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Abstract For bounded Vilenkin-Like system, the inequality is also true:

(
∞

∑

k=1

k
p−2|f̂(k)|p)1/p ≤ C‖f‖Hp , 0 < p ≤ 2, (*)

where f̂(·) denotes the Vilenkin-Like Fourier coefficient of f and the Hardy space Hp(Gm) is

defined by means of maximal functions. As a consequence, we prove the strong convergence

theorem for bounded Vilenkin-Like Fourier series, i.e.,

(

∞
∑

k=1

k
p−2‖Skf‖p

p)1/p ≤ C‖f‖Hp , 0 < p < 1. (**)
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1. Introduction

It is well known that the inequality (∗) is true for Walsh-Paley system. It was proved first

by Ladhawala[1] and another proof was given in the book[2] written by Schipp, Wade, Simon and

Pál. For Vilenkin system, it was proved by Fridli and Simon[3]. In this paper, we will discuss

the theorem about Vilenkin-Like system. In fact Vilenkin-Like system is a more generalized

orthonormal system in Vilenkin space Gm. It has the corresponding definition in Walsh-Paley

system, p-series Field and Vilenkin system even in noncommutative martingale theory. We will

prove the inequality (∗) is also true for the bounded Vilenkin-Like system.

It is well known that Vilenkin system, especially Walsh-Paley system, does not form a

Schauder basis in L1. Moreover, there exists a function in H1 such that its partial sums are

not bounded in L1. Hence it is of interest that certain means of the partial sums of function

from H1 can be convergent. Simon[4] proved that in the Walsh case

lim
n→∞

1

logn

n
∑

k=1

‖Skf‖1

k
= ‖f‖1, f ∈ H1. (1)
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Furthermore, it was proved that (1) follows from the next statement on strong convergence:

lim
n→∞

1

log n

n
∑

k=1

‖Skf − f‖1

k
= 0, f ∈ H1. (2)

It is not hard to see that (1) is also equivalent to (2). Moreover for (1) it is enough to show

that
1

logn

n
∑

k=1

‖Skf‖1

k
≤ C‖f‖1, f ∈ H1. (3)

The Vilenkin analogue of (1)–(3) can be found in Gát[5]. In Weisz[6] a certain extension of (3) to

Hp (0 < p ≤ 1) space was given with respect to Walsh system. As a consequence of inequality

(∗), we prove the strong convergence theorem for bounded Vilenkin-Like Fourier series. The

result is a generalization for Walsh-Paley system[4], even more for Vilenkin system[5].

2. Definitions and notation

We denote by N the set of nonnegative integers and P the set of positive integers. Let

m := (m0,m1, . . . ,mk, . . .) be sequence of natural numbers such that mk ≥ 2 (k ∈ N). For

all k ∈ N we denote by Zmk
the mk-th discrete cyclic group. Let Zmk

be represented by

{0, 1, . . . ,mk −1}. Suppose that each (coordinate) set has the discrete topology and the measure

µk which maps ever singleton of Zmk
to 1/mk (uk(Zmk

) = 1) for k ∈ N. Let Gm denote the

complete direct product of Z ′
mk

s equipped with product topology and product measure µ. Then

Gm forms a compact Abelian group with Haar measure 1. The elements of Gm are sequences of

the form (x0, x1, . . . , xk, . . .), where xk ∈ Zmk
for every k ∈ N and the topology of the group Gm

is completely determined by the sets

In(0) := {(x0, x1, . . . , xk, . . .) ∈ Gm : xk = 0 (k = 0, . . . , n− 1)}

(I0(0) := Gm). Let In(x) := In(0) + x (n ∈ N). The Vilenkin space Gm is said to be bounded if

the generating system m is bounded. Throughout this paper we assume m is bounded.

Let M0 := 1 and Mk+1 := mkMk for k ∈ N, it is so-called the generalized powers. Then

every n ∈ N can be uniquely expressed as n =
∑∞

k=0 nkMk, 0 ≤ nk < mk, nk ∈ N. The sequence

(n0, n1, . . .) is called the expansion of n with respect to m. We often use the following notations:

|n| := max{k ∈ N : nk 6= 0} (that is, M|n| ≤ n < M|n|+1) and n(k) =
∑∞

j=k njMj . Next we

introduce an orthonormal system on Gm which we call a Vilenkin-Like system.

