Inequalities Relative to Vilenkin-Like System

ZHANG Xue Ying, ZHANG Chuan Zhou
(College of Science, Wuhan University of Science and Technology, Hubei 430065, China)
(E-mail: zhxying315@sohu.com; beautyfox110@sohu.com)

Abstract For bounded Vilenkin-Like system, the inequality is also true:

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} k^{p-2}|\hat{f}(k)|^{p}\right)^{1 / p} \leq C\|f\|_{H_{p}}, \quad 0<p \leq 2 \tag{}
\end{equation*}
$$

where $\hat{f}(\cdot)$ denotes the Vilenkin-Like Fourier coefficient of f and the Hardy space $H_{p}\left(G_{m}\right)$ is defined by means of maximal functions. As a consequence, we prove the strong convergence theorem for bounded Vilenkin-Like Fourier series, i.e.,

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} k^{p-2}\left\|S_{k} f\right\|_{p}^{p}\right)^{1 / p} \leq C\|f\|_{H_{p}}, \quad 0<p<1 . \tag{**}
\end{equation*}
$$

Keywords Hardy space; Vilenkin-Like systems; strong convergence.
Document code A
MR(2000) Subject Classification 42C10
Chinese Library Classification O174.2

1. Introduction

It is well known that the inequality $(*)$ is true for Walsh-Paley system. It was proved first by Ladhawala ${ }^{[1]}$ and another proof was given in the book ${ }^{[2]}$ written by Schipp, Wade, Simon and Pál. For Vilenkin system, it was proved by Fridli and Simon ${ }^{[3]}$. In this paper, we will discuss the theorem about Vilenkin-Like system. In fact Vilenkin-Like system is a more generalized orthonormal system in Vilenkin space G_{m}. It has the corresponding definition in Walsh-Paley system, p-series Field and Vilenkin system even in noncommutative martingale theory. We will prove the inequality $(*)$ is also true for the bounded Vilenkin-Like system.

It is well known that Vilenkin system, especially Walsh-Paley system, does not form a Schauder basis in L_{1}. Moreover, there exists a function in H_{1} such that its partial sums are not bounded in L_{1}. Hence it is of interest that certain means of the partial sums of function from H_{1} can be convergent. Simon ${ }^{[4]}$ proved that in the Walsh case

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{\left\|S_{k} f\right\|_{1}}{k}=\|f\|_{1}, \quad f \in H_{1} . \tag{1}
\end{equation*}
$$

Received date: 2007-04-10; Accepted date: 2008-05-21
Foundation item: the Foundation of Hubei Educational Committee (No. B20081102).

Furthermore, it was proved that (1) follows from the next statement on strong convergence:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{\left\|S_{k} f-f\right\|_{1}}{k}=0, \quad f \in H_{1} \tag{2}
\end{equation*}
$$

It is not hard to see that (1) is also equivalent to (2). Moreover for (1) it is enough to show that

$$
\begin{equation*}
\frac{1}{\log n} \sum_{k=1}^{n} \frac{\left\|S_{k} f\right\|_{1}}{k} \leq C\|f\|_{1}, \quad f \in H_{1} . \tag{3}
\end{equation*}
$$

The Vilenkin analogue of (1)-(3) can be found in Gát ${ }^{[5]}$. In Weisz ${ }^{[6]}$ a certain extension of (3) to $H_{p}(0<p \leq 1)$ space was given with respect to Walsh system. As a consequence of inequality $(*)$, we prove the strong convergence theorem for bounded Vilenkin-Like Fourier series. The result is a generalization for Walsh-Paley system ${ }^{[4]}$, even more for Vilenkin system ${ }^{[5]}$.

