The Lattices of Congruences on Regular Semigroups with Q-Inverse Transversals

SHANG Yu ${ }^{1}$, WANG Li Min ${ }^{2}$
(1. Statistics \& Mathematics College, Yunnan University of Finance and Economics, Yunnan 650221, China;
2. School of Mathematical Sciences, South China Normal University, Guangdong 510631, China)
(E-mail: shangyu503@163.com; wanglm@scnu.edu.cn)

Abstract

In this paper, a complete congruence on the congruence lattice of regular semigroups with Q-inverse transversals is analysed. The classes of this complete congruence which are intervals are discussed and their least and greatest elements are presented clearly.

Keywords $\quad Q$-inverse transversal; congruence; congruence pairs; congruence lattices; congruence relations on the congruence lattice.

Document code A
MR(2000) Subject Classification 20M17
Chinese Library Classification O152.7

1. Preliminaries

We shall use the notations and terminologies of [1] and [2] in this paper. Let S be a regular semigroup. An inverse subsemigroup S° of S is an inverse transversal if $\left|V(x) \cap S^{\circ}\right|=1$ for each $x \in S$, where $V(x)$ denotes the set of inverses of x. In this case, the unique element of $V(x) \cap S^{\circ}$ is denoted by x° and $\left(x^{\circ}\right)^{\circ}$ is denoted by $x^{\circ \circ}$. We have $x^{\circ \circ \circ}=x^{\circ}$ for each $x \in S$. E° denotes the semilattice of idempotents of S°, while $I(S)=\left\{e \in S \mid e e^{\circ}=e\right\}, \Lambda(S)=\left\{g \in S \mid g^{\circ} g=g\right\}$, $R(S)=\left\{x \in S \mid x^{\circ} x=x^{\circ} x^{\circ \circ}\right\}$ and $L(S)=\left\{a \in S \mid a a^{\circ}=a^{\circ \circ} a^{\circ}\right\}$. The above signs are denoted by I, Λ, R and L if no confusion is possible. For every $x \in S$, we define $x_{I}=x x^{\circ}, x_{\Lambda}=x^{\circ} x, x_{R}=$ $x x^{\circ} x^{\circ \circ}$ and $x_{L}=x^{\circ \circ} x^{\circ} x$. Obviously, for each $x \in S, x_{R} \in R, x_{L} \in L,\left(x_{R}\right)^{\circ}=x^{\circ}$ and $\left(x_{L}\right)^{\circ}=x^{\circ}$. For every $e \in I, g \in \Lambda, a \in R$ and $x \in L$, we have $e_{I}=e, g_{\Lambda}=g, a_{R}=a$ and $x_{L}=x$. If an inverse transversal S° of S is a quasi-ideal of S (that is $S^{\circ} S S^{\circ} \subseteq S^{\circ}$), S° is called a Q-inverse transversal of S. Throughout this paper, S will denote a regular semigroup with a Q-inverse transversal S° if no special mention is made. Each x in S can be written uniquely in the form $x=e a$, where $e \in I, a \in L$. Thus there is a mapping $x \longmapsto\left(x x^{\circ}, x^{\circ \circ} x^{\circ} x\right)$ from S onto the set

$$
\left\{(e, a) \in I \times L \mid e^{\circ}=a a^{\circ}\right\}
$$

Received date: 2007-05-18; Accepted date: 2008-07-07
Foundation item: the National Natural Science Foundation of China (No. 10571061); the Science Foundation of Guangdong Province (No. 0501332) and the Science Foundation of the Department of Education of Yunnan Province (No. 07C10110).

By using this mapping, S can be coordinatized by pairs. A band B is left [resp. right] normal if $e f g=e g f$ [resp. efg $=f e g]$ for every $e, f, g \in B$. A non-empty subset A of S is called a left ideal [resp. right ideal] if $S A \subseteq A$ [resp. $A S \subseteq A$]. A semigroup is called orthodox if it is regular and if its idempotents form a subsemigroup.

We list several known results, which will be used frequently without special reference in this paper.
$(1.1)^{[9]}(x y)^{\circ}=\left(x^{\circ} x y\right)^{\circ} x^{\circ}=y^{\circ}\left(x y y^{\circ}\right)^{\circ}$ for every $x, y \in S$.
$(1.2)^{[3,5,7-9]} I(S)$ [resp. $\left.\Lambda(S)\right]$ is a left [resp. right] normal band with a Q-inverse transversal E°. Furthermore, $R(S)$ and $L(S)$ are orthodox semigroups with a Q-inverse transversal S° which is a right ideal of R and a left ideal of L.
$(1.3)^{[5,8]} \quad R(S) \cap L(S)=S^{\circ}, I(S) \cap \Lambda(S)=E^{\circ}, E(R(S))=I(S)$ and $E(L(S))=\Lambda(S)$.
$(1.4)^{[6]} S$ is orthodox if and only if for any $x, y \in S,(x y)^{\circ}=y^{\circ} x^{\circ}$.
(1.5) ${ }^{[9]}$ For a regular semigroup S with an inverse transversal S°, S° is a Q-inverse transversal if and only if for every $x, y \in S, x_{\Lambda} \cdot y_{I} \in S^{\circ}$, and if and only if for any $s, t \in S^{\circ}, x \in S, s x t=s x^{\circ \circ} t$, and if and only if for any $s, t \in S^{\circ}, x \in S,(s x t)^{\circ}=t^{\circ} x^{\circ} s^{\circ}$.
$(1.6)^{[9]}$ For $\rho \in \operatorname{Con}(S)$, let $\rho^{\circ}=\left.\rho\right|_{S^{\circ}}$. Then for $x, y \in S, x \rho y$ implies $x^{\circ} \rho y^{\circ}$.
$(1.7)^{[9]}$ For any congruence π on S°, there exists $\rho \in \operatorname{Con}(S)$ such that $\pi=\left.\rho\right|_{S^{\circ}}$.
For a regular semigroup $S, E(S)$ denotes the set of idempotents. The complete lattice of congruences on S is denoted by $\operatorname{Con}(S)$. For any $\rho \in \operatorname{Con}(S)$, define $\rho^{\circ}, \rho_{I}, \rho_{\Lambda}, \rho_{R}$ and ρ_{L} as follows:

$$
\rho^{\circ}=\left.\rho\right|_{S^{\circ}}, \quad \rho_{I}=\left.\rho\right|_{I}, \quad \rho_{\Lambda}=\left.\rho\right|_{\Lambda}, \quad \rho_{R}=\left.\rho\right|_{R}, \quad \rho_{L}=\left.\rho\right|_{L}
$$

