# Derivations of Certain Linear Lie Algebras over Commutative Rings 

OU Shi Kun ${ }^{1}$, WANG Deng Yin², XIA Chun Guang ${ }^{2}$<br>(1. College of Science, Jiangxi University of Science and Technology, Jiangxi 341000, China;<br>2. Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China)<br>(E-mail: ok6096@126.com)


#### Abstract

Let $L$ be the symplectic algebra or the orthogonal algebra over a commutative ring $R, h$ the maximal torus of $L$ consisting of all diagonal matrices in $L$, and $b$ the standard Borel subalgebra of $L$ containing $h$. In this paper, we first determine the intermediate algebras between $h$ and $b$, then for such an intermediate algebra, we give an explicit description on its derivations, provided that $R$ is a commutative ring with identity and 2 is invertible in $R$.


Keywords Lie algebra; the derivation of linear Lie algebra; a commutative ring.
Document code A
MR(2000) Subject Classification 15A33; 17B40
Chinese Library Classification O153.2

## 1. Introduction

Let $R$ be a commutative ring with identity, $R^{*}$ the subset of $R$ consisting of all invertible elements in $R, 2 \in R^{*}, E^{(m)}$ the $m \times m$ identity matrix over $R\left(E^{(m)}\right.$ is abbreviated to $\left.E\right), R^{m \times n}$ the set of all $m \times n$ matrices over $R$ and $\operatorname{gl}(m, R)$ the general linear Lie algebra consisting of all $m \times m$ matrices over $R$ with bracket production: $[X, Y]=X Y-Y X$. For $A \in R^{m \times n}$, $A^{\prime}$ denotes the transpose of $A$. Let $t(m, R)$ (resp., $d(m, R)$ ) be the subalgebra of $\operatorname{gl}(m, R)$ consisting of all upper triangular(resp., diagonal) matrices. For $\rho= \pm 1$ and $\delta=0$, 1 , we set

$$
\begin{gathered}
L_{\rho, \delta}=\left\{\left.\left(\begin{array}{ccc}
0 & \alpha & \beta \\
-\beta^{\prime} & A & B \\
-\alpha^{\prime} & 0 & -A^{\prime}
\end{array}\right) \right\rvert\, \alpha, \beta \in R^{1 \times m}, A \in t(m, R), B \in R^{m \times m},\right. \text { satisfies } \\
\left.\alpha=2^{-1} \delta(1+\rho) \alpha, \beta=2^{-1} \delta(1+\rho) \beta, B^{\prime}=-\rho B\right\}
\end{gathered}
$$

which is a subalgebra of $\operatorname{gl}(2 m+1, R)$. We see that the symplectic algebra $\operatorname{sp}(2 m, R)$ (resp., the orthogonal algebra $o(2 m, R)$ ) is embedded into $L_{-1,0}$ (resp., $L_{1,0}$ ) and $\operatorname{sp}(2 m, R)$ (resp., $o(2 m, R))$ is isomorphic to $L_{-1,0}$ (resp., $L_{1,0}$ ), and $L_{1,1}$ is the orthogonal algebra $o(2 m+1, R)$ (we refer to $[1, \mathrm{pp} 1-4]$ for the definitions of the symplectic algebra and the orthogonal algebra). Thus, to determine a problem of the symplectic algebra or the orthogonal algebra one really
needs to consider the corresponding one of the Lie algebra $L_{\rho, \delta}$ after all. We now give several special subalgebras of $L_{\rho, \delta}$ for later use. Set

$$
\begin{gathered}
h_{\rho, \delta}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Lambda & 0 \\
0 & 0 & -\Lambda^{\prime}
\end{array}\right) \right\rvert\, \Lambda \in d(m, R)\right\} ; \\
b_{\rho, \delta}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & \beta \\
-\beta^{\prime} & A & B \\
0 & 0 & -A^{\prime}
\end{array}\right) \right\rvert\, \beta \in R^{1 \times m}, A \in t(m, R), B \in R^{m \times m},\right. \text { satisfies } \\
\left.\beta=2^{-1} \delta(1+\rho) \beta, B^{\prime}=-\rho B\right\} ; \\
t_{\rho, \delta}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & A & 0 \\
0 & 0 & -A^{\prime}
\end{array}\right) \right\rvert\, A \in t(m, R)\right\} ; \\
w_{\rho, \delta}=\left\{\left.\left(\begin{array}{cc}
0 & \beta \\
-\beta^{\prime} & 0 \\
0 & B \\
0 & 0
\end{array}\right) \right\rvert\, \beta \in R^{1 \times m}, B \in R^{m \times m}\right. \text { satisfies } \\
\left.\beta=2^{-1} \delta(1+\rho) \beta, B^{\prime}=-\rho B\right\} .
\end{gathered}
$$

By definition, $h_{\rho, \delta}$ is a maximal torus of $L_{\rho, \delta}$ and $b_{\rho, \delta}$ is a standard Borel subalgebra of $L_{\rho, \delta}$ containing $h_{\rho, \delta}$.

The automorphisms or derivations of linear Lie algebras over commutative rings were recently studied in [2-10]. In this paper, on the basis of main theorem in [3], we give an explicit description on the derivations of each intermediate algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$, provided that $R$ is a commutative ring with identity and 2 is invertible in $R$.

## 2. The intermediate algebras between $h_{\rho, \delta}$ and $b_{\rho, \delta}$

In the following, we always assume that $R$ is a commutative ring with identity and $2 \in R^{*}$.
For $1 \leq i \leq j \leq m, 1 \leq t \leq m$, let $E_{i, j}$ denote the $(2 m+1) \times(2 m+1)$ matrix, whose $(i+1, j+1)$-entry is 1 , all other entries are $0 ; E_{i,-j}$ the $(2 m+1) \times(2 m+1)$ matrix, whose $(i+1, m+j+1)$-entry is 1 , all other entries are $0 ; E_{j,-i}$ the $(2 m+1) \times(2 m+1)$ matrix, whose $(j+1, m+i+1)$-entry is 1 , all other entries are $0 ; E_{-j,-i}$ the $(2 m+1) \times(2 m+1)$ matrix, whose $(m+j+1, m+i+1)$-entry is 1 , all other entries are $0 ; E_{0,-t}$ the $(2 m+1) \times(2 m+1)$ matrix, whose $(1, m+t+1)$-entry is 1 , all other entries are 0 ; $E_{t, 0}$ the $(2 m+1) \times(2 m+1)$ matrix, whose $(t+1,1)$-entry is 1 , all other entries are 0 . Set $T_{i, j}=E_{i, j}-E_{-j,-i} ; T_{i,-j}=E_{i,-j}-\rho E_{j,-i}$; $T_{0,-t}=\delta(1+\rho)\left(E_{0,-t}-E_{t, 0}\right)$. Let $I(R)$ denote the set of all ideals of $R$.