A complex-valued function rn
k : Gm −→ C is called a generalized Rademacher function if it

has the following properties:

(i) rn
k is Σk+1-measurable (i.e., rn

k depends only on x0, x1, . . . , xk(x ∈ Gm)), for all k, n ∈ N,

and r0k = 1.

(ii) If Mk is a divisor of n and l and n(k+1) = l(k+1) (k, l, n ∈ N), then

Ek(rn
k r̄

l
k) =

{

1, if nk = lk,

0, if nk 6= lk,

where Ek is the conditional expectation with respect to Σk and z̄ is the complex conjugate of z.
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(iii) If Mk+1 is a divisor of n (that is, n = nk+1Mk+1 + · · · + n|n|M|n|), then

mk−1
∑

j=0

|rjMk+n
k (x)|2 = mk

for all x ∈ Gm.

(iv) There exists a δ > 1 for which ‖rn
k‖∞ ≤

√

mk/δ.

Define Vilenkin-Like systems ψ = (ψn : n ∈ N) as follows:

ψn :=

∞
∏

k=0

rn(k)

k , n ∈ N.

(Since r0k = 1, we have ψn =
∏|n|

k=0 r
n(k)

k .)

If f ∈ L1(Gm), the maximal function can also be given by

f∗ = sup
n

|In(x)|−1|
∫

In(x)

f(t)dµ(t)|,

where the supremum is taken over all intervals I containing x ∈ Gm.

The martingale Hardy space Hp(Gm) for 0 < p ≤ ∞ is the space of martingales for which

‖f‖Hp
:= ‖f∗‖p <∞.

A measurable function a is called a p-atom, if a is identically equal to 1 or there exists an

interval I such that

1)
∫

I
adµ = 0;

2) ‖a‖∞ ≤ µ(I)−
1
p , 0 < p ≤ q, 1 < q ≤ ∞;

3) supp a ⊂ I.

For f ∈ L1(Gm), we define the Fourier coefficients and partial sums by

f̂(k) : =

∫

Gm

fψ̄kdµ, k ∈ N,

Snf : =

n−1
∑

k=0

f̂(k)ψk, n ∈ P, S0f := 0

and the Dirichlet kernels by:

Dn(y, x) :=

n−1
∑

k=0

ψk(y)ψ̄k(x), n ∈ P, D0 := 0.

It is clear that

Snf(y) =

∫

Gm

f(x)Dn(y, x)dµ(x).

3. Formulation of main results

Our main results in this paper are as follows:

Theorem 1 There exists an absolute constant C > 0 such that for any f ∈ Hp(Gm) (0 < p ≤ 2),
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we have

(

∞
∑

k=1

kp−2|f̂(k)|p)1/p ≤ C‖f‖Hp
.

Theorem 2 There exists an absolute constant C > 0 such that for any f ∈ Hp(Gm) (0 < p < 1),

we have

(

∞
∑

k=1

kp−2‖Skf‖p
p)

1/p ≤ C‖f‖Hp
.

The results as above are based on the following lemmas.

Lemma 1
[8]

DMn
(y, x) =

{

Mn, if y ∈ In(x)

0, if y ∈ Gm\In(x).
(4)

Set ψk,n :=
∏∞

s=n r
k(s)

s , we have

Lemma 2
[8] Let x, y ∈ Gm, n ∈ N . Then

Dn(y, x) =

∞
∑

s=0

ψn,s+1(y)ψ̄n,s+1(x)DMs
(y, x)

ns−1
∑

j=0

rn(s+1)+jMs
s (y)r̄n(s+1)+jMs

s (x). (5)

Lemma 3
[9] If f ∈ Hp(Gm) (0 < p ≤ 1), then there exist sequences {λj} (of positive numbers)

and {aj} (of p-atom), such that

f =
∞
∑

1

λjaj in Hp norm and pointwise and ‖f‖p
Hp

∼
∞
∑

1

λp
j .

