The Common Solution for the Question of Fixed Points and the Question of Variational Inclusions

LIU Ying¹, CHEN Yong Li²

(1. College of Mathematics and Computer, Hebei University, Hebei 071002, China;

2. College of Technology, North China Electric Power University, Hebei 071051, China)

(E-mail: nanbei00@sina.com)

Abstract In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.

Keywords inverse-strongly monotone mapping; nonexpansive mapping; variational inclusion; strong convergence.

Document code A MR(2000) Subject Classification 47H05; 47H09 Chinese Library Classification 0177.91

1. Introduction

Let H be a real Hilbert space, $A: H \to H$ be a single-valued mapping and $M: H \to 2^H$ be a multivalued mapping. The variational inclusion problem is to find a $u \in H$ such that

$$0 \in A(u) + M(u). \tag{1.1}$$

The set of solutions of the variational inclusion (1.1) is denoted by VI(H, A, M).

Special Cases

(1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz continuous mapping, problem (1.1) has been studied by Huang^[1].

(2) If $M = \partial \phi$, where $\partial \phi$ denotes the subdifferential of a proper, convex and lower semicontinuous function $\phi : H \to R \bigcup \{+\infty\}$, then problem (1.1) reduces to the following problem: find $u \in H$, such that

$$\langle A(u), v - u \rangle + \phi(v) - \phi(u) \ge 0, \quad \forall v \in H,$$
(1.2)

which is called a nonlinear variational inequality and has been studied by many authors [2,3].

(3) If $M = \partial \delta_K$, where δ_K is the indicator function of a nonempty, closed and convex subset K of H, then problem (1.1) reduces to the following problem: find $u \in K$, such that

$$\langle A(u), v - u \rangle \ge 0, \quad \forall v \in K,$$

$$(1.3)$$

Received date: 2007-03-01; Accepted date: 2007-10-30

which is the classical variational inequality [4,5].

A single-valued mapping A of H into itself is called α -inverse-strongly monotone if there exists a positive real number α such that

$$\langle x - y, Ax - Ay \rangle \ge \alpha ||Ax - Ay||^2,$$

for all $x, y \in H^{[5-9]}$. A mapping S of H into itself is called nonexpansive if

$$||Sx - Sy|| \le ||x - y||, \quad \forall x, y \in H.$$

We denote by F(S) the set of fixed points of S.

In this paper, we introduce a new iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. The result generalized Theorem 3.1 in [5] from variational inequality (1.3) to variational inclusion (1.1), which not only makes the result of Theorem 3.1 in [5] become a special case of this paper, but also remove a lot of assumptions. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.

2. Preliminaries

In what follows, we always let X be a real Banach space with dual space X^* , H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, and let C be a closed convex subset of H. We write $x_n \to x$ to indicate that the sequence $\{x_n\}$ converges weakly to x. $x_n \to x$ implies that $\{x_n\}$ converges strongly to x. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that $\|x - P_C x\| \leq \|x - y\|$ for all $y \in C$. P_C is called the metric projection of H into C. We know that P_C is a nonexpansive mapping of H onto C. It is also known that P_C satisfies

$$\langle x - y, P_C x - P_C y \rangle \ge \|P_C x - P_C y\|^2, \quad \forall x, y \in H.$$

$$(2.1)$$

A set-valued mapping $M : H \to 2^H$ is called monotone if for all $x, y \in H, u \in Mx, v \in My$ imply $\langle x - y, u - v \rangle \geq 0$. A monotone mapping $M : H \to 2^H$ is maximal if $(I + \lambda M)H = H$, for all $\lambda > 0$, where I denotes the identity mapping on H. It is known that a monotone mapping M is maximal if and only if for $(x, u) \in H \times H, \langle x - y, u - v \rangle \geq 0$ for every $(y, v) \in G(M)$ (the graph of M) implies $u \in Mx$.

If A is an α -inverse-