Definition 2.1 Let $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\}$ be a subset of $I(R)$ consisting of ideals of $R$. We call $\Delta$ a flag of ideals of $R$, if the following conditions are satisfied:
(1) $A_{i, k} A_{k, j} \subseteq A_{i, j}$ (if $\left.1 \leq i<k<j \leq m\right)$;
(2) $A_{i, k} A_{k,-j} \subseteq A_{i,-j}$ (if $\left.1 \leq i<k<j \leq m\right)$;
(3) $A_{i, k} A_{j,-k} \subseteq A_{i,-j}$ (if $\left.1 \leq i<j<k \leq m\right)$;
(4) $A_{j, k} A_{i,-k} \subseteq A_{i,-j}$ (if $\left.1 \leq i<j<k \leq m\right)$;
(5) $(1-\rho) A_{i, k} A_{k,-k} \subseteq(1-\rho) A_{i,-k}$ (if $\left.1 \leq i<k \leq m\right)$;
(6) $(1-\rho) A_{i, k} A_{i,-k} \subseteq(1-\rho) A_{i,-i}$ (if $\left.1 \leq i<k \leq m\right)$;
(7) $\delta(1+\rho) A_{0,-i} A_{0,-k} \subseteq \delta(1+\rho) A_{i,-k}$ (if $\left.1 \leq i<k \leq m\right)$;
(8) $\delta(1+\rho) A_{i, k} A_{0,-k} \subseteq \delta(1+\rho) A_{0,-i}$ (if $1 \leq i<k \leq m$ ).

Example 2.2 If all $A_{i, j}, A_{k,-l}, A_{0,-t}(1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m)$ are taken to be 0 (resp., $R$ ), then $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\}$ is a flag of ideals of $R$.

Example 2.3 Let $A_{1,2}, A_{2,3}, \ldots, A_{m-1, m}, A_{m,-m}, A_{0,-m}$ be any ideals of $R$, respectively, and set

$$
\begin{gathered}
A_{i, j}=\prod_{1 \leq k \leq j-i} A_{i+k-1, i+k}, \quad 1 \leq i<j \leq m ; \\
A_{k,-m}=A_{k, m} A_{m,-m}, \quad 1 \leq k<m ; \\
A_{k,-l}=A_{l, m} A_{k,-m}, \quad 0 \leq k \leq l<m .
\end{gathered}
$$

Then $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\}$ is a flag of ideals of $R$.

Example 2.4 Let $A_{1,2}, A_{2,3}, \ldots, A_{m-1, m}, A_{m,-m}, A_{0,-m}$ be any ideals of $R$, respectively, and set

$$
\begin{gathered}
A_{i, j}=\bigcap_{1 \leq k \leq j-i} A_{i+k-1, i+k}, \quad 1 \leq i<j \leq m ; \\
A_{k,-m}=A_{k, m} \bigcap A_{m,-m}, \quad 1 \leq k<m ; \\
A_{k,-l}=A_{l, m} \bigcap A_{k,-m}, \quad 0 \leq k \leq l<m .
\end{gathered}
$$

Then $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\}$ is a flag of ideals of $R$.

Theorem 2.5 Let $2 \in R^{*}$. Then $\ell_{\rho, \delta}$ is an intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$ if and only if there exists a flag $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq\right.$ $t \leq m\}$ of ideals of $R$ such that

$$
\ell_{\rho, \delta}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t} .
$$

Proof Suppose that $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m\right.$, $1 \leq t \leq m\}$ is a flag of ideals of $R$ and $\ell_{\rho, \delta}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+$ $\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}$. Let

$$
X=\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta},
$$

$$
Y=\sum_{1 \leq i \leq j \leq m} b_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} b_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}
$$

where $a_{i, i}, b_{i, i}$ lie in $R(i=1,2, \ldots, m), a_{i, j}, b_{i, j}$ lie in $A_{i, j}(1 \leq i<j \leq m), a_{k,-l}, b_{k,-l}$ lie in $A_{k,-l}(1 \leq k \leq l \leq m)$, and $a_{0,-t}, b_{0,-t}$ lie in $A_{0,-t}(1 \leq t \leq m)$. It is obvious that $r X+s Y \in \ell_{\rho, \delta}$ for any $r, s \in R$. Note that

$$
\begin{align*}
{[X, Y]=} & \sum_{1 \leq i<j \leq m} c_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} d_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} f_{0,-t} T_{0,-t}  \tag{2.1}\\
c_{i, j}= & \sum_{i \leq n \leq j}\left(a_{i, n} b_{n, j}-b_{i, n} a_{n, j}\right)  \tag{2.2}\\
d_{k,-l}= & \left(\sum_{k \leq n \leq l} a_{k, n} b_{n,-l}-\rho \sum_{l \leq n \leq m} a_{k, n} b_{l,-n}-\sum_{l \leq n \leq m} \delta_{n} a_{k,-n} b_{l, n}\right)- \\
& \left(\sum_{k \leq n \leq l} b_{k, n} a_{n,-l}-\rho \sum_{l \leq n \leq m} b_{k, n} a_{l,-n}-\sum_{l \leq n \leq m} \delta_{n} b_{k,-n} a_{l, n}\right)+ \\
& \delta(1+\rho)\left(b_{0,-k} a_{0,-l}-a_{0,-k} b_{0,-l}\right),  \tag{2.3}\\
f_{0,-t}= & \sum_{t \leq n \leq m}\left(a_{t, n} b_{0,-n}-b_{t, n} a_{0,-n}\right), \tag{2.4}
\end{align*}
$$

where $\delta_{n}$ is defined to be $1-\rho$ when $n=k$, otherwise, $\delta_{n}=1$. Because $\Delta$ is a flag of ideals of $R$, we know that $c_{i, j} \in A_{i, j}(1 \leq i<j \leq m), d_{k,-l} \in A_{k,-l}(1 \leq k \leq l \leq m)$, and $f_{0,-t} \in A_{0,-t}(1 \leq t \leq m)$. Thus $[X, Y] \in \ell_{\rho, \delta}$. Hence $\ell_{\rho, \delta}$ is a subalgebra of $b_{\rho, \delta}$ containing $h_{\rho, \delta}$.

On the other hand, let $\ell_{\rho, \delta}$ be an intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$. For $1 \leq$ $i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m$, we define

$$
\begin{gathered}
A_{i, j}=\left\{a \in R \mid a T_{i, j} \in \ell_{\rho, \delta}\right\}, \quad A_{k,-l}=\left\{a \in R \mid a T_{k,-l} \in \ell_{\rho, \delta}\right\}, \\
A_{0,-t}=\left\{a \in R \mid a T_{0,-t} \in \ell_{\rho, \delta}\right\}
\end{gathered}
$$

and let

$$
\begin{gathered}
\bar{\Delta}=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\} \\
\bar{\ell}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}
\end{gathered}
$$

In the following, we will prove that $\bar{\Delta}$ is a flag of ideals of $R$, and $\bar{\ell}=\ell_{\rho, \delta}$. It is obvious that all $A_{i, j}, A_{k,-l}, A_{0,-t}$ are ideals of $R$.

If $1 \leq i<k<j \leq m$ and $a_{i, k} \in A_{i, k}, a_{k, j} \in A_{k, j}, a_{k,-j} \in A_{k,-j}$, then by

$$
\begin{aligned}
{\left[a_{i, k} T_{i, k}, a_{k, j} T_{k, j}\right] } & =a_{i, k} a_{k, j} T_{i, j} \in \ell_{\rho, \delta}, \\
{\left[a_{i, k} T_{i, k}, a_{k,-j} T_{k,-j}\right] } & =a_{i, k} a_{k,-j} T_{i,-j} \in \ell_{\rho, \delta}
\end{aligned}
$$

we have that $a_{i, k} a_{k, j} \in A_{i, j}$ and $a_{i, k} a_{k,-j} \in A_{i,-j}$, which lead to $A_{i, k} A_{k, j} \subseteq A_{i, j}$ and $A_{i, k} A_{k,-j} \subseteq$ $A_{i,-j}$, respectively.