4. Proofs of the results

Proof of Theorem 1 (1) First suppose that 0 < p ≤ 1. Since f ∈ Hp(Gm), by Lemma 3, we

have f =
∑∞

1 λjaj , where aj is p-atoms and
∑∞

1 λp
j <∞. So,

∞
∑

k=1

kp−2|f̂(k)|p =

∞
∑

k=1

kp−2|
∞
∑

j=1

λj âj(k)|p ≤
∞
∑

j=1

λp
j

∞
∑

k=1

kp−2|âj(k)|p,

that is the reason why it suffices to show that there exists an absolute constant C > 0 such that

for all p-atoms
∞
∑

k=1

kp−2|â(k)|p ≤ C.

Let a be an arbitrary p-atom. If a ≡ 1, then

â(k) =

∫

Gm

ψ̄k(x)dµ(x) = E0(ψ̄k) = E0(

|k|
∏

j=1

r̄k(j)

j )

= E0(E|k|(

|k|
∏

j=1

r̄k(j)

j )) = E0(

|k|−1
∏

j=1

E|k|(r
0
|k|r̄

k(|k|)

|k| ))

= 0,
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because k(|k|) = k|k|M|k| 6= 0 if k ∈ P and Ek(rn
k r̄

l
k) = 0 if nk 6= lk. In this case the statement of

the theorem is trivial.

Suppose a is a p-atom with support IN (u) for some N and u ∈ Gm. We have

â(k) =

∫

Gm

a(x)ψ̄k(x)dµ(x) =

∫

IN (u)

a(x)ψ̄k(x)dµ(x).

For k = 0, . . . ,MN − 1, ψk(x) depends only on the first N coordinates of x, hence the function

ψk(x) on the set IN (u) is invariable

â(k) =

∫

Gm

a(x)ψ̄k(x)dµ(x) = c

∫

IN (u)

a(x)dµ(x) = 0

⇒
∞
∑

k=1

kp−2|â(k)|p =

∞
∑

k=MN

kp−2|â(k)|p.

Using the Cauchy-Buniakovski-Schwarz inequality

∞
∑

k=MN

kp−2|â(k)|p ≤ (

∞
∑

k=MN

k(p−2)α)
1
α (

∞
∑

k=MN

|â(k)|pβ)
1
β

= (

∞
∑

k=MN

k(p−2) 2
2−p )

2−p
2 (

∞
∑

k=MN

|â(k)|2) p
2

= (
∞
∑

k=MN

k−2)
2−p
2 (

∞
∑

k=MN

|â(k)|2) p
2

≤ (
C√
MN

)2−p(

∞
∑

k=MN

|â(k)|2) p
2

where 1
α + 1

β = 1, β · p = 2 and Bessel’s inequality

(
∞
∑

k=MN

|â(k)|2) 1
2 ≤ ‖a‖2,

we get

∞
∑

k=MN

kp−2|â(k)|p ≤ (
C√
MN

)2−p(

∫

IN (u)

|a(x)|2dµ(x))
p
2

≤ (
C√
MN

)2−p‖a‖p
∞µ(IN )

p
2

≤ (
C√
MN

)2−p(µ(IN ))−1+ p
2

≤ (
C

MN
)

2−p
2 M

−1+ p
2

N

≤ C.

(2) Secondly let 1 < p ≤ 2. Introduce on P the measure η(n) := 1/n2. If

Tf(n) = nf̂(n),

then it follows from Parseval’s formula and from the previous theorem (for p = 1) that both
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operators

T : L2 → L2(P, η) and T : H1 → L1(P, η)

are bounded. By the Marcinkiewicz interpolation theorem, the operator

T : (H1, L2)θ,p → (L1(P, η), L2(P, η))θ,p

is bounded where 0 < θ < 1 and 1/p = (1 − θ) + θ/2. That is to say the operator T is bounded

from Hp to Lp(P, η). Thus we complete the proof of Theorem 1. 2

Proof of Theorem 2 Let us estimate the sum in the theorem as follows:

∞
∑

k=1

kp−2‖Skf‖p
p =

∞
∑

n=0

mn−1
∑

j=1

(j+1)Mn−1
∑

k=jMn

‖Skf‖p
p

k2−p

≤
∞
∑

n=0

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

‖Skf‖p
p.

By Lemma 3, it is enough to prove that for all p-atom we have

∞
∑

n=0

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

‖Ska‖p
p ≤ C. (6)

If a ≡ 1, similar to the proof of Theorem 1, we have â(k) = 0 for all k ∈ N, i.e., Ska =
∑k−1

i=0 â(i)ψi = 0. In this case the statement of the theorem is trivial.