If $\rho \in \operatorname{Con}(S)$, then the trace of ρ is $\operatorname{tr} \rho=\left.\rho\right|_{E(S)}$ and the kernel of ρ is $\operatorname{ker} \rho=\left\{s \in S \mid s \rho s^{2}\right\}$. We present the following notions and results due to Pastijn and Petrich ${ }^{[4]}$. For any $\rho, \sigma \in \operatorname{Con}(S)$, define T_{l}, T_{r}, U and V as follows:

$$
\begin{gathered}
\rho T_{l} \sigma \Leftrightarrow \operatorname{tr}(\rho \vee \mathcal{L})^{b}=\operatorname{tr}(\sigma \vee \mathcal{L})^{b}, \quad \rho T_{r} \sigma \Leftrightarrow \operatorname{tr}(\rho \vee \mathcal{R})^{b}=\operatorname{tr}(\sigma \vee \mathcal{R})^{b}, \\
\rho U \sigma \Leftrightarrow \rho \cap \leq=\sigma \cap \leq, \quad \rho V \sigma \Leftrightarrow \rho U \sigma, \rho K \sigma
\end{gathered}
$$

where () denotes the greatest congruence on S contained in the relation (), \leq denotes the natural partial order on $E(S)$, and K is a relation on $\operatorname{Con}(S)$ such that $\rho K \sigma$ if and only if $\operatorname{ker} \rho=\operatorname{ker} \sigma$. Then these relations are complete congruences on the lattice Con (S). The congruence class ρT_{r} [resp. $\left.\rho T_{l}, \rho U, \rho V\right]$ is an interval of $\operatorname{Con}(S)$ with greatest and smallest element to be denoted by $\rho^{T_{r}}$ [resp. $\left.\rho^{T_{l}}, \rho^{T_{U}}, \rho^{T_{V}}\right]$ and $\rho_{T_{r}}\left[\right.$ resp. $\rho_{T_{l}}, \rho_{T_{U}}, \rho_{T_{V}}$], respectively. Let τ be a relation on S. The congruence generated by τ is denoted by τ^{*}.

In [9], congruences were coordinatized abstractly by triples which consist of congruences on S°, I and Λ satisfying certain conditions. Five complete congruences V, T, T_{r}, T_{l} and U on the congruences lattices are discussed and their least and greatest elements are presented in terms of congruence triples. We present the following notions and results due to Wang ${ }^{[9]}$. Let π be a congruence on S°. Define relations $\mu_{I}(\pi)$ on I as follows:

$$
e \mu_{I}(\pi) f \Leftrightarrow\left(\exists p^{\circ} \in E^{\circ}\right) e p^{\circ}=f p^{\circ}, p^{\circ} \pi e^{\circ} \pi f^{\circ}
$$

Furthermore, $\mu_{I}(\pi)$ is a congruence on I and $\left.\mu_{I}(\pi)\right|_{E^{\circ}}=\left.\pi\right|_{E^{\circ}}$. If $\pi=\left.\rho\right|_{E^{\circ}}$, then $\mu_{I}(\pi) \subseteq \rho_{I}$. A congruence τ on I is normal if τ satisfies the following condition:

$$
(\forall e, f \in I)\left(\forall a \in S^{\circ}\right) e \tau f \Rightarrow a e a^{\circ} \tau a f a^{\circ}
$$

Denote by $C_{N}(I)$ the set of normal congruences on I. Let $\tau_{I} \in C_{N}(I)$. Define a relation $\tau^{\circ t}$ on S° by

$$
a \tau^{\circ t} b \Leftrightarrow\left(\forall e^{\circ} \in E^{\circ}\right) a e^{\circ} a^{\circ} \tau_{I} b e^{\circ} b^{\circ}
$$

$\tau^{\circ t}$ is the greatest congruence in $\operatorname{Con}\left(S^{\circ}\right)$ such that $\left.\tau^{\circ t}\right|_{E^{\circ}}=\left.\tau^{\circ}\right|_{E^{\circ}} ^{[2]}$. Furthermore, $\tau^{\circ} \subseteq \tau^{\circ t}$. For any $\rho, \lambda \in \operatorname{Con}(S)$, by Theorems 4.4, 4.9 and the dual of Theorem 4.9 in [9], we have

$$
\rho V \lambda \Leftrightarrow \rho^{\circ}=\lambda^{\circ}, \quad \rho T_{r} \lambda \Leftrightarrow \rho_{I}=\lambda_{I}, \quad \rho T_{l} \lambda \Leftrightarrow \rho_{\Lambda}=\lambda_{\Lambda} .
$$

Shang and Wang ${ }^{[10]}$ have shown that congruences on regular semigroups with Q-inverse transversals can also be characterized abstractly by congruence pairs which consist of congruences on I and L satisfying certain conditions.

Definition 1.1 ${ }^{[10]}$ Let τ_{I} and τ_{L} be congruences on I and L, respectively. If they satisfy the following conditions, $\left(\tau_{I}, \tau_{L}\right)$ is called a congruence pair for S.
(i) $\left.\left(\tau_{I}\right)\right|_{E^{\circ}}=\left.\left(\tau_{L}\right)\right|_{E^{\circ}}$;
(ii) $(\forall e, f \in I, x \in L) e \tau_{I} f \Rightarrow x e \tau_{L} x f,(\forall x, y \in L, e \in I) x \tau_{L} y \Rightarrow x e \tau_{L} y e$.

Clearly, (ii) is equivalent to the following condition (iii),
(iii) $(\forall e, f \in I, x, y \in L) e \tau_{I} f, x \tau_{L} y \Rightarrow x e \tau_{L} y f$. Define a relation $\rho_{\left(\tau_{I}, \tau_{L}\right)}$ on S by the following rule,

$$
x \rho_{\left(\tau_{I}, \tau_{L}\right)} y \Leftrightarrow x_{I} \tau_{I} y_{I}, \quad x_{L} \tau_{L} y_{L}
$$

Lemma 1.1 ${ }^{[10]}$ For any $\rho, \sigma \in \operatorname{Con}(S), \rho \subseteq \sigma \Leftrightarrow \rho_{I} \subseteq \sigma_{I}, \rho_{L} \subseteq \sigma_{L}$. Therefore, $\rho=\sigma \Leftrightarrow \rho_{I}=\sigma_{I}$, $\rho_{L}=\sigma_{L}$.

Lemma 1.2 ${ }^{[10]}$ For every congruence pair $\left(\tau_{I}, \tau_{L}\right)$ for S, the relation $\rho_{\left(\tau_{I}, \tau_{L}\right)}$ is the unique congruence on S whose restrictions to I and L are τ_{I} and τ_{L}, respectively. Conversely, every congruence on S can be represented in this way.

In this paper, we study the complete congruence Q on the congruence lattice of regular semigroups with Q-inverse transversals. And we go one step further to give the least and the greatest elements of complete congruence T_{r} in terms of congruence pairs.