If $1 \leq i<j<k \leq m$ and $a_{i, k} \in A_{i, k}, a_{j,-k} \in A_{j,-k}, a_{j, k} \in A_{j, k}, a_{i,-k} \in A_{i,-k}$, then by

$$
\left[a_{i, k} T_{i, k}, a_{j,-k} T_{j,-k}\right]=-a_{i, k} a_{j,-k} T_{i,-j} \in \ell_{\rho, \delta}
$$

$$
\left[a_{j, k} T_{j, k}, a_{i,-k} T_{i,-k}\right]=a_{j, k} a_{i,-k} T_{i,-j} \in \ell_{\rho, \delta}
$$

we have that $a_{i, k} a_{j,-k} \in A_{i,-j}$ and $a_{j, k} a_{i,-k} \in A_{i,-j}$, which lead to $A_{i, k} A_{j,-k} \subseteq A_{i,-j}$ and $A_{j, k} A_{i,-k} \subseteq A_{i,-j}$, respectively.

If $\rho=1$, the conditions (5) and (6) in Definition 2.1 obviously hold. If $\rho=-1$, suppose that $1 \leq i<k \leq m, a_{i, k} \in A_{i, k}, a_{k,-k} \in A_{k,-k}, a_{i,-k} \in A_{i,-k}$. Then by

$$
\begin{aligned}
{\left[a_{i, k} T_{i, k}, a_{k,-k} T_{k,-k}\right] } & =2 a_{i, k} a_{k,-k} T_{i,-k} \in \ell_{\rho, \delta} \\
{\left[a_{i, k} T_{i, k}, a_{i,-k} T_{i,-k}\right] } & =-a_{i, k} a_{i,-k} T_{i,-i} \in \ell_{\rho, \delta}
\end{aligned}
$$

we have that $A_{i, k} A_{k,-k} \subseteq A_{i,-k}$ and $A_{i, k} A_{i,-k} \subseteq A_{i,-i}$, respectively. We see that (5) and (6) hold for $\rho= \pm 1$.

If $\rho=-1$ or $\delta=0$, the conditions (7) and (8) in Definition 2.1 obviously hold. If $\rho=\delta=1$, suppose that $1 \leq i<k \leq m$, and $a_{0,-i} \in A_{0,-i}, a_{0,-k} \in A_{0,-k}, a_{i, k} \in A_{i, k}$. Then by

$$
\begin{gathered}
{\left[a_{0,-i} T_{0,-i}, a_{0,-k} T_{0,-k}\right]=-2 a_{0,-i} a_{0,-k} T_{i,-k} \in \ell_{\rho, \delta}} \\
{\left[a_{i, k} T_{i, k}, a_{0,-k} T_{0,-k}\right]=a_{i, k} a_{0,-k} T_{0,-i} \in \ell_{\rho, \delta}}
\end{gathered}
$$

we have that $A_{0,-i} A_{0,-k} \subseteq A_{i,-k}$ and $A_{i, k} A_{0,-k} \subseteq A_{0,-i}$, respectively. We see that (7) and (8) hold for $\rho= \pm 1$.

These imply that $\bar{\Delta}$ is a flag of ideals of $R$ and $\bar{\ell}$ is an intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$. It is obvious that $\bar{\ell} \subseteq \ell_{\rho, \delta}$. Let $X=H+\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+$ $\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}$, where $H \in h_{\rho, \delta}$. For any $1 \leq i<j \leq m$, by

$$
\begin{gathered}
{\left[T_{j, j},\left[T_{i, i}, X\right]\right]=-a_{i, j} T_{i, j}+a_{i,-j} T_{i,-j} \in \ell_{\rho, \delta}} \\
{\left[T_{j, j}+T_{i, i},\left[T_{j, j},\left[T_{i, i}, X\right]\right]\right]=2 a_{i,-j} T_{i,-j} \in \ell_{\rho, \delta}}
\end{gathered}
$$

we have that $a_{i,-j} \in A_{i,-j}$ and $a_{i, j} \in A_{i, j}$. It follows that $\sum_{1 \leq k \leq m}\left(a_{k,-k} T_{k,-k}+a_{0,-k} T_{0,-k}\right) \in$ $\ell_{\rho, \delta}$, leading to $\left[T_{t, t}, \sum_{1 \leq k \leq m}\left(a_{k,-k} T_{k,-k}+a_{0,-k} T_{0,-k}\right)\right]=2 a_{t,-t} T_{t,-t}+a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}$ for all $1 \leq t \leq m$. Since either $T_{t,-t}=0$ (if $\rho=1$ ) or $T_{0,-t}=0$ (if $\rho=-1$ ), we know that $a_{t,-t} T_{t,-t}$, $a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}$, which implies $a_{t,-t} \in A_{t,-t}, a_{0,-t} \in A_{0,-t}, 1 \leq t \leq m$. We see that $X \in \bar{\ell}$. Thus $\ell_{\rho, \delta} \subseteq \bar{\ell}$, which leads to $\ell_{\rho, \delta}=\bar{\ell}$. This completes the proof.

## 3. Derivations of a subalgebra of $\ell_{\rho, \delta}$

For $R$-modules $M$ and $K$, we denote by $\operatorname{Hom}_{R}(M, K)$ the set of all homomorphisms from $M$ to $K . \operatorname{Hom}_{R}(M, M)$ is abbreviated to $\operatorname{End}_{R}(M)$. For $1 \leq i \leq m, \chi_{i}: d(m, R) \rightarrow R$, defined by $\chi_{i}\left(\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right)\right)=d_{i}$, is a standard homomorphism from $d(m, R)$ to $R$. It is easy to see that $\operatorname{Hom}_{R}(d(m, R), R)$ is a free $R$-module of rank $m$ with a basis $\left\{\chi_{i} \mid i=1,2, \ldots, m\right\}$.

Let

$$
\ell_{\rho, \delta}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}
$$

be any given intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$, with $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in\right.$ $I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ a flag of ideals of $R$. In the following,
we shall determine its derivation algebra. As a start, we first consider the derivation algebra of a subalgebra of $\ell_{\rho, \delta}$. Let $p=\ell_{\rho, \delta} \cap t_{\rho, \delta}$. Then $p=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}$. In fact, $p$ is an intermediate algebra between $h_{\rho, \delta}$ and $t_{\rho, \delta}$. It is easy to see that the map $\varphi: t_{\rho, \delta} \rightarrow$ $t(m, R)$, defined by $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -A^{\prime}\end{array}\right) \mapsto A$ (where $A \in t(m, R)$ ), is an isomorphism of Lie algebras, under which the image of $p$ is $d(m, R)+\sum_{1 \leq i<j \leq m} A_{i, j} E_{i, j}^{(m)}$ (where $E_{i, j}^{(m)}$ denotes the $m \times m$ matrix, whose ( $i, j$ )-entry is 1 , all other entries are 0 ). In [3], the derivation algebra of $d(m, R)+\sum_{1 \leq i<j \leq m} A_{i, j} E_{i, j}^{(m)}$ was determined. We now transfer it to $p$ for later use.