2. Definitions and notation

We denote by \mathbb{N} the set of nonnegative integers and \mathbb{P} the set of positive integers. Let $m:=\left(m_{0}, m_{1}, \ldots, m_{k}, \ldots\right)$ be sequence of natural numbers such that $m_{k} \geq 2(k \in \mathbb{N})$. For all $k \in \mathbb{N}$ we denote by $Z_{m_{k}}$ the m_{k}-th discrete cyclic group. Let $Z_{m_{k}}$ be represented by $\left\{0,1, \ldots, m_{k}-1\right\}$. Suppose that each (coordinate) set has the discrete topology and the measure μ_{k} which maps ever singleton of $Z_{m_{k}}$ to $1 / m_{k}\left(u_{k}\left(Z_{m_{k}}\right)=1\right)$ for $k \in \mathbb{N}$. Let G_{m} denote the complete direct product of $Z_{m_{k}}^{\prime}$ s equipped with product topology and product measure μ. Then G_{m} forms a compact Abelian group with Haar measure 1. The elements of G_{m} are sequences of the form $\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$, where $x_{k} \in Z_{m_{k}}$ for every $k \in \mathbb{N}$ and the topology of the group G_{m} is completely determined by the sets

$$
I_{n}(0):=\left\{\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right) \in G_{m}: x_{k}=0(k=0, \ldots, n-1)\right\}
$$

$\left(I_{0}(0):=G_{m}\right)$. Let $I_{n}(x):=I_{n}(0)+x(n \in \mathbb{N})$. The Vilenkin space G_{m} is said to be bounded if the generating system m is bounded. Throughout this paper we assume m is bounded.

Let $M_{0}:=1$ and $M_{k+1}:=m_{k} M_{k}$ for $k \in \mathbb{N}$, it is so-called the generalized powers. Then every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{k} M_{k}, 0 \leq n_{k}<m_{k}, n_{k} \in \mathbb{N}$. The sequence $\left(n_{0}, n_{1}, \ldots\right)$ is called the expansion of n with respect to m. We often use the following notations: $|n|:=\max \left\{k \in \mathbb{N}: n_{k} \neq 0\right\}$ (that is, $\left.M_{|n|} \leq n<M_{|n|+1}\right)$ and $n^{(k)}=\sum_{j=k}^{\infty} n_{j} M_{j}$. Next we introduce an orthonormal system on G_{m} which we call a Vilenkin-Like system.

A complex-valued function $r_{k}^{n}: G_{m} \longrightarrow C$ is called a generalized Rademacher function if it has the following properties:
(i) r_{k}^{n} is Σ_{k+1}-measurable (i.e., r_{k}^{n} depends only on $x_{0}, x_{1}, \ldots, x_{k}\left(x \in G_{m}\right)$), for all $k, n \in \mathbb{N}$, and $r_{k}^{0}=1$.
(ii) If M_{k} is a divisor of n and l and $n^{(k+1)}=l^{(k+1)}(k, l, n \in \mathbb{N})$, then

$$
E_{k}\left(r_{k}^{n} \bar{r}_{k}^{l}\right)= \begin{cases}1, & \text { if } n_{k}=l_{k} \\ 0, & \text { if } n_{k} \neq l_{k}\end{cases}
$$

where E_{k} is the conditional expectation with respect to Σ_{k} and \bar{z} is the complex conjugate of z.
(iii) If M_{k+1} is a divisor of n (that is, $n=n_{k+1} M_{k+1}+\cdots+n_{|n|} M_{|n|}$), then

$$
\sum_{j=0}^{m_{k}-1}\left|r_{k}^{j M_{k}+n}(x)\right|^{2}=m_{k}
$$

for all $x \in G_{m}$.
(iv) There exists a $\delta>1$ for which $\left\|r_{k}^{n}\right\|_{\infty} \leq \sqrt{m_{k} / \delta}$.