2. The congruence relation Q on $\operatorname{Con}(S)$

In this section, we investigate the congruence relation Q on the lattice $\operatorname{Con}(S)$. The classes of the congruence relation Q are intervals of $\operatorname{Con}(S)$. We present the least and the greatest elements of each classes of the congruence relation Q clearly.

One may observe from Lemma 1.2 that for every $\rho \in \operatorname{Con}(S)$, there exists a congruence pair $J_{\rho}=\left(\rho_{I}, \rho_{L}\right)$ and vice versa for every congruence pair J, a congruence ρ_{J}. By Lemma 1.2, $\rho \longmapsto\left(\rho_{I}, \rho_{L}\right)$ and $J \longmapsto \rho_{J}$ are mutually inverse mappings satisfying $\rho_{J_{\rho}}=\rho, J_{\rho_{J}}=J$.

Denote by $C P(S)$ the set of congruence pairs for S. Define an order \leq on $C P(S)$ by componentwise inclusion. It is clear that \leq is a partial order on $C P(S)$. From Lemma 1.1, we have

$$
\left(\tau_{I}, \tau_{L}\right) \leq\left(\tau_{I}^{\prime}, \tau_{L}^{\prime}\right) \Leftrightarrow \rho_{\left(\tau_{I}, \tau_{L}\right)} \subseteq \rho_{\left(\tau_{I}^{\prime}, \tau_{L}^{\prime}\right)}
$$

By Lemma 1.2, we know that $\operatorname{Con}(S)$ and $C P(S)$ are isomorphic as partially ordered sets and therefore as (complete) lattices. In what follows we determine joins and meets in the lattice $C P(S)$.

Lemma 2.1 Let Ψ be a family of congruences on S. For $\rho \in \Psi$, denote $J_{\rho}=\left(\rho_{I}, \rho_{L}\right)$. Then

$$
J_{\cap_{\rho \in \Psi} \rho}=\left(\cap_{\rho \in \Psi} \rho_{I}, \quad \cap_{\rho \in \Psi} \rho_{L}\right), \quad J_{\vee_{\rho \in \Psi} \rho}=\left(\vee_{\rho \in \Psi} \rho_{I}, \quad \vee_{\rho \in \Psi} \rho_{L}\right)
$$

Proof The first equality is obvious. In order to show the second, it suffices to prove $\left(\vee_{\rho \in \Psi} \rho\right)_{I}=$ $\vee_{\rho \in \Psi} \rho_{I}$ and $\left(\vee_{\rho \in \Psi} \rho\right)_{L}=\vee_{\rho \in \Psi} \rho_{L}$. Suppose $e\left(\vee_{\rho \in \Psi} \rho\right)_{I} f$ for $e, f \in I$, then

$$
\begin{aligned}
e\left(\vee_{\rho \in \Psi} \rho\right)_{I} f & \Rightarrow e\left(\vee_{\rho \in \Psi} \rho\right) f \\
& \Rightarrow\left(\exists \rho_{i} \in \Psi, g_{i} \in S\right) e \rho_{1} g_{1} \rho_{2} g_{2} \rho_{3} \ldots \rho_{n-1} g_{n-1} \rho_{n} f \\
& \Rightarrow e=e e^{\circ} \rho_{1 I} g_{1} g_{1}^{\circ} \rho_{2 I} g_{2} g_{2}^{\circ} \rho_{3 I} \ldots \rho_{n-1 I} g_{n-1} g_{n-1}^{\circ} \rho_{n I} f f^{\circ}=f \\
& \Rightarrow e\left(\vee_{\rho \in \Psi} \rho_{I}\right) f
\end{aligned}
$$

So $\left(\vee_{\rho \in \Psi} \rho\right)_{I} \subseteq \vee_{\rho \in \Psi} \rho_{I}$. The reverse inclusion is obvious.
Next assume $x\left(\vee_{\rho \in \Psi} \rho\right)_{L} y$ for $x, y \in L$, then

$$
\begin{aligned}
x\left(\vee_{\rho \in \Psi} \rho\right)_{L} y & \Rightarrow x\left(\vee_{\rho \in \Psi} \rho\right) y \\
& \Rightarrow\left(\exists \rho_{i} \in \Psi, z_{i} \in S\right) x \rho_{1} z_{1} \rho_{2} z_{2} \rho_{3} \ldots \rho_{n-1} z_{n-1} \rho_{n} y \\
& \Rightarrow x=x^{\circ \circ} x^{\circ} x \rho_{1 L} z_{1}^{\circ \circ} z_{1}^{\circ} z_{1} \rho_{2 L} z_{2}^{\circ \circ} z_{2}^{\circ} z_{2} \rho_{3 L} \ldots \rho_{n-1 L} z_{n-1}^{\circ \circ} z_{n-1}^{\circ} z_{n-1} \rho_{n L} y^{\circ \circ} y^{\circ} y=y \\
& \Rightarrow x\left(\vee_{\rho \in \Psi} \rho_{L}\right) y
\end{aligned}
$$

Thus $\left(\vee_{\rho \in \Psi} \rho\right)_{L} \subseteq \vee_{\rho \in \Psi} \rho_{L}$. The reverse inclusion is obvious.
Lemma 2.2 Let Γ be a nonempty family of congruence pairs for S and denote $J=\left(\tau_{I}, \tau_{L}\right) \in \Gamma$. Then

$$
\cap_{J \in \Gamma} \rho_{J}=\rho_{\left(\cap_{J \in \Gamma} \tau_{I}, \cap_{J \in \Gamma} \tau_{L}\right)}, \quad \vee_{J \in \Gamma} \rho_{J}=\rho_{\left(\vee_{J \in \Gamma} \tau_{I}, \vee_{J \in \Gamma} \tau_{L}\right)}
$$

Proof Denote simply $\rho=\rho_{J}=\rho_{\left(\tau_{I}, \tau_{L}\right)}$. From Lemma 2.1,

$$
J_{\cap_{J \in \Gamma} \rho}=\left(\cap_{J \in \Gamma} \tau_{I}, \quad \cap_{J \in \Gamma} \tau_{L}\right)
$$

From Lemma 1.2, $\rho_{J_{\cap \rho}}=\cap \rho$. Hence the first equality holds. The second one may be proved similarly.