The standard derivations of $p$ are as follows.

## (A) Inner derivations of $p$

Let $X \in p$. Then $a d_{p} X: p \rightarrow p$, defined by $Y \mapsto[X, Y]$, is a derivation of $p$, called the inner derivation of $p$ induced by $X$.

## (B) Extremal derivations of $p$

Definition 3.1 Let $\phi=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right), \mid 1 \leq i<j \leq m\right\}$ be a set consisting of homomorphisms of $R$-modules. $\phi$ is called suitable for extremal derivations of $p$ if

$$
\phi_{i, j}\left(a_{i, k} a_{k, j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \phi_{k, j}\left(a_{k, j}\right)
$$

for any $1 \leq i<k<j \leq m$ (if exists), any $a_{i, k} \in A_{i, k}$ and any $a_{k, j} \in A_{k, j}$.
Using $\phi=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right) \mid 1 \leq i<j \leq m\right\}$ which is suitable for extremal derivations, we define $\eta_{p, \phi}: p \rightarrow p$ by

$$
\eta_{p, \phi}\left(\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j}\right)=\sum_{1 \leq i<j \leq m} \phi_{i, j}\left(a_{i, j}\right) T_{i, j},
$$

where $a_{i, i} \in R$ and $a_{i, j} \in A_{i, j}$ if $i<j$.
Lemma 3.2 $\eta_{p, \phi}$ is a derivation of $p$, provided that $\phi=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right) \mid 1 \leq i<j \leq m\right\}$ is suitable for extremal derivations (we call $\eta_{p, \phi}$ an extremal derivation of $p$ ).

## (C) Central derivations of $p$

If $1 \leq i<j \leq m$, let $B_{i, j}$ be the annihilator of $A_{i, j}$ in $R: B_{i, j}=\left\{r \in R \mid r A_{i, j}=0\right\}$.
Definition 3.3 Let $\sigma: h_{\rho, \delta} \rightarrow h_{\rho, \delta}$ be a homomorphism of $R$-modules. $\sigma$ is called suitable for central derivations of $p$, if $\chi_{i}(\varphi(\sigma(H)))-\chi_{j}(\varphi(\sigma(H))) \in B_{i, j}$ for all $1 \leq i<j \leq m$ and all $H \in h_{\rho, \delta}$.

Using the homomorphism $\sigma: h_{\rho, \delta} \rightarrow h_{\rho, \delta}$ which is suitable for central derivations of $p$, we define $\tau_{p, \sigma}: p \rightarrow p$ by $\tau_{p, \sigma}(X)=\sigma\left(H_{X}\right), X \in p$, where $H_{X}$ denotes the projection of $X$ to $h_{\rho, \delta}\left(\right.$ if $X=\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j} \in p$. Then $\left.H_{X}=\sum_{1 \leq i \leq m} a_{i, i} T_{i, i}\right)$.

Lemma 3.4 ${ }^{[3]} \tau_{p, \sigma}$ is a derivation of $p$, provided that $\sigma$ is suitable for central derivations of $p$ (we call $\tau_{p, \sigma}$ a central derivation of $p$ ).

Theorem 3.5 ${ }^{[3]}$ Let $m>1, R$ an arbitrary commutative ring with identity, and $p=h_{\rho, \delta}+$ $\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}$ an intermediate Lie algebra between $h_{\rho, \delta}$ and $t_{\rho, \delta}$ with $\Delta=\left\{A_{i, j} \in I(R) \mid 1 \leq\right.$ $i<j \leq m\}$ a subset of $I(R)$ satisfying $A_{i, k} A_{k, j} \subseteq A_{i, j}$ (if $k$ exists such that $1 \leq i<k<j \leq m$ ). Then any derivation $\psi_{p}$ of $p$ may be written as the sum of an inner derivation, an extremal derivation and a central derivation.

## 4. Standard derivations of $\ell_{\rho, \delta}$

Let

$$
\ell_{\rho, \delta}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}
$$

be any given intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$, with $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in\right.$ $I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ a flag of ideals of $R$. In this section, we will define some standard derivations of $\ell_{\rho, \delta}$.
(A) Inner derivations of $\ell_{\rho, \delta}$

Let $X \in \ell_{\rho, \delta}$. Then $a d X: \ell_{\rho, \delta} \rightarrow \ell_{\rho, \delta}$, sending $Y$ to $[X, Y]$, is a derivation of $\ell_{\rho, \delta}$, called the inner derivation of $\ell_{\rho, \delta}$ induced by $X$.

## (B) Extremal derivations of $\ell_{\rho, \delta}$

Definition 4.1 Let $\widetilde{\phi}=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right), \phi_{k,-l} \in \operatorname{End}_{R}\left(A_{k,-l}\right), \phi_{0,-t} \in \operatorname{End}_{R}\left(A_{0,-t}\right) \mid 1 \leq i<\right.$ $j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ be a set consisting of homomorphisms of $R$-modules. We call $\widetilde{\phi}$ suitable for extremal derivations of $\ell_{\rho, \delta}$ if the following conditions are satisfied:
(1) $\phi_{i, j}\left(a_{i, k} a_{k, j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \phi_{k, j}\left(a_{k, j}\right)($ if $1 \leq i<k<j \leq m)$,
(2) $\phi_{i,-j}\left(a_{i, k} a_{k,-j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k,-j}+a_{i, k} \phi_{k,-j}\left(a_{k,-j}\right)$ (if $\left.1 \leq i<k<j \leq m\right)$,
(3) $\phi_{i,-j}\left(a_{i, k} a_{j,-k}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{j,-k}+a_{i, k} \phi_{j,-k}\left(a_{j,-k}\right)$ (if $\left.1 \leq i<j<k \leq m\right)$,
(4) $\phi_{i,-j}\left(a_{j, k} a_{i,-k}\right)=\phi_{j, k}\left(a_{j, k}\right) a_{i,-k}+a_{j, k} \phi_{i,-k}\left(a_{i,-k}\right)$ (if $\left.1 \leq i<j<k \leq m\right)$,
(5) $(1-\rho) \phi_{i,-k}\left(a_{i, k} a_{k,-k}\right)=(1-\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{k,-k}+a_{i, k} \phi_{k,-k}\left(a_{k,-k}\right)\right]$ (if $\left.1 \leq i<k \leq m\right)$,
(6) $(1-\rho) \phi_{i,-i}\left(a_{i, k} a_{i,-k}\right)=(1-\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{i,-k}+a_{i, k} \phi_{i,-k}\left(a_{i,-k}\right)\right] \quad$ (if $\left.1 \leq i<k \leq m\right)$,
(7) $\delta(1-\rho) \phi_{i,-k}\left(a_{0,-i} a_{0,-k}\right)=\delta(1-\rho)\left[\phi_{0,-i}\left(a_{0,-i}\right) a_{0,-k}+a_{0,-i} \phi_{0,-k}\left(a_{0,-k}\right)\right] \quad$ (if $1 \leq i<$ $k \leq m)$,
(8) $\delta(1-\rho) \phi_{0,-i}\left(a_{i, k} a_{0,-k}\right)=\delta(1-\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{0,-k}+a_{i, k} \phi_{0,-k}\left(a_{0,-k}\right)\right]$ (if $\left.1 \leq i<k \leq m\right)$, where $a_{i, k} \in A_{i, k}, \ldots, a_{k,-j} \in A_{k,-j}, \ldots$.