Define Vilenkin-Like systems $\psi=\left(\psi_{n}: n \in \mathbb{N}\right)$ as follows:

$$
\psi_{n}:=\prod_{k=0}^{\infty} r_{k}^{n^{(k)}}, \quad n \in \mathbb{N} .
$$

(Since $r_{k}^{0}=1$, we have $\psi_{n}=\prod_{k=0}^{|n|} r_{k}^{n^{(k)}}$.)
If $f \in L_{1}\left(G_{m}\right)$, the maximal function can also be given by

$$
f^{*}=\sup _{n}\left|I_{n}(x)\right|^{-1}\left|\int_{I_{n}(x)} f(t) \mathrm{d} \mu(t)\right|,
$$

where the supremum is taken over all intervals I containing $x \in G_{m}$.
The martingale Hardy space $H_{p}\left(G_{m}\right)$ for $0<p \leq \infty$ is the space of martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

A measurable function a is called a p-atom, if a is identically equal to 1 or there exists an interval I such that

1) $\int_{I} a \mathrm{~d} \mu=0$;
2) $\|a\|_{\infty} \leq \mu(I)^{-\frac{1}{p}}, \quad 0<p \leq q, 1<q \leq \infty$;
3) $\operatorname{supp} a \subset I$.

For $f \in L_{1}\left(G_{m}\right)$, we define the Fourier coefficients and partial sums by

$$
\begin{aligned}
\hat{f}(k): & =\int_{G_{m}} f \bar{\psi}_{k} \mathrm{~d} \mu, \quad k \in \mathbb{N}, \\
S_{n} f: & =\sum_{k=0}^{n-1} \hat{f}(k) \psi_{k}, \quad n \in \mathbb{P}, S_{0} f:=0
\end{aligned}
$$

and the Dirichlet kernels by:

$$
D_{n}(y, x):=\sum_{k=0}^{n-1} \psi_{k}(y) \bar{\psi}_{k}(x), \quad n \in \mathbb{P}, D_{0}:=0 .
$$

It is clear that

$$
S_{n} f(y)=\int_{G_{m}} f(x) D_{n}(y, x) \mathrm{d} \mu(x) .
$$

3. Formulation of main results

Our main results in this paper are as follows:
Theorem 1 There exists an absolute constant $C>0$ such that for any $f \in H_{p}\left(G_{m}\right)(0<p \leq 2)$,
we have

$$
\left(\sum_{k=1}^{\infty} k^{p-2}|\hat{f}(k)|^{p}\right)^{1 / p} \leq C\|f\|_{H_{p}} .
$$

Theorem 2 There exists an absolute constant $C>0$ such that for any $f \in H_{p}\left(G_{m}\right)(0<p<1)$, we have

$$
\left(\sum_{k=1}^{\infty} k^{p-2}\left\|S_{k} f\right\|_{p}^{p}\right)^{1 / p} \leq C\|f\|_{H_{p}} .
$$

The results as above are based on the following lemmas.

Lemma $1^{[8]}$

$$
D_{M_{n}}(y, x)= \begin{cases}M_{n}, & \text { if } y \in I_{n}(x) \tag{4}\\ 0, & \text { if } y \in G_{m} \backslash I_{n}(x) .\end{cases}
$$

Set $\psi_{k, n}:=\prod_{s=n}^{\infty} r_{s}^{k^{(s)}}$, we have
Lemma $2^{[8]}$ Let $x, y \in G_{m}, n \in N$. Then

$$
\begin{equation*}
D_{n}(y, x)=\sum_{s=0}^{\infty} \psi_{n, s+1}(y) \bar{\psi}_{n, s+1}(x) D_{M_{s}}(y, x) \sum_{j=0}^{n_{s}-1} r_{s}^{n^{(s+1)}+j M_{s}}(y) \bar{r}_{s}^{(s+1)}+j M_{s}(x) \tag{5}
\end{equation*}
$$

Lemma $3{ }^{[9]}$ If $f \in H_{p}\left(G_{m}\right)(0<p \leq 1)$, then there exist sequences $\left\{\lambda_{j}\right\}$ (of positive numbers) and $\left\{a_{j}\right\}$ (of p-atom), such that

$$
f=\sum_{1}^{\infty} \lambda_{j} a_{j} \text { in } H_{p} \text { norm and pointwise and }\|f\|_{H_{p}}^{p} \sim \sum_{1}^{\infty} \lambda_{j}^{p} \text {. }
$$