Lemma 2.3 $C P(S)$ is a lattice under the partial order \leq. The lattice operations in $C P(S)$ are given as follows:

$$
\begin{aligned}
& \left(\tau_{I}, \tau_{L}\right) \cap\left(\tau_{I}^{\prime}, \tau_{L}^{\prime}\right)=\left(\tau_{I} \cap \tau_{I}^{\prime}, \tau_{L} \cap \tau_{L}^{\prime}\right), \\
& \left(\tau_{I}, \tau_{L}\right) \vee\left(\tau_{I}^{\prime}, \tau_{L}^{\prime}\right)=\left(\tau_{I} \vee \tau_{I}^{\prime}, \tau_{L} \vee \tau_{L}^{\prime}\right)
\end{aligned}
$$

Proof We omit the proof since it is easy.
Lemma 2.4 Let π be a congruence on S°. Then we have

$$
\left(\forall a, b \in S^{\circ}\right)(\forall e \in I, x \in L) a \pi b \Rightarrow x a e \pi x b e .
$$

Proof Suppose $a \pi b$ for $a, b \in S^{\circ}$. Then for $e \in I, x \in L$, by (1.5),

$$
x a e=x^{\circ \circ} x^{\circ} x a e e^{\circ}=x^{\circ \circ} x^{\circ} x^{\circ \circ} a e^{\circ \circ} e^{\circ} \pi x^{\circ \circ} x^{\circ} x^{\circ \circ} b e^{\circ \circ} e^{\circ}=x b e .
$$

Let π be a congruence on S°. Define a relation $\xi_{I}(\pi)$ on I with respect to π by

$$
e \xi_{I}(\pi) f \Leftrightarrow(\forall x \in L) x e \pi x f
$$

We set

$$
C_{N}(L)=\left\{\sigma \in \operatorname{Con}(L)|\exists \rho \in \operatorname{Con}(S), \rho|_{L}=\sigma\right\}
$$

Theorem 2.1 Define a mapping ψ from $\operatorname{Con}(S)$ into $C_{N}(L)$ by

$$
\psi: \rho \longmapsto \rho_{L}
$$

Then the following statements are true.
(i) ψ is a complete homomorphism from $\operatorname{Con}(S)$ onto $C_{N}(L)$;
(ii) The complete congruence Q on $\operatorname{Con}(S)$ induced by ψ is $V \cap T_{l}$;
(iii) For any $\rho \in \operatorname{Con}(S)$, the Q-class ρQ is an interval of $\operatorname{Con}(S)$ such that

$$
\rho Q=\left[\rho_{Q}, \rho^{Q}\right]
$$

where $\rho_{Q}=\rho_{\left(\mu_{I}\left(\rho^{\circ}\right), \rho_{L}\right)}$ and $\rho^{Q}=\rho_{\left(\xi_{I}\left(\rho^{\circ}\right), \rho_{L}\right)}$.
Proof (i) By the definition of $C_{N}(L), \psi$ is surjective; ψ is a complete homomorphism by Lemma 2.2.
(ii) We need to prove that $Q=V \cap T_{l}$. If $\rho\left(V \cap T_{l}\right) \sigma$, then by Theorem 4.4 and the dual of Theorem 4.9 in $[9],\left.\rho\right|_{S^{\circ}}=\left.\sigma\right|_{S^{\circ}}$ and $\left.\rho\right|_{\Lambda}=\left.\sigma\right|_{\Lambda}$. Let $x, y \in L$ with $x \rho y$. Then $x^{\circ} \rho y^{\circ}$, and so $x^{\circ \circ} \rho y^{\circ \circ}$. Hence $x^{\circ} x \rho y^{\circ} y$. Thus $x^{\circ} x \sigma y^{\circ} y$ and $x^{\circ \circ} \sigma y^{\circ \circ}$, and so $x=x^{\circ \circ} x^{\circ} x \sigma y^{\circ \circ} y^{\circ} y=y$. Therefore $\rho_{L} \subseteq \sigma_{L}$. Similarly, the reverse inclusion holds. So $\rho Q \sigma$. That is to say, $V \cap T_{l} \subseteq Q$. Obviously, the reverse inclusion also holds.
(iii) By Theorem 4.4 in [9], we have $\left.\mu_{I}\left(\rho^{\circ}\right)\right|_{E^{\circ}}=\left.\rho^{\circ}\right|_{E^{\circ}}=\left.\left(\rho_{L}\right)\right|_{E^{\circ}}$. Assume $e \mu_{I}\left(\rho^{\circ}\right) f$ for $e, f \in I$. Since $\mu_{I}\left(\rho^{\circ}\right) \subseteq \rho_{I}$, we have $e \rho f$. For any $x \in L$, by (1.3), we have $x e \rho_{L} x f$. Let $x, y \in L$ with $x \rho_{L} y$. Then for any $e \in I$, we have xepye. So $x e \rho_{L} y e$. Hence $\left(\mu_{I}\left(\rho^{\circ}\right), \rho_{L}\right)$ is a congruence pair such that $\rho_{\left(\mu_{I}\left(\rho^{\circ}\right), \rho_{L}\right)} \in \rho Q$. We have also $\rho_{\left(\mu_{I}\left(\rho^{\circ}\right), \rho_{L}\right)} \subseteq \rho_{\left(\rho_{I}, \rho_{L}\right)}=\rho$. Since the definition of $\mu_{I}\left(\rho^{\circ}\right)$ depends only on $\rho^{\circ}, \rho_{\left(\mu_{I}\left(\rho^{\circ}\right), \rho_{L}\right)}$ is the smallest element of ρQ.

Let π be a congruence on S°. Clearly, $\xi_{I}(\pi)$ is an equivalence relation on I. Let $e \xi_{I}(\pi) f$. Then for any $x \in L, x e \pi x f$, and for any $g \in I$, by Lemma 2.4, we have

$$
x e g=x^{\circ \circ} x^{\circ} x e g \pi x^{\circ \circ} x^{\circ} x f g=x f g
$$

so $e g \xi_{I}(\pi) f g$. We also have $g^{\circ} e \pi g^{\circ} f$. Since $x g \in S^{\circ}$, we get

$$
x g e=x g g^{\circ} e \pi x g g^{\circ} f=x g f
$$

and thus $g e \xi_{I}(\pi) g f$. Hence $\xi_{I}(\pi)$ is a congruence on I. If for $e^{\circ}, f^{\circ} \in E^{\circ}, e^{\circ} \pi f^{\circ}$, then for any $x \in L$, by Lemma 2.4, we have

$$
x e^{\circ}=x e^{\circ} e^{\circ} \pi x f^{\circ} e^{\circ}=x e^{\circ} f^{\circ} \pi x f^{\circ} f^{\circ}=x f^{\circ}
$$

So $e^{\circ} \xi_{I}(\pi) f^{\circ}$. Thus $\left.\left.\pi\right|_{E^{\circ}} \subseteq\left(\xi_{I}(\pi)\right)\right|_{E^{\circ}}$. Conversely, if $\left.e^{\circ}\left(\xi_{I}(\pi)\right)\right|_{E^{\circ}} f^{\circ}$, then

$$
e^{\circ}=e^{\circ} e^{\circ} \pi e^{\circ} f^{\circ}=f^{\circ} e^{\circ} \pi f^{\circ} f^{\circ}=f^{\circ}
$$