Using $\widetilde{\phi}=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right), \phi_{k,-l} \in \operatorname{End}_{R}\left(A_{k,-l}\right), \phi_{0,-t} \in \operatorname{End}_{R}\left(A_{0,-t}\right) \mid 1 \leq i<j \leq m, 1 \leq\right.$ $k \leq l \leq m, 1 \leq t \leq m\}$ which is suitable for extremal derivations, we define $\eta_{\tilde{\phi}}: \ell_{\rho, \delta} \rightarrow \ell_{\rho, \delta}$ by

$$
\begin{aligned}
& \eta_{\tilde{\phi}}\left(\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t}\right) \\
& \quad=\sum_{1 \leq i<j \leq m} \phi_{i, j}\left(a_{i, j}\right) T_{i, j}+\sum_{1 \leq k \leq l \leq m} \phi_{k,-l}\left(a_{k,-l}\right) T_{k,-l}+\sum_{1 \leq t \leq m} \phi_{0,-t}\left(a_{0,-t}\right) T_{0,-t},
\end{aligned}
$$

where $a_{i, i} \in R, a_{i, j} \in A_{i, j}, a_{k,-l} \in A_{k,-l}, a_{0,-t} \in A_{0,-t}$.

Lemma $4.2 \eta_{\tilde{\phi}}$ is a derivation of $\ell_{\rho, \delta}$, provided that $\widetilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho, \delta}$.

Proof Let $\widetilde{\phi}=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right), \phi_{k,-l} \in \operatorname{End}_{R}\left(A_{k,-l}\right), \phi_{0,-t} \in \operatorname{End}_{R}\left(A_{0,-t}\right) \mid 1 \leq i<j \leq\right.$ $m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\}$ be suitable for extremal derivations of $\ell_{\rho, \delta}$, and set

$$
\begin{aligned}
& X=\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}, \\
& Y=\sum_{1 \leq i \leq j \leq m} b_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} b_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta},
\end{aligned}
$$

where $a_{i, i}, b_{i, i}$ lie in $R, a_{i, j}, b_{i, j}$ lie in $A_{i, j}(1 \leq i<j \leq m), a_{k,-l}, b_{k,-l}$ lie in $A_{k,-l}(1 \leq k \leq l \leq$ $m$ ), and $a_{0,-t}, b_{0,-t}$ lie in $A_{0,-t}(1 \leq t \leq m)$. It is obvious that $\eta_{\tilde{\phi}}(r X+s Y)=r \eta_{\tilde{\phi}}(X)+s \eta_{\tilde{\phi}}(Y)$ for any $r, s \in R$. Note that the equalities (2.1)-(2.4) hold. Because $\widetilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho, \delta}$, we know (by calculation) that

$$
\eta_{\tilde{\phi}}([X, Y])=\left[\eta_{\tilde{\phi}}(X), Y\right]+\left[X, \eta_{\tilde{\phi}}(Y)\right] .
$$

So $\eta_{\tilde{\phi}}$ is a derivation of $\ell_{\rho, \delta}$.
Definition 4.3 The above $\eta_{\tilde{\phi}}$ is called an extremal derivation of $\ell_{\rho, \delta}$.
Remark 4.4 The restriction of $\eta_{\tilde{\phi}}$ to $p$ exactly is $\eta_{p, \phi}$.
(C) Central derivations of $\ell_{\rho, \delta}$

For $1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m$, let $B_{i, j}$ (resp., $B_{k,-l}, B_{0,-t}$ ) be the annihilator of $A_{i, j}$ (resp., $A_{k,-l}, A_{0,-t}$ ) in $R$ :

$$
B_{i, j}=\left\{r \in R \mid r A_{i, j}=0\right\}, \quad B_{k,-l}=\left\{r \in R \mid r A_{k,-l}=0\right\}, \quad B_{0,-t}=\left\{r \in R \mid r A_{0,-t}=0\right\} .
$$

Definition 4.5 Let $\widetilde{\sigma}: h_{\rho, \delta} \rightarrow h_{\rho, \delta}$ be a homomorphism of $R$-modules. We call $\widetilde{\sigma}$ suitable for central derivations of $\ell_{\rho, \delta}$, if $\chi_{i}(\varphi(\widetilde{\sigma}(H)))-\chi_{j}(\varphi(\widetilde{\sigma}(H))) \in B_{i, j}, \chi_{k}(\varphi(\widetilde{\sigma}(H)))+\chi_{l}(\varphi(\widetilde{\sigma}(H))) \in$ $B_{k,-l}$, and $\chi_{t}(\varphi(\widetilde{\sigma}(H))) \in B_{0,-t}$ for all $1 \leq i<j \leq m$, all $1 \leq k \leq l \leq m$, all $1 \leq t \leq m$ and all $H \in h_{\rho, \delta}$.

Using the homomorphism $\widetilde{\sigma}: h_{\rho, \delta} \rightarrow h_{\rho, \delta}$ which is suitable for central derivations of $\ell_{\rho, \delta}$, we define $\tau_{\tilde{\sigma}}: \ell_{\rho, \delta} \rightarrow \ell_{\rho, \delta}$ by

$$
\tau_{\widetilde{\sigma}}(X)=\widetilde{\sigma}\left(H_{X}\right), \quad X \in \ell_{\rho, \delta},
$$

where $H_{X}$ denotes the projection of $X$ to $h_{\rho, \delta}$ (if $X=\sum_{1 \leq i \leq j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+$ $\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in \ell_{\rho, \delta}$, then $\left.H_{X}=\sum_{1 \leq i \leq m} a_{i, i} T_{i, i}\right)$.

Lemma 4.6 $\tau_{\widetilde{\sigma}}$ is a derivation of $\ell_{\rho, \delta}$, provided that $\widetilde{\sigma}$ is suitable for central derivations of $\ell_{\rho, \delta}$.
Proof By definition, $\tau_{\tilde{\sigma}}([X, Y])=0$ for any $X, Y \in \ell_{\rho, \delta}$. On the other hand, $\left[\tau_{\tilde{\sigma}}(X), Y\right]+$ $\left[X, \tau_{\widetilde{\sigma}}(Y)\right]=0$, because $\tau_{\widetilde{\sigma}}$ sends each element in $\ell_{\rho, \delta}$ to its center $Z\left(\ell_{\rho, \delta}\right)$. This shows that $\tau_{\widetilde{\sigma}}$ is a derivation of $\ell_{\rho, \delta}$.

Definition 4.7 We call $\tau_{\widetilde{\sigma}}$ a central derivation of $\ell_{\rho, \delta}$.

## 5. Derivations of $\ell_{\rho, \delta}$

When $m=1$, the derivation algebra of $\ell_{\rho, \delta}$ has been studied in [3] (the result is more trivial). In this paper, we only consider the case when $m>1$.