So, assume a is an arbitrary atom with support IN (u) for some N and u ∈ Gm. For

k = 0, . . . ,MN −1, ψk(x) depends only on the first N coordinates of x, hence the function ψk(x)

on the set IN (u) is invariable

â(k) =

∫

Gm

a(x)ψ̄k(x)dµ(x) = c

∫

IN (u)

a(x)dµ(x) = 0.

This means that we need to show the inequality

∞
∑

n=N

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

‖Ska‖p
p ≤ Cp. (7)

For this purpose let ‖Ska‖p
p (k = MN ,MN + 1, . . .) be decomposed in the following way:

‖Ska‖p
p =

∫

IN (u)

|Ska(y)|pdµ(y) +

∫

Gm\IN (u)

|Ska(y)|pdµ(y). (8)

Applying Holder’s and Parseval’s inequalities, we get the estimation:
∫

IN (u)

|Ska(y)|pdµ(y) ≤ (

∫

IN (u)

|Ska(y)|2dµ(y))p/2µ(IN )1−p/2

≤ ‖a‖p
2µ(IN )1−p/2

≤ ‖a‖p
∞µ(IN )p/2µ(IN )1−p/2

≤ 1.
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To estimate the second integral in (8), let N ∋ k ≥MN . By Lemmas 1 and 2, we get

∫

Gm\IN (u)

|Ska(y)|pdµ(y)

=
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

|Ska(y)|pdµ(y)

=

N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

|
∫

IN (u)

a(x)Dk(y, x)dµ(x)|pdµ(y)

=

N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

|
∫

IN (u)

a(x)[

i−1
∑

s=0

Ms

i−1
∏

l=s+1

|rk(l)

l (x)|2ψk,i(y)ψ̄k,i(x)·

ks−1
∑

j=0

|rk(s+1)+jMs
s (x)|2 +Miψk,i+1(y)ψ̄k,i+1(x)·

ki−1
∑

j=0

rk(i+1)+jMi

i (y)r̄k(i+1)+jMi

i (x)]dµ(x)|dµ(y).

From the definition of generalized Rademacher functions and Jensen inequality, we have
∫

Gm\IN (u)

|Ska(y)|pdµ(y)

≤
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

(|â(k)|
i−1
∑

s=0

Ms

i−1
∏

l=s+1

ml

δ
|ψk,i(y)|ks

ms

δ
+Mi|ψk,i+1(y)|ki

mi

δ
)pdµ(y)

≤ C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

|ψk,i(y)|p(
i−1
∑

s=0

Ms
Mi

Msδi−s
+Mi)

pdµ(y)

≤ C|â(k)|pMp
i

N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

|ψk,i(y)|pdµ(y)

= C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i Ei+1(|ψk,i|p)dµ(y)

≤ C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i (Ei+1(|ψk,i|))pdµ(y)

= C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i (Ei+1(

|k|
∏

s=i

|rk(s)

s |))pdµ(y)

= C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i (Ei+1(

|k|−1
∏

s=i

|rk(s)

s |E|k|(|rk(|k|)

|k| |)))pdµ(y)

= C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i (Ei+1(

|k|−1
∏

s=i

|rk(s)

s |(E|k|(|rk(|k|)

|k| |2)1/2))pdµ(y)

≤ C|â(k)|p
N−1
∑

i=0

∫

Ii(u)\Ii+1(u)

Mp
i dµ(y)
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≤ C|â(k)|p
N−1
∑

i=0

Mp
i

Mi+1
≤ C|â(k)|p,

since the series
∑∞

i=0
Mp

i

Mi+1
converges for 0 < p < 1.

By Theorem 1, the following inequality is true:

∞
∑

n=N

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

‖Ska‖p
p

=

∞
∑

n=N

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

(

∫

IN (u)

|Ska(y)|pdµ(y)+

∫

Gm\IN (u)

|Ska(y)|pdµ(y))

≤
∞
∑

n=N

mn−1
∑

j=1

1

(jMn)2−p

(j+1)Mn−1
∑

k=jMn

1 + C

∞
∑

k=MN

kp−2|â(k)|p

≤ C

∞
∑

n=N

1

M1−p
n

∞
∑

j=1

1

j2−p
+ C ≤ C.

Thus we complete the proof of Theorem 2. 2
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