Thus $\left.\left.\left(\xi_{I}(\pi)\right)\right|_{E^{\circ}} \subseteq \pi\right|_{E^{\circ}}$, and so $\left.\left(\xi_{I}(\pi)\right)\right|_{E^{\circ}}=\left.\pi\right|_{E^{\circ}}$. Let $\pi=\rho^{\circ}$. Then $\left.\xi_{I}\left(\rho^{\circ}\right)\right|_{E^{\circ}}=\left.\rho^{\circ}\right|_{E^{\circ}}=$ $\left.\left(\rho_{L}\right)\right|_{E^{\circ}}$. Assume $e \xi_{I}\left(\rho^{\circ}\right) f$ for $e, f \in I$. For any $x \in L$, by the definition of $\xi_{I}\left(\rho^{\circ}\right)$ we have $x e \rho^{\circ} x f$. Noticing $x e, x f \in S^{\circ} \subseteq L$, we get $x e \rho_{L} x f$. If for $x, y \in L, x \rho_{L} y$, then $x \rho y$. For any $e \in I$, we have $x e \rho y e$, and thus $x e \rho_{L} y e$. Hence $\left(\xi_{I}\left(\rho^{\circ}\right), \rho_{L}\right)$ is a congruence pair such that $\rho_{\left(\xi_{I}\left(\rho^{\circ}\right), \rho_{L}\right)} \in \rho Q$. Noticing $\rho_{I} \subseteq \xi_{I}\left(\rho^{\circ}\right)$, we also have $\rho=\rho_{\left(\rho_{I}, \rho_{L}\right)} \subseteq \rho_{\left(\xi_{I}\left(\rho^{\circ}\right), \rho_{L}\right)}$. Since the definition of $\xi_{I}\left(\rho^{\circ}\right)$ depends only on ρ°, it follows that $\rho_{\left(\xi_{I}\left(\rho^{\circ}\right), \rho_{L}\right)}$ is the greatest element of ρQ.

Therefore, the Q-class ρQ is $\left[\rho_{Q}, \rho^{Q}\right]$.

3. The congruence relation T_{r} on $\operatorname{Con}(S)$

Using congruence pairs, we present the least and the greatest element in each $T_{r}-$ class in this section, which is in a different approach to [9].

Let π be a congruence on S°. Define relations $\xi_{L}(\pi)$ and $\nu_{L}(\pi)$ on L with respect to π respectively, as follows.

$$
\begin{gathered}
x \xi_{L}(\pi) y \Leftrightarrow(\forall e \in I) x e \pi y e \\
x \nu_{L}(\pi) y \Leftrightarrow\left(\exists p^{\circ} \in E^{\circ}\right) p^{\circ} x \pi^{*} p^{\circ} y, \quad p^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ \circ} y^{\circ},
\end{gathered}
$$

where π^{*} is the congruence generated by π on S. Noticing π^{*} is the smallest element of $\{\rho \in$ $\left.\operatorname{Con}(S):\left.\rho\right|_{S^{\circ}}=\pi\right\}$. This is because $\pi=\left.\left.\pi\right|_{S^{\circ}} \subseteq\left(\pi^{*}\right)\right|_{S^{\circ}}$. By (1.7), there exists a $\xi \in \operatorname{Con}(S)$ such that $\left.\xi\right|_{S^{\circ}}=\pi$. Thus $\left.\left.\left(\pi^{*}\right)\right|_{S^{\circ}} \subseteq \xi\right|_{S^{\circ}}=\pi$, and so $\left.\left(\pi^{*}\right)\right|_{S^{\circ}}=\pi$. If $\rho \in \operatorname{Con}(S),\left.\rho\right|_{S^{\circ}}=\pi$, then $\pi \subseteq \rho$. So $\pi^{*} \subseteq \rho$.

Let $\tau_{I} \in C_{N}(I)=\left\{\sigma \in \operatorname{Con}(I)|\exists \rho \in \operatorname{Con}(S), \rho|_{I}=\sigma\right\}$. Define a relation τ_{n}° on S° by $\tau_{n}^{\circ}=\beta^{*}$, where $\beta=\left\{(x e, x f) \mid e \tau_{I} f, x \in L\right\}$.

Theorem 3.1 For $\rho \in \operatorname{Con}(S)$, we have $\rho_{T_{r}}=\rho_{\left(\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)}$ and $\rho^{T_{r}}=\rho_{\left(\rho_{I},\right.}, \xi_{L}\left(\rho^{\circ t))}\right.$.
Proof Let π be a congruence on S°. We need to prove that $\nu_{L}(\pi)$ is a congruence on L. For $x \in L$, there is $p^{\circ}=x^{\circ \circ} x^{\circ} \in E^{\circ}$ such that $x^{\circ \circ} x^{\circ} x \pi^{*} x^{\circ \circ} x^{\circ} x$ and $x^{\circ \circ} x^{\circ} \pi x^{\circ \circ} x^{\circ} \pi x^{\circ \circ} x^{\circ}$. Hence $\nu_{L}(\pi)$ is reflexive. Clearly, $\nu_{L}(\pi)$ is symmetric. For $x, y, z \in L$ with $x \nu_{L}(\pi) y$ and $y \nu_{L}(\pi) z$, there exist $p^{\circ}, q^{\circ} \in E^{\circ}$ such that

$$
\begin{array}{ll}
p^{\circ} x \pi^{*} p^{\circ} y, & p^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ} y^{\circ} \\
q^{\circ} y \pi^{*} q^{\circ} z, & q^{\circ} \pi y^{\circ} y^{\circ} \pi z^{\circ \circ} z^{\circ}
\end{array}
$$

hence $q^{\circ} p^{\circ} x \pi^{*} q^{\circ} p^{\circ} z$ and $q^{\circ} p^{\circ} \pi y^{\circ \circ} y^{\circ} \pi x^{\circ \circ} x^{\circ} \pi z^{\circ \circ} z^{\circ}$. Therefore $\nu_{L}(\pi)$ is transitive, and so $\nu_{L}(\pi)$ is an equivalence relation on L. Assume $x \nu_{L}(\pi) y$ for $x, y \in L$. Then $p^{\circ} x \pi^{*} p^{\circ} y$ for some $p^{\circ} \in E^{\circ}$
such that $p^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ \circ} y^{\circ}$. For any $z \in L$, we have $z^{\circ \circ} p^{\circ} z^{\circ} \pi z^{\circ \circ} x^{\circ \circ} x^{\circ} z^{\circ} \pi z^{\circ \circ} y^{\circ \circ} y^{\circ} z^{\circ}$. Since L is an orthodox semigroup with Q-inverse transversal S°, by (1.4) we have