4. Proofs of the results

Proof of Theorem 1 (1) First suppose that $0<p \leq 1$. Since $f \in H_{p}\left(G_{m}\right)$, by Lemma 3, we have $f=\sum_{1}^{\infty} \lambda_{j} a_{j}$, where a_{j} is p-atoms and $\sum_{1}^{\infty} \lambda_{j}^{p}<\infty$. So,

$$
\sum_{k=1}^{\infty} k^{p-2}|\hat{f}(k)|^{p}=\sum_{k=1}^{\infty} k^{p-2}\left|\sum_{j=1}^{\infty} \lambda_{j} \hat{a}_{j}(k)\right|^{p} \leq \sum_{j=1}^{\infty} \lambda_{j}^{p} \sum_{k=1}^{\infty} k^{p-2}\left|\hat{a}_{j}(k)\right|^{p},
$$

that is the reason why it suffices to show that there exists an absolute constant $C>0$ such that for all p-atoms

$$
\sum_{k=1}^{\infty} k^{p-2}|\hat{a}(k)|^{p} \leq C .
$$

Let a be an arbitrary p-atom. If $a \equiv 1$, then

$$
\begin{aligned}
\hat{a}(k) & =\int_{G_{m}} \bar{\psi}_{k}(x) \mathrm{d} \mu(x)=E_{0}\left(\bar{\psi}_{k}\right)=E_{0}\left(\prod_{j=1}^{|k|} \bar{r}_{j}^{k^{(j)}}\right) \\
& =E_{0}\left(E_{|k|}\left(\prod_{j=1}^{|k|} \bar{r}_{j}^{k^{(j)}}\right)\right)=E_{0}\left(\prod_{j=1}^{|k|-1} E_{|k|}\left(r_{|k|}^{0} \bar{r}_{|k|}^{k|k|]}\right)\right) \\
& =0,
\end{aligned}
$$

because $k^{(|k|)}=k_{|k|} M_{|k|} \neq 0$ if $k \in \mathbb{P}$ and $E_{k}\left(r_{k}^{n} \bar{r}_{k}^{l}\right)=0$ if $n_{k} \neq l_{k}$. In this case the statement of the theorem is trivial.

Suppose a is a p-atom with support $I_{N}(u)$ for some N and $u \in G_{m}$. We have

$$
\hat{a}(k)=\int_{G_{m}} a(x) \bar{\psi}_{k}(x) \mathrm{d} \mu(x)=\int_{I_{N}(u)} a(x) \bar{\psi}_{k}(x) \mathrm{d} \mu(x) .
$$

For $k=0, \ldots, M_{N}-1, \psi_{k}(x)$ depends only on the first N coordinates of x, hence the function $\psi_{k}(x)$ on the set $I_{N}(u)$ is invariable

$$
\begin{aligned}
\hat{a}(k) & =\int_{G_{m}} a(x) \overline{\psi_{k}}(x) \mathrm{d} \mu(x)=c \int_{I_{N}(u)} a(x) \mathrm{d} \mu(x)=0 \\
& \Rightarrow \sum_{k=1}^{\infty} k^{p-2}|\hat{a}(k)|^{p}=\sum_{k=M_{N}}^{\infty} k^{p-2}|\hat{a}(k)|^{p}
\end{aligned}
$$

Using the Cauchy-Buniakovski-Schwarz inequality

$$
\begin{aligned}
\sum_{k=M_{N}}^{\infty} k^{p-2}|\hat{a}(k)|^{p} & \leq\left(\sum_{k=M_{N}}^{\infty} k^{(p-2) \alpha}\right)^{\frac{1}{\alpha}}\left(\sum_{k=M_{N}}^{\infty}|\hat{a}(k)|^{p \beta}\right)^{\frac{1}{\beta}} \\
& =\left(\sum_{k=M_{N}}^{\infty} k^{(p-2) \frac{2}{2-p}}\right)^{\frac{2-p}{2}}\left(\sum_{k=M_{N}}^{\infty}|\hat{a}(k)|^{2}\right)^{\frac{p}{2}} \\
& =\left(\sum_{k=M_{N}}^{\infty} k^{-2}\right)^{\frac{2-p}{2}}\left(\sum_{k=M_{N}}^{\infty}|\hat{a}(k)|^{2}\right)^{\frac{p}{2}} \\
& \leq\left(\frac{C}{\sqrt{M_{N}}}\right)^{2-p}\left(\sum_{k=M_{N}}^{\infty}|\hat{a}(k)|^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