Theorem 5.1 Let $m>1, R$ an arbitrary commutative ring with identity, and $\ell_{\rho, \delta}$ any given intermediate Lie algebra between $h_{\rho, \delta}$ and $b_{\rho, \delta}$. If $2 \in R^{*}$, then any derivation $\psi$ of $\ell_{\rho, \delta}$ may be written in the form:

$$
\psi=\operatorname{ad} X+\eta_{\tilde{\phi}}+\tau_{\tilde{\sigma}},
$$

where $\operatorname{ad} X, \eta_{\tilde{\phi}}$, and $\tau_{\tilde{\sigma}}$ are the inner, extremal and central derivations of $\ell_{\rho, \delta}$, respectively.
Proof Let $\ell_{\rho, \delta}=h_{\rho, \delta}+\sum_{1 \leq i<j \leq m} A_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}$ with $\Delta=\left\{A_{i, j}, A_{k,-l}, A_{0,-t} \in I(R) \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\}$ a flag of ideals of $R$. Let $\psi$ be any derivation of $\ell_{\rho, \delta}$. Set $z=\ell_{\rho, \delta} \bigcap w_{\rho, \delta}$ and $p=\ell_{\rho, \delta} \bigcap t_{\rho, \delta}$. Then $z=\sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}, p=\sum_{1 \leq i \leq j \leq m} A_{i, j} T_{i, j}$. Denote

$$
J=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & E & 0 \\
0 & 0 & -E
\end{array}\right)
$$

In the following, we will give the proof by steps.
Step 1 There exists $Z_{0} \in z$ such that $\left(\psi+\operatorname{ad} Z_{0}\right)\left(h_{\rho, \delta}\right) \subseteq p$.
For any $\Lambda=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right) \in d(m, R)$, we suppose that

$$
\psi\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Lambda & 0 \\
0 & 0 & -\Lambda
\end{array}\right) \equiv \sum_{1 \leq k \leq l \leq m} r_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} r_{0,-t} T_{0,-t}(\bmod p),
$$

and suppose that

$$
\psi(J) \equiv \sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t}(\bmod p),
$$

where $r_{k,-l}, a_{k,-l}$ lie in $A_{k,-l}$, and $r_{0,-t}, a_{0,-t}$ lie in $A_{0,-t}$. By applying $\psi$ on

$$
\left[\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Lambda & 0 \\
0 & 0 & -\Lambda
\end{array}\right), J\right]=0
$$

we get that $r_{k,-l}=2^{-1}\left(d_{k}+d_{l}\right) a_{k,-l}$ and $r_{0,-t}=d_{t} a_{0,-t}$. Choose $Z_{0}=2^{-1} \sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+$ $\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t} \in z$. Then we have that

$$
\left(\psi+\operatorname{ad} Z_{0}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Lambda & 0 \\
0 & 0 & -\Lambda
\end{array}\right) \equiv 0(\bmod p) .
$$

Hence $\left(\psi+\operatorname{ad} Z_{0}\right)\left(h_{\rho, \delta}\right) \subseteq p$. Now we denote $\psi+\operatorname{ad} Z_{0}$ by $\psi_{1}$.

Step $2 z$ is stable under $\psi_{1}$.
For any $Z_{1} \in \sum_{1 \leq t \leq m} A_{0,-t} T_{0,-t}$, we first prove that $\psi_{1}\left(Z_{1}\right) \in z$. By applying $\psi_{1}$ on $\left[J, Z_{1}\right]=Z_{1}$, we see that $\left[\psi_{1}(J), Z_{1}\right]+\left[J, \psi_{1}\left(Z_{1}\right)\right]=\psi_{1}\left(Z_{1}\right)$. It is easy to know that $\left[\psi_{1}(J), Z_{1}\right] \in$ $z,\left[J, \psi_{1}\left(Z_{1}\right)\right] \in z$. Then we get $\psi_{1}\left(Z_{1}\right) \subseteq z$.

For any $Z_{2} \in \sum_{1 \leq k \leq l \leq m} A_{k,-l} T_{k,-l}$, we next prove that $\psi_{1}\left(Z_{2}\right) \in z$. By applying $\psi_{1}$ on $\left[J, Z_{2}\right]=2 Z_{2}$, we see that

$$
\left[\psi_{1}(J), Z_{2}\right]+\left[J, \psi_{1}\left(Z_{2}\right)\right]=2 \psi_{1}\left(Z_{2}\right)
$$

It is easy to see that the left hand side lies in $z$, which leads to $\psi_{1}\left(Z_{2}\right) \in z$.
Step $3 p$ is stable under $\psi_{1}$.
For any $P \in p$, we suppose that $\psi_{1}(P)=\left(\begin{array}{ccc}0 & 0 & \beta \\ -\beta & A & B \\ 0 & 0 & -A^{\prime}\end{array}\right) \in \ell_{\rho, \delta}$. By applying $\psi_{1}$ on $[J, P]=0$, we have $\left[\psi_{1}(J), P\right]+\left[J, \psi_{1}(P)\right]=0$. Because $\psi_{1}\left(h_{\rho, \delta}\right) \subseteq p$, we get $\left[\psi_{1}(J), P\right] \in p$. Set $\left[\psi_{1}(J), P\right]=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & A_{1} & 0 \\ 0 & 0 & -A_{1}^{\prime}\end{array}\right)$. On the other hand, $\left[J, \psi_{1}(P)\right]=\left(\begin{array}{ccc}0 & 0 & \beta \\ -\beta & 0 & 2 B \\ 0 & 0 & 0\end{array}\right)$. Then we see that $\left(\begin{array}{ccc}0 & 0 & \beta \\ -\beta & A_{1} & 2 B \\ 0 & 0 & -A_{1}^{\prime}\end{array}\right)=0$. This implies that $A_{1}=0, B=0, \beta=0$. Thus $\psi_{1}(P) \in p$ leads to $\psi_{1}(p) \subseteq p$.

Step 4 There exists $P_{0} \in p$ and there exists $\phi=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right), \mid 1 \leq i<j \leq m\right\}$ which is suitable for extremal derivations of $p$, such that for any $\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j} \in p$,

$$
\left(\psi_{1}-\operatorname{ad} P_{0}\right)\left(\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j}\right)=\sum_{1 \leq i<j \leq m} \phi_{i, j}\left(a_{i, j}\right) T_{i, j}
$$

Since $p$ is stable under $\psi_{1}, \psi_{1}$ may induce a derivation $\left.\psi_{1}\right|_{p}$ of $p$ by restricting $\psi_{1}$ to $p$. Thus by Theorem 3.5, $\left.\psi_{1}\right|_{p}$ can be written in the form:

$$
\left.\psi_{1}\right|_{p}=\operatorname{ad}_{p} P_{0}+\eta_{p, \phi}+\tau_{p, \sigma}
$$

where $P_{0} \in p, \phi=\left\{\phi_{i, j} \in \operatorname{End}_{R}\left(A_{i, j}\right) \mid 1 \leq i<j \leq m\right\}$ is suitable for extremal derivations of $p$ (satisfies the condition that $\left.\phi_{i, j}\left(a_{i, k} a_{k, j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \phi_{k, j}\left(a_{k, j}\right)\right)$, and $\sigma: h_{\rho, \delta} \rightarrow h_{\rho, \delta}$ is suitable for central derivations of $p$ satisfying the condition that $\chi_{i}(\varphi(\sigma(H)))-\chi_{j}(\varphi(\sigma(H))) \in$ $B_{i, j}$ for all $1 \leq i<j \leq m$ and all $H \in h_{\rho, \delta}$. It is obvious that the restriction of $a d P_{0}$ to $p$ is $\operatorname{ad}_{p} P_{0}$. Then $\left.\left(\psi_{1}-\operatorname{ad} P_{0}\right)\right|_{p}=\eta_{p, \phi}+\tau_{p, \sigma}$. We denote $\psi_{1}-\operatorname{ad} P_{0}$ by $\psi_{2}$. Then