$$
\begin{aligned}
z^{\circ \circ} p^{\circ} z^{\circ} . z x= & z^{\circ \circ} p^{\circ} z^{\circ} z x^{\circ \circ} x^{\circ} x=z^{\circ \circ} p^{\circ} z^{\circ} z^{\circ \circ} x^{\circ \circ} x^{\circ} x \\
= & z^{\circ \circ} z^{\circ} z^{\circ \circ} p^{\circ} x \pi^{*} z^{\circ \circ} z^{\circ} z^{\circ \circ} p^{\circ} y=z^{\circ \circ} p^{\circ} z^{\circ} z^{\circ \circ} y=z^{\circ \circ} p^{\circ} z^{\circ} . z y, \\
& z^{\circ \circ} p^{\circ} z^{\circ} \pi(z x)^{\circ \circ}(z x)^{\circ} \pi(z y)^{\circ \circ}(z y)^{\circ} .
\end{aligned}
$$

Thus, by the definition of $\nu_{L}(\pi), z x \nu_{L}(\pi) z y$. As $p^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ \circ} y^{\circ}$, we have

$$
\begin{aligned}
& p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} \pi x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ}=(x z)^{\circ \circ}(x z)^{\circ}, \\
& p^{\circ} y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ} \pi y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ}=(y z)^{\circ \circ}(y z)^{\circ} .
\end{aligned}
$$

Since $p^{\circ} \in E^{\circ}$ and $p^{\circ} x \pi^{*} p^{\circ} y$, by (1.4) and (1.6), we have $x^{\circ} p^{\circ}=x^{\circ} p^{\circ \circ} \pi y^{\circ} p^{\circ \circ}=y^{\circ} p^{\circ}$, hence $p^{\circ} x^{\circ \circ} \pi p^{\circ} y^{\circ \circ}$. Noticing $x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} \in E^{\circ}$, we also have

$$
\begin{aligned}
p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} & =p^{\circ} p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} \\
& =p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} p^{\circ} \pi p^{\circ} y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ} p^{\circ}=p^{\circ} y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ} .
\end{aligned}
$$

Hence, by the proof above and the definition of π^{*},

$$
\begin{gathered}
p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} x z=p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} x z^{\circ \circ} z^{\circ} z=p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} z=p^{\circ} x^{\circ \circ} z \\
\pi^{*} p^{\circ} y^{\circ \circ} z=p^{\circ} y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ} y z=p^{\circ} y^{\circ \circ} z^{\circ \circ} z^{\circ} y^{\circ} p^{\circ} y z \pi^{*} p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} p^{\circ} y z=p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} y z \\
p^{\circ} x^{\circ \circ} z^{\circ \circ} z^{\circ} x^{\circ} \pi(x z)^{\circ \circ}(x z)^{\circ} \pi(y z)^{\circ \circ}(y z)^{\circ}
\end{gathered}
$$

Thus $x z \nu_{L}(\pi) y z$. Therefore $\nu_{L}(\pi)$ is a congruence on L. Assume $x \nu_{L}(\pi) y$ for $x, y \in S^{\circ}$. Then $p^{\circ} x \pi^{*} p^{\circ} y$ for some $p^{\circ} \in E^{\circ}$ such that $p^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ \circ} y^{\circ}$. Thus $x \pi p^{\circ} x \pi^{*} p^{\circ} y \pi y$, and so $\left.\nu_{L}(\pi)\right|_{S \circ} \subseteq \pi$. For $x, y \in S^{\circ}$ with $x \pi y$, we have $x^{\circ} \pi y^{\circ}$. Thus $x^{\circ \circ} x^{\circ}=x x^{\circ} \pi y y^{\circ}=y^{\circ \circ} y^{\circ}$, and so $x^{\circ \circ} x^{\circ} y^{\circ \circ} y^{\circ} \pi y^{\circ \circ} y^{\circ}$. Noticing $\left.\pi^{*}\right|_{S^{\circ}}=\pi$ and $x \pi y$, we also have

$$
\begin{gathered}
x^{\circ \circ} x^{\circ} y^{\circ \circ} y^{\circ} \cdot x \pi^{*} x^{\circ \circ} x^{\circ} y^{\circ \circ} y^{\circ} \cdot y, \\
x^{\circ \circ} x^{\circ} y^{\circ \circ} y^{\circ} \pi x^{\circ \circ} x^{\circ} \pi y^{\circ \circ} y^{\circ},
\end{gathered}
$$

and thus $x \nu_{L}(\pi) y$. Hence $\pi \subseteq \nu_{L}(\pi) \mid S^{\circ}$, so $\pi=\nu_{L}(\pi) \mid S^{\circ}$. Let $\pi=\rho_{n}^{\circ}$. Then $\nu_{L}\left(\rho_{n}^{\circ}\right) \mid S^{\circ}=\rho_{n}^{\circ}$. We need to prove that $\left.\left(\rho_{I}\right)\right|_{E^{\circ}}=\left.\rho_{n}^{\circ}\right|_{E^{\circ}}$. For $e^{\circ}, f^{\circ} \in E^{\circ}$ with $e^{\circ} \rho_{I} f^{\circ}$, by the definition of ρ_{n}° we have $e^{\circ}=e^{\circ} e^{\circ} \beta e^{\circ} f^{\circ}=f^{\circ} e^{\circ} \beta f^{\circ} f^{\circ}=f^{\circ}$. So $e^{\circ} \rho_{n}^{\circ} f^{\circ}$. Thus $\left.\left.\left(\rho_{I}\right)\right|_{E^{\circ}} \subseteq \rho_{n}^{\circ}\right|_{E^{\circ}}$. To get the reverse inclusion, assume $e^{\circ} \rho_{n}^{\circ} f^{\circ}$ for $e^{\circ}, f^{\circ} \in E^{\circ}$. Then there exist $e_{i}, f_{i} \in I, x_{i} \in L, s_{i}, t_{i} \in S^{o 1}(i=$ $1,2, \ldots, n$) such that

$$
e^{\circ}=s_{1} x_{1} e_{1} t_{1}, \quad s_{1} x_{1} f_{1} t_{1}=s_{2} x_{2} e_{2} t_{2}, \quad \cdots \quad, \quad s_{n} x_{n} f_{n} t_{n}=f^{\circ}, \quad e_{i} \rho_{I} f_{i} .
$$