where $\frac{1}{\alpha}+\frac{1}{\beta}=1, \beta \cdot p=2$ and Bessel's inequality

$$
\left(\sum_{k=M_{N}}^{\infty}|\hat{a}(k)|^{2}\right)^{\frac{1}{2}} \leq\|a\|_{2}
$$

we get

$$
\begin{aligned}
\sum_{k=M_{N}}^{\infty} k^{p-2}|\hat{a}(k)|^{p} & \leq\left(\frac{C}{\sqrt{M_{N}}}\right)^{2-p}\left(\int_{I_{N}(u)}|a(x)|^{2} \mathrm{~d} \mu(x)\right)^{\frac{p}{2}} \\
& \leq\left(\frac{C}{\sqrt{M_{N}}}\right)^{2-p}\|a\|_{\infty}^{p} \mu\left(I_{N}\right)^{\frac{p}{2}} \\
& \leq\left(\frac{C}{\sqrt{M_{N}}}\right)^{2-p}\left(\mu\left(I_{N}\right)\right)^{-1+\frac{p}{2}} \\
& \leq\left(\frac{C}{M_{N}}\right)^{\frac{2 p}{2}} M_{N}^{-1+\frac{p}{2}} \\
& \leq C .
\end{aligned}
$$

(2) Secondly let $1<p \leq 2$. Introduce on \mathbb{P} the measure $\eta(n):=1 / n^{2}$. If

$$
T f(n)=n \hat{f}(n)
$$

then it follows from Parseval's formula and from the previous theorem (for $p=1$) that both
operators

$$
T: L_{2} \rightarrow L_{2}(\mathbb{P}, \eta) \text { and } T: H_{1} \rightarrow L_{1}(\mathbb{P}, \eta)
$$

are bounded. By the Marcinkiewicz interpolation theorem, the operator

$$
T:\left(H_{1}, L_{2}\right)_{\theta, p} \rightarrow\left(L_{1}(\mathbb{P}, \eta), L_{2}(\mathbb{P}, \eta)\right)_{\theta, p}
$$

is bounded where $0<\theta<1$ and $1 / p=(1-\theta)+\theta / 2$. That is to say the operator T is bounded from H_{p} to $L_{p}(\mathbb{P}, \eta)$. Thus we complete the proof of Theorem 1.

Proof of Theorem 2 Let us estimate the sum in the theorem as follows:

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{p-2}\left\|S_{k} f\right\|_{p}^{p} & =\sum_{n=0}^{\infty} \sum_{j=1}^{m_{n}-1} \sum_{k=j M_{n}}^{(j+1) M_{n}-1} \frac{\left\|S_{k} f\right\|_{p}^{p}}{k^{2-p}} \\
& \leq \sum_{n=0}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1}\left\|S_{k} f\right\|_{p}^{p}
\end{aligned}
$$

By Lemma 3, it is enough to prove that for all p-atom we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1}\left\|S_{k} a\right\|_{p}^{p} \leq C \tag{6}
\end{equation*}
$$

If $a \equiv 1$, similar to the proof of Theorem 1 , we have $\hat{a}(k)=0$ for all $k \in \mathbb{N}$, i.e., $S_{k} a=$ $\sum_{i=0}^{k-1} \hat{a}(i) \psi_{i}=0$. In this case the statement of the theorem is trivial.

