai,−k)],

δ(1 + ρ)φi,−k(a0,−ia0,−k) = δ(1 + ρ)[φ0,−i(a0,−i)a0,−k + a0,−iφ0,−k(a0,−k)],

δ(1 + ρ)φ0,−i(ai,ka0,−k) = δ(1 + ρ)[φi,k(ai,k)a0,−k + ai,kφ0,−k(a0,−k)].

Hence φ̃ is suitable for extremal derivations of ℓρ,δ. Using φ̃, we construct the extremal derivation

η
φ̃

of ℓρ,δ by

η
φ̃

(
H +

∑

1≤i<j≤m

ai,jTi,j +
∑

1≤k≤l≤m

ak,−lTk,−l +
∑

1≤t≤m

a0,−tT0,−t

)

=
∑

1≤i<j≤m

φi,j(ai,j)Ti,j +
∑

1≤k≤l≤m

φk,−l(ak,−l)Tk,−l +
∑

1≤t≤m

φ0,−t(a0,−t)T0,−t,

where H ∈ hρ,δ, ai,j ∈ Ai,j , ak,−l ∈ Ak,−l and a0,−t ∈ A0,−t. Let ψ3 denote ψ2 − η
φ̃
. Then

ψ3(Z) = 0 for any Z ∈ z and ψ3(
∑

1≤i<j≤m ai,jTi,j) = 0 for
∑

1≤i<j≤m ai,jTi,j ∈ p.

Step 7 ψ3 is a central derivation of ℓρ,δ.

For any Λ = diag(d1, d2, . . . , dm) ∈ d(m,R), let H =




0 0 0

0 Λ 0

0 0 −Λ


 ∈ hρ,δ. For any

ai,j ∈ Ai,j , ak,−l ∈ Ak,−l, a0,−t ∈ A0,−t, by applying ψ3 on

[H, ai,jTi,j ] = (di − dj)ai,jTi,j,

[H, ak,−lTk,−l] = (dk + dl)ak,−lTk,−l,

[H, a0,−tT0,−t] = dta0,−tT0,−t,

we have that

[ψ3(H), ai,jTi,j] = 0, [ψ3(H), ak,−lTk,−l] = 0, [ψ3(H), a0,−tT0,−t] = 0,

which implies that (χi−χj)(ϕ(ψ3(H)))·ai,j = 0, (χk+χl)(ϕ(ψ3(H)))·ak,−l = 0 and χt(ϕ(ψ3(H)))·

a0,−t = 0. It is easy to see that ψ3 is exactly a central derivation of ℓρ,δ.

Now we see that ψ is the sum of an inner derivation, an extremal derivation and a central

derivation of ℓρ,δ. The proof is completed. 2
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