By $e_{i} \rho_{I} f_{i}$, we get $e_{i} \rho f_{i}$, and thus $e^{\circ} \rho f^{\circ}$. Hence $\left.e^{\circ}\left(\rho_{I}\right)\right|_{E^{\circ}} f^{\circ}$, and so $\rho_{n}^{\circ}\left|E^{\circ} \subseteq\left(\rho_{I}\right)\right|_{E^{\circ}}$. Thus

$$
\left.\nu_{L}\left(\rho_{n}^{\circ}\right)\right|_{E^{\circ}}=\left.\rho_{n}^{\circ}\right|_{E^{\circ}}=\left.\left(\rho_{I}\right)\right|_{E^{\circ}} .
$$

Therefore ($\left.\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)$ satisfies Definition 1.1(i). For $e, f \in I, x \in L$ with $e \rho_{I} f$, by the definition of ρ_{n}°, we have $x e \rho_{n}^{\circ} x f$. By $x e, x f \in S^{\circ}$ and $\left.\nu_{L}\left(\rho_{n}^{\circ}\right)\right|_{S \circ}=\rho_{n}^{\circ}$, we get $x e \nu_{L}\left(\rho_{n}^{\circ}\right) x f$. Assume $x \nu_{L}\left(\rho_{n}^{\circ}\right) y$
for $x, y \in L$. Then $q^{\circ} x\left(\rho_{n}^{\circ}\right)^{*} q^{\circ} y$ for some $q^{\circ} \in E^{\circ}$ such that $q^{\circ} \rho_{n}^{\circ} x^{\circ \circ} x^{\circ} \rho_{n}^{\circ} y^{\circ \circ} y^{\circ}$. Thus

$$
x\left(\rho_{n}^{\circ}\right)^{*} q^{\circ} x\left(\rho_{n}^{\circ}\right)^{*} q^{\circ} y\left(\rho_{n}^{\circ}\right)^{*} y
$$

and so $x\left(\rho_{n}^{\circ}\right)^{*} y$. For any $e \in I$, we have $x e\left(\rho_{n}^{\circ}\right)^{*} y e$. By $x e, y e \in S^{\circ}$ and $\left.\left(\rho_{n}^{\circ}\right)^{*}\right|_{S^{\circ}}=\rho_{n}^{\circ}=\left.\nu_{L}\left(\rho_{n}^{\circ}\right)\right|_{S^{\circ}}$, we get $x e \nu_{L}\left(\rho_{n}^{\circ}\right) y e$. Therefore $\left(\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)$ is a congruence pair such that $\rho_{\left(\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)} \in \rho T_{r}$. For $a, b \in S^{\circ}$ with $a \rho_{n}^{\circ} b$, there exist $e_{i}, f_{i} \in I, x_{i} \in L, s_{i}, t_{i} \in S^{o 1}(i=1,2, \ldots, n)$ such that

$$
a=s_{1} x_{1} e_{1} t_{1}, \quad s_{1} x_{1} f_{1} t_{1}=s_{2} x_{2} e_{2} t_{2}, \quad \cdots \quad, \quad s_{n} x_{n} f_{n} t_{n}=b, \quad e_{i} \rho_{I} f_{i}
$$

Hence $a \rho b$, so $a \rho^{\circ} b$. Therefore $\rho_{n}^{\circ} \subseteq \rho^{\circ}$. Thus, by the definition of $\nu_{L}(\pi), \nu_{L}\left(\rho_{n}^{\circ}\right) \subseteq \nu_{L}\left(\rho^{\circ}\right) \subseteq \rho_{L}$. Hence $\rho_{\left(\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)} \subseteq \rho_{\left(\rho_{I}, \rho_{L}\right)}=\rho$. Since the definition of $\nu_{L}\left(\rho_{n}^{\circ}\right)$ depends only on ρ_{n}° and the definition of ρ_{n}° depends only on $\rho_{I}, \rho_{\left(\rho_{I}, \nu_{L}\left(\rho_{n}^{\circ}\right)\right)}$ is the smallest element of ρT_{r}.

From Theorem III. 2.5 in [2], $\rho^{\circ t}$ is the greatest congruence in Con $\left(S^{\circ}\right)$ such that $\left.\rho^{\circ t}\right|_{E}{ }^{\circ}=$ $\left.\rho^{\circ}\right|_{E^{\circ}}$. Let π be a congruence on $S^{\circ} . \xi_{L}(\pi)$ is also an equivalence relation on L. Let $x \xi_{L}(\pi) y$. Then for any $e \in I$, xemye, and for any $z \in L$, by Lemma 2.4, we have

$$
z x e=z x e e^{\circ} \pi z y e e^{\circ}=z y e
$$

so $z x \xi_{L}(\pi) z y$. Noticing $x z^{\circ \circ} z^{\circ} \pi y z^{\circ \circ} z^{\circ}$ and $z e \in S^{\circ}$, we have

$$
x z e=x z^{\circ \circ} z^{\circ} z e \pi y z^{\circ \circ} z^{\circ} z e=y z e
$$

and thus $x z \xi_{L}(\pi) y z$. Hence $\xi_{L}(\pi)$ is also a congruence on L.
If for $x^{\circ}, y^{\circ} \in S^{\circ}, x^{\circ} \pi y^{\circ}$, then for any $e \in I$, by Lemma 2.4, we have

$$
x^{\circ} e=x^{\circ} x^{\circ \circ} x^{\circ} e \pi x^{\circ} x^{\circ \circ} y^{\circ} e=x^{\circ} x^{\circ \circ} y^{\circ} y^{\circ \circ} y^{\circ} e=y^{\circ} y^{\circ \circ} x^{\circ} x^{\circ \circ} y^{\circ} e \pi y^{\circ} y^{\circ \circ} y^{\circ} y^{\circ \circ} y^{\circ} e=y^{\circ} e
$$

So $x^{\circ} \xi_{L}(\pi) y^{\circ}$. Thus $\left.\pi \subseteq\left(\xi_{L}(\pi)\right)\right|_{S^{\circ}}$. Conversely, if $\left.x^{\circ}\left(\xi_{L}(\pi)\right)\right|_{S^{\circ}} y^{\circ}$, then $\left.x^{\circ \circ}\left(\xi_{L}(\pi)\right)\right|_{S \circ} y^{\circ \circ}$, and so $\left.x^{\circ \circ} x^{\circ}\left(\xi_{L}(\pi)\right)\right|_{S^{\circ}} y^{\circ \circ} y^{\circ}$. Thus, by the definition of $\xi_{L}(\pi)$,

$$
x^{\circ}=x^{\circ} x^{\circ \circ} x^{\circ} \pi y^{\circ} x^{\circ \circ} x^{\circ}=y^{\circ} y^{\circ \circ} y^{\circ} x^{\circ \circ} x^{\circ}=y^{\circ} x^{\circ \circ} x^{\circ} y^{\circ \circ} y^{\circ} \pi y^{\circ} y^{\circ \circ} y^{\circ} y^{\circ \circ} y^{\circ}=y^{\circ} .
$$