So, assume a is an arbitrary atom with support $I_{N}(u)$ for some N and $u \in G_{m}$. For $k=0, \ldots, M_{N}-1, \psi_{k}(x)$ depends only on the first N coordinates of x, hence the function $\psi_{k}(x)$ on the set $I_{N}(u)$ is invariable

$$
\hat{a}(k)=\int_{G_{m}} a(x) \bar{\psi}_{k}(x) \mathrm{d} \mu(x)=c \int_{I_{N}(u)} a(x) \mathrm{d} \mu(x)=0 .
$$

This means that we need to show the inequality

$$
\begin{equation*}
\sum_{n=N}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1}\left\|S_{k} a\right\|_{p}^{p} \leq C_{p} \tag{7}
\end{equation*}
$$

For this purpose let $\left\|S_{k} a\right\|_{p}^{p}\left(k=M_{N}, M_{N}+1, \ldots\right)$ be decomposed in the following way:

$$
\begin{equation*}
\left\|S_{k} a\right\|_{p}^{p}=\int_{I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y)+\int_{G_{m} \backslash I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y) . \tag{8}
\end{equation*}
$$

Applying Holder's and Parseval's inequalities, we get the estimation:

$$
\begin{aligned}
\int_{I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y) & \leq\left(\int_{I_{N}(u)}\left|S_{k} a(y)\right|^{2} \mathrm{~d} \mu(y)\right)^{p / 2} \mu\left(I_{N}\right)^{1-p / 2} \\
& \leq\|a\|_{2}^{p} \mu\left(I_{N}\right)^{1-p / 2} \\
& \leq\|a\|_{\infty}^{p} \mu\left(I_{N}\right)^{p / 2} \mu\left(I_{N}\right)^{1-p / 2} \\
& \leq 1
\end{aligned}
$$

To estimate the second integral in (8), let $\mathbb{N} \ni k \geq M_{N}$. By Lemmas 1 and 2 , we get

$$
\begin{aligned}
& \int_{G_{m} \backslash I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y) \\
&= \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y) \\
&= \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)}\left|\int_{I_{N}(u)} a(x) D_{k}(y, x) \mathrm{d} \mu(x)\right|^{p} \mathrm{~d} \mu(y) \\
&= \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} \mid \int_{I_{N}(u)} a(x)\left[\sum_{s=0}^{i-1} M_{s} \prod_{l=s+1}^{i-1}\left|r_{l}^{k^{(l)}}(x)\right|^{2} \psi_{k, i}(y) \bar{\psi}_{k, i}(x) .\right. \\
& \sum_{j=0}^{k_{s}-1}\left|r_{s}^{k^{(s+1)}+j M_{s}}(x)\right|^{2}+M_{i} \psi_{k, i+1}(y) \bar{\psi}_{k, i+1}(x) . \\
&\left.\sum_{j=0}^{k_{i}-1} r_{i}^{k^{(i+1)}+j M_{i}}(y) \bar{r}_{i}^{k^{(i+1)}+j M_{i}}(x)\right] \mathrm{d} \mu(x) \mid \mathrm{d} \mu(y) .
\end{aligned}
$$

From the definition of generalized Rademacher functions and Jensen inequality, we have