$$
\psi_{2}\left(\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j}\right)=\sum_{1 \leq i<j \leq m} \phi_{i, j}\left(a_{i, j}\right) T_{i, j}
$$

for any $\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j} \in p$.
Step $5 \psi_{2}\left(A_{k,-l} T_{k,-l}\right) \subseteq A_{k,-l} T_{k,-l}$ for all $1 \leq k \leq l \leq m$ and $\psi_{2}\left(A_{0,-l} T_{0,-l}\right) \subseteq A_{0,-l} T_{0,-l}$ for
all $1 \leq l \leq m$.
For any $0 \leq k \leq l \leq m(l \neq 0)$ and $a_{k,-l} \in A_{k,-l}$, assume that

$$
\begin{equation*}
\psi_{2}\left(a_{k,-l} T_{k,-l}\right)=\sum_{1 \leq i \leq j \leq m} r_{i,-j} T_{i,-j}+\sum_{1 \leq t \leq m} r_{0,-t} T_{0,-t}, \tag{5.1}
\end{equation*}
$$

with $r_{i,-j} \in A_{i,-j}, r_{0,-t} \in A_{0,-t}$. By applying $\psi_{2}$ on $\left[T_{l, l}, a_{k,-l} T_{k,-l}\right]=a_{k,-l} T_{k,-l}$, we have that

$$
\left[\psi_{2}\left(T_{l, l}\right), a_{k,-l} T_{k,-l}\right]+\left[T_{l, l}, \psi_{2}\left(a_{k,-l} T_{k,-l}\right)\right]=\psi_{2}\left(a_{k,-l} T_{k,-l}\right) .
$$

Since $\psi_{2}\left(T_{l, l}\right) \in p$, we have $\left[\psi_{2}\left(T_{l, l}\right), a_{k,-l} T_{k,-l}\right] \in A_{i,-l} T_{i,-l}$. On the other hand, we have

$$
\left[T_{l, l}, \psi_{2}\left(a_{k,-l} T_{k,-l}\right)\right]=\sum_{l \leq j \leq m} r_{l,-j} T_{l,-j}+\sum_{1 \leq i \leq l-1} r_{i,-l} T_{i,-l}+r_{0,-l} T_{0,-l} .
$$

These show that $r_{i,-j}=0$ when $i \neq l$ and $j \neq l$, and $r_{0,-t}=0$ when $t \neq l$ in (5.1).
If $k \neq l$, similarly, by applying $\psi_{2}$ on $\left[T_{k, k}, a_{k,-l} T_{k,-l}\right]=a_{k,-l} T_{k,-l}$, we can get that $r_{i,-j}=0$ when $i \neq k$ and $j \neq k$, and $r_{0,-t}=0$ when $t \neq k$ in (5.1). Thus, $\psi_{2}\left(a_{k,-l} T_{k,-l}\right) \in A_{k,-l} T_{k,-l}$, which shows that $\psi_{2}\left(A_{k,-l} T_{k,-l}\right) \in A_{k,-l} T_{k,-l}$ for any $0 \leq k<l \leq m$.

Now we consider the condition of $k=l$. For $\rho=1$, which leads to $T_{l,-l}=0, \psi_{2}\left(a_{l,-l} T_{l,-l}\right) \in$ $A_{l,-l} T_{l,-l}$ obviously holds. For $\rho=-1$, we see that $T_{0,-t}=0$ in (5.1), $1 \leq t \leq m$. Set $s \neq l(1 \leq s \leq m)$. By applying $\psi_{2}$ on $\left[T_{s, s}, a_{l,-l} T_{l,-l}\right]=0$, we have that

$$
\left[\psi_{2}\left(T_{s, s}\right), a_{l,-l} T_{l,-l}\right]+\left[T_{s, s}, \sum_{l \leq j \leq m} r_{l,-j} T_{l,-j}+\sum_{1 \leq i \leq l-1} r_{i,-l} T_{i,-l}\right]=0 .
$$

This shows that $r_{l,-j}=0$ when $j=s$, and $r_{i,-l}=0$ when $i=s$. Since $s \neq l$ is chosen arbitrarily, we see that $\psi_{2}\left(a_{l,-l} T_{l,-l}\right) \in A_{l,-l} T_{l,-l}$. Hence $\psi_{2}\left(A_{l,-l} T_{l,-l}\right) \subseteq A_{l,-l} T_{l,-l}$.

Now for any $1 \leq k \leq l \leq m, 1 \leq t \leq m$, we define $\phi_{k,-l}: A_{k,-l} \rightarrow A_{k,-l}$ and $\phi_{0,-t}: A_{0,-t} \rightarrow$ $A_{0,-t}$ such that $\psi_{2}\left(a_{k,-l} T_{k,-l}\right)=\phi_{k,-l}\left(a_{k,-l}\right) T_{k,-l}$ and $\psi_{2}\left(a_{0,-t} T_{0,-t}\right)=\phi_{0,-t}\left(a_{0,-t}\right) T_{0,-t}$. Then $\phi_{k,-l}$ and $\phi_{0,-t}$ are endomorphisms of the $R$-modulars $A_{k,-l}$ and $A_{0,-t}$, respectively. Let

$$
\widetilde{\phi}=\left\{\phi_{i, j}, \phi_{k,-l}, \phi_{0,-t} \mid 1 \leq i<j \leq m, 1 \leq k \leq l \leq m, 1 \leq t \leq m\right\} .
$$

Step $6 \widetilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho, \delta}$.
We know in Step 4 that $\phi_{i, j}\left(a_{i, k} a_{k, j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k, j}+a_{i, k} \phi_{k, j}\left(a_{k, j}\right)$, where $1 \leq i<k<j \leq$ $m$ and $a_{i, k} \in A_{i, k}, a_{k, j} \in A_{k, j}$.