Hence $\left.\left(\xi_{L}(\pi)\right)\right|_{S^{\circ}} \subseteq \pi$. Consequently $\left.\left(\xi_{L}(\pi)\right)\right|_{S^{\circ}}=\pi$. Let $\pi=\rho^{\circ t}$. Then

$$
\left.\xi_{L}\left(\rho^{\circ t}\right)\right|_{E^{\circ}}=\left.\rho^{\circ t}\right|_{E^{\circ}}=\left.\rho^{\circ}\right|_{E^{\circ}}=\left.\rho_{I}\right|_{E^{\circ}}
$$

For $e, f \in I, e \rho_{I} f$, then for any $x \in L$, we have xe $\rho^{\circ} x f$. As $\rho^{\circ} \subseteq \rho^{\circ t}$ and $\left.\xi_{L}\left(\rho^{\circ t}\right)\right|_{S^{\circ}}=\rho^{\circ t}$, we have $x e \xi_{L}\left(\rho^{\circ t}\right) x f$. Assume $x \xi_{L}\left(\rho^{\circ t}\right) y$ for $x, y \in L$. Then for any $e \in I$, by the definition of $\xi_{L}\left(\rho^{\circ t}\right)$, xe $\rho^{\circ t} y e$. Since $x e, y e \in S^{\circ}$ and $\left.\xi_{L}\left(\rho^{\circ t}\right)\right|_{S^{\circ}}=\rho^{\circ t}$, we have $x e \xi_{L}\left(\rho^{\circ t}\right) y e$. Therefore $\left(\rho_{I}, \xi_{L}\left(\rho^{\circ t}\right)\right)$ is a congruence pair and $\rho_{\left(\rho_{I}, \xi_{L}\left(\rho^{\circ t}\right)\right)} \in \rho T_{r}$. By the definition of $\xi_{L}(\pi)$, we have $\rho_{L} \subseteq \xi_{L}\left(\rho^{\circ}\right) \subseteq \xi_{L}\left(\rho^{\circ t}\right)$ and

$$
\rho=\rho_{\left(\rho_{I}, \rho_{L}\right)} \subseteq \rho_{\left(\rho_{I}, \xi_{L}\left(\rho^{\circ t}\right)\right)}
$$

Since the definition of $\xi_{L}\left(\rho^{\circ t}\right)$ depends only on $\rho^{\circ t}$ and the definition of $\rho^{\circ t}$ depends only on $\left.\left(\rho_{I}\right)\right|_{E^{\circ}}, \rho_{\left(\rho_{I}, \xi_{L}\left(\rho^{\circ}\right)\right)}$ is the greatest element of ρT_{r}.

With respect to any congruence ρ on S, there exist two congruence classes containing ρ, and there are four extremal values related to these congruence classes. Further, we describe the fine relations among these extremal congruences for a fixed congruence on S.

Theorem 3.2 Let ρ be a congruence on S. Then $T_{r} \cap Q=\epsilon_{\operatorname{Con}(S)}, \rho=\rho_{T_{r}} \vee \rho_{Q}=\rho^{T_{r}} \cap \rho^{Q}$, $\left(\rho^{T_{r}}\right)^{T_{r}}=\rho^{T_{r}},\left(\rho_{T_{r}}\right)_{T_{r}}=\rho_{T_{r}},\left(\rho^{T_{r}}\right)_{T_{r}}=\rho_{T_{r}},\left(\rho_{T_{r}}\right)^{T_{r}}=\rho^{T_{r}},\left(\rho^{Q}\right)^{Q}=\rho^{Q},\left(\rho_{Q}\right)_{Q}=\rho_{Q},\left(\rho^{Q}\right)_{Q}=$ $\rho_{Q},\left(\rho_{Q}\right)^{Q}=\rho^{Q}$.

Proof Only $\rho=\rho_{T_{r}} \vee \rho_{Q}=\rho^{T_{r}} \cap \rho^{Q}$ and $\left(\rho^{T_{r}}\right)^{T_{r}}=\rho^{T_{r}}$ are proved below.
$\nu_{L}\left(\rho_{n}^{\circ}\right) \subseteq \rho_{L}$ has been shown in the proof of Theorem 3.1. Combining $\mu_{I}\left(\rho^{\circ}\right) \subseteq \rho_{I}$, Lemma 2.2, Theorems 2.1 and 3.1, we have $\rho=\rho_{T_{r}} \vee \rho_{Q}$. Similarly, $\rho_{I} \subseteq \xi_{I}\left(\rho^{\circ}\right), \rho_{L} \subseteq \xi_{L}\left(\rho^{\circ t}\right)$, and then $\rho=\rho^{T_{r}} \cap \rho^{Q}$. Finally, $\left(\rho^{T_{r}}\right)^{T_{r}}=\rho_{\left(\rho_{I}, \xi_{L}\left(\left(\rho^{\circ t}\right)^{\circ t}\right)\right)}=\rho^{T_{r}}$ from the fact that $\left(\rho^{T_{r}}\right)_{I}=\rho_{I},\left.\xi_{L}\left(\rho^{\circ t}\right)\right|_{S^{\circ}}=$ $\rho^{\circ t}$ and $\left(\rho^{\circ t}\right)^{\circ t}=\rho^{\circ t}$.

References

[1] HOWIE J M. An Introduction to Semigroup Theory [M]. Academic Press, London-New York, 1976.
[2] PETRICH M. Inverse Semigroups [M]. John Wiley \& Sons, Inc., New York, 1984.
[3] MCALISTER D B, MCFADDEN R B. Regular semigroups with inverse transversals [J]. Quart. J. Math. Oxford Ser. (2), 1983, 34(136): 459-474.
[4] PASTIJN F, PETRICH M. Congruences on regular semigroups [J]. Trans. Amer. Math. Soc., 1986, 295(2): 607-633.
[5] SAITO T. A note on regular semigroups with inverse transversals [J]. Semigroup Forum, 1986, 33(1): 149152.
[6] SAITO T. Construction of regular semigroups with inverse transversals [J]. Proc. Edinburgh Math. Soc. (2), 1989, 32(1): 41-51.
[7] SAITO T. Structure of regular semigroups with a quasi-ideal inverse transversal [J]. Semigroup Forum, 1985, 31(3): 305-309.
[8] TANG Xilin. Regular semigroups with inverse transversals [J]. Semigroup Forum, 1997, 55(1): 24-32.
[9] WANG Limin. On congruence lattices of regular semigroups with Q-inverse transversals [J]. Semigroup Forum, 1995, 50(2): 141-160.
[10] SHANG Yu, WANG Limin. Congruences on regular semigroups with Q-inverse transversals [J]. J. Lanzhou Univ. Nat. Sci., 2007, 43(5): 84-87. (in Chinese)