$$
\begin{aligned}
& \int_{G_{m} \backslash I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y) \\
& \leq \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)}\left(|\hat{a}(k)| \sum_{s=0}^{i-1} M_{s} \prod_{l=s+1}^{i-1} \frac{m_{l}}{\delta}\left|\psi_{k, i}(y)\right| k_{s} \frac{m_{s}}{\delta}+M_{i}\left|\psi_{k, i+1}(y)\right| k_{i} \frac{m_{i}}{\delta}\right)^{p} \mathrm{~d} \mu(y) \\
& \leq C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)}\left|\psi_{k, i}(y)\right|^{p}\left(\sum_{s=0}^{i-1} M_{s} \frac{M_{i}}{M_{s} \delta^{i-s}}+M_{i}\right)^{p} \mathrm{~d} \mu(y) \\
& \leq C|\hat{a}(k)|^{p} M_{i}^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)}\left|\psi_{k, i}(y)\right|^{p} \mathrm{~d} \mu(y) \\
& =C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p} E_{i+1}\left(\left|\psi_{k, i}\right|^{p}\right) \mathrm{d} \mu(y) \\
& \leq C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p}\left(E_{i+1}\left(\left|\psi_{k, i}\right|\right)\right)^{p} \mathrm{~d} \mu(y) \\
& =C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p}\left(E_{i+1}\left(\prod_{s=i}^{|k|}\left|r_{s}^{k^{(s)}}\right|\right)\right)^{p} \mathrm{~d} \mu(y) \\
& =C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p}\left(E_{i+1}\left(\prod_{s=i}^{|k|-1}\left|r_{s}^{k^{(s)}}\right| E_{|k|}\left(\left|r_{|k|}^{k^{(|k|)}}\right|\right)\right)\right)^{p} \mathrm{~d} \mu(y) \\
& =C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p}\left(E_{i+1}\left(\prod_{s=i}^{|k|-1}\left|r_{s}^{k^{(s)}}\right|\left(E_{|k|}\left(\left|r_{|k|}^{k(|k|)}\right|^{2}\right)^{1 / 2}\right)\right)^{p} \mathrm{~d} \mu(y)\right. \\
& \leq C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \int_{I_{i}(u) \backslash I_{i+1}(u)} M_{i}^{p} \mathrm{~d} \mu(y)
\end{aligned}
$$

$$
\leq C|\hat{a}(k)|^{p} \sum_{i=0}^{N-1} \frac{M_{i}^{p}}{M_{i+1}} \leq C|\hat{a}(k)|^{p}
$$

since the series $\sum_{i=0}^{\infty} \frac{M_{i}^{p}}{M_{i+1}}$ converges for $0<p<1$.
By Theorem 1, the following inequality is true:

$$
\begin{aligned}
& \sum_{n=N}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1}\left\|S_{k} a\right\|_{p}^{p} \\
& = \\
& \sum_{n=N}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1}\left(\int_{I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y)+\right. \\
& \left.\quad \int_{G_{m} \backslash I_{N}(u)}\left|S_{k} a(y)\right|^{p} \mathrm{~d} \mu(y)\right) \\
& \leq \sum_{n=N}^{\infty} \sum_{j=1}^{m_{n}-1} \frac{1}{\left(j M_{n}\right)^{2-p}} \sum_{k=j M_{n}}^{(j+1) M_{n}-1} 1+C \sum_{k=M_{N}}^{\infty} k^{p-2}|\hat{a}(k)|^{p} \\
& \leq C \sum_{n=N}^{\infty} \frac{1}{M_{n}^{1-p}} \sum_{j=1}^{\infty} \frac{1}{j^{2-p}}+C \leq C .
\end{aligned}
$$

Thus we complete the proof of Theorem 2.

References

[1] LADHAWALA N R. Absolute summability of Walsh-Fourier series [J]. Pacific J. Math., 1976, 65(1): $103-108$.
[2] SCHIPP F, WADE W R, SIMON P. Walsh Series. An Introduction to Dyadic Harmonic Analysis [M]. J. Pál. Adam Hilger, Ltd., Bristol, 1990.
[3] FRIDLI S, SIMON P. On the Dirichlet kernels and a Hardy space with respect to Vilenkin system [J]. Acta Math. Hungar., 1985, 45(1-2): 223-234.
[4] SIMON P. Strong convergence of certain means with respect to the Walsh-Fourier series [J]. Acta Math. Hungar., 1987, 49(3-4): 425-431.
[5] GÁT G. Investigations of certain operators with respect to the Vilenkin system [J]. Acta Math. Hungar., 1993, 61(1-2): 131-149.
[6] WEISZ F. Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series [J]. Studia Math., 1996, 117(2): 173-194.
[7] GÁT G. On $(C, 1)$ summability for Vilenkin-like systems [J]. Studia Math., 2001, 144(2): 101-120.
[8] WEISZ F. Martingale Hardy Spaces and Their Applications in Fourier Analysis [M]. Berlin: Springer-Verlag, 1994.