For $1 \leq i<k<j \leq m$ and $a_{i, k} \in A_{i, k}, a_{k,-j} \in A_{k,-j}$, by applying $\psi_{2}$ on

$$
a_{i, k} a_{k,-j} T_{i,-j}=\left[a_{i, k} T_{i, k}, a_{k,-j} T_{k,-j}\right],
$$

we have that $\phi_{i,-j}\left(a_{i, k} a_{k,-j}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{k,-j}+a_{i, k} \phi_{k,-j}\left(a_{k,-j}\right)$.
For $1 \leq i<j<k \leq m$ and $a_{i, k} \in A_{i, k}, a_{j,-k} \in A_{j,-k}, a_{j, k} \in A_{j, k}, a_{i,-k} \in A_{i,-k}$, by applying $\psi_{2}$ on

$$
a_{i, k} a_{j,-k} T_{i,-j}=-\left[a_{i, k} T_{i, k}, a_{j,-k} T_{j,-k}\right], \quad a_{j, k} a_{i,-k} T_{i,-j}=\left[a_{j, k} T_{j, k}, a_{i,-k} T_{i,-k}\right],
$$

we have that

$$
\begin{aligned}
& \phi_{i,-j}\left(a_{i, k} a_{j,-k}\right)=\phi_{i, k}\left(a_{i, k}\right) a_{j,-k}+a_{i, k} \phi_{j,-k}\left(a_{j,-k}\right), \\
& \phi_{i,-j}\left(a_{j, k} a_{i,-k}\right)=\phi_{j, k}\left(a_{j, k}\right) a_{i,-k}+a_{j, k} \phi_{i,-k}\left(a_{i,-k}\right) .
\end{aligned}
$$

For $1 \leq i<k \leq m$, and $a_{i, k} \in A_{i, k}, a_{k,-k} \in A_{k,-k}, a_{i,-k} \in A_{i,-k}, a_{0,-i} \in A_{0,-i}, a_{0,-k} \in$ $A_{0,-k}$, by applying $\psi_{2}$ on

$$
\begin{aligned}
& (1-\rho) a_{i, k} a_{k,-k} T_{i,-k}=\left[a_{i, k} T_{i, k}, a_{k,-k} T_{k,-k}\right], \\
& (1-\rho) a_{i, k} a_{i,-k} T_{i,-i}=2\left[a_{i, k} T_{i, k}, a_{i,-k} T_{i,-k}\right] \\
& \delta(1+\rho) a_{0,-i} a_{0,-k} T_{i,-k}=-\left[a_{0,-i} T_{0,-i}, a_{0,-k} T_{0,-k}\right], \\
& \delta(1+\rho) a_{i, k} a_{0,-k} T_{0,-i}=2\left[a_{i, k} T_{i, k}, a_{0,-k} T_{0,-k}\right],
\end{aligned}
$$

we have that

$$
\begin{aligned}
& (1-\rho) \phi_{i,-k}\left(a_{i, k} a_{k,-k}\right)=(1-\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{k,-k}+a_{i, k} \phi_{k,-k}\left(a_{k,-k}\right)\right] \\
& (1-\rho) \phi_{i,-i}\left(a_{i, k} a_{i,-k}\right)=(1-\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{i,-k}+a_{i, k} \phi_{i,-k}\left(a_{i,-k}\right)\right] \\
& \delta(1+\rho) \phi_{i,-k}\left(a_{0,-i} a_{0,-k}\right)=\delta(1+\rho)\left[\phi_{0,-i}\left(a_{0,-i}\right) a_{0,-k}+a_{0,-i} \phi_{0,-k}\left(a_{0,-k}\right)\right], \\
& \delta(1+\rho) \phi_{0,-i}\left(a_{i, k} a_{0,-k}\right)=\delta(1+\rho)\left[\phi_{i, k}\left(a_{i, k}\right) a_{0,-k}+a_{i, k} \phi_{0,-k}\left(a_{0,-k}\right)\right] .
\end{aligned}
$$

Hence $\widetilde{\phi}$ is suitable for extremal derivations of $\ell_{\rho, \delta}$. Using $\widetilde{\phi}$, we construct the extremal derivation $\eta_{\widetilde{\phi}}$ of $\ell_{\rho, \delta}$ by

$$
\begin{aligned}
& \eta_{\tilde{\phi}}\left(H+\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j}+\sum_{1 \leq k \leq l \leq m} a_{k,-l} T_{k,-l}+\sum_{1 \leq t \leq m} a_{0,-t} T_{0,-t}\right) \\
& \quad=\sum_{1 \leq i<j \leq m} \phi_{i, j}\left(a_{i, j}\right) T_{i, j}+\sum_{1 \leq k \leq l \leq m} \phi_{k,-l}\left(a_{k,-l}\right) T_{k,-l}+\sum_{1 \leq t \leq m} \phi_{0,-t}\left(a_{0,-t}\right) T_{0,-t},
\end{aligned}
$$

where $H \in h_{\rho, \delta}, a_{i, j} \in A_{i, j}, a_{k,-l} \in A_{k,-l}$ and $a_{0,-t} \in A_{0,-t}$. Let $\psi_{3}$ denote $\psi_{2}-\eta_{\tilde{\phi}}$. Then $\psi_{3}(Z)=0$ for any $Z \in z$ and $\psi_{3}\left(\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j}\right)=0$ for $\sum_{1 \leq i<j \leq m} a_{i, j} T_{i, j} \in p$.

Step $7 \psi_{3}$ is a central derivation of $\ell_{\rho, \delta}$.
For any $\Lambda=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right) \in d(m, R)$, let $H=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda\end{array}\right) \in h_{\rho, \delta}$. For any $a_{i, j} \in A_{i, j}, a_{k,-l} \in A_{k,-l}, a_{0,-t} \in A_{0,-t}$, by applying $\psi_{3}$ on

$$
\begin{aligned}
& {\left[H, a_{i, j} T_{i, j}\right]=\left(d_{i}-d_{j}\right) a_{i, j} T_{i, j}} \\
& {\left[H, a_{k,-l} T_{k,-l}\right]=\left(d_{k}+d_{l}\right) a_{k,-l} T_{k,-l}} \\
& {\left[H, a_{0,-t} T_{0,-t}\right]=d_{t} a_{0,-t} T_{0,-t}}
\end{aligned}
$$

we have that

$$
\left[\psi_{3}(H), a_{i, j} T_{i, j}\right]=0, \quad\left[\psi_{3}(H), a_{k,-l} T_{k,-l}\right]=0, \quad\left[\psi_{3}(H), a_{0,-t} T_{0,-t}\right]=0
$$

which implies that $\left(\chi_{i}-\chi_{j}\right)\left(\varphi\left(\psi_{3}(H)\right)\right) \cdot a_{i, j}=0,\left(\chi_{k}+\chi_{l}\right)\left(\varphi\left(\psi_{3}(H)\right)\right) \cdot a_{k,-l}=0$ and $\chi_{t}\left(\varphi\left(\psi_{3}(H)\right)\right)$. $a_{0,-t}=0$. It is easy to see that $\psi_{3}$ is exactly a central derivation of $\ell_{\rho, \delta}$.

Now we see that $\psi$ is the sum of an inner derivation, an extremal derivation and a central derivation of $\ell_{\rho, \delta}$. The proof is completed.

## References

[1] HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag London, Ltd., London, 2006.
[2] WANG Dengyin, YU Qiu, ZHAO Yanxia. Automorphisms of a linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2007, 423(2-3): 324-331.
[3] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369-377.
[4] WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763-774.
[5] CAO You'an, TAN Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105-122.
[6] CAO You'an. Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring [J]. J. Algebra, 1997, 189(2): 506-513.
[7] J $\phi$ NDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.
[8] J $\phi$ NDRUP S. The group of automorphisms of certain subalgebras of matrix algebras [J]. J. Algebra, 1991, 141(1): 106-114.
[9] J $\phi$ NDRUP S. Automorphisms of upper triangular matrix rings [J]. Arch. Math. (Basel), 1987, 49(6): 497502.
[10] BENKART G M, OSBORN J M. Derivations and automorphisms of nonassociative matrix algebras [J]. Trans. Amer. Math. Soc., 1981, 263(2): 411-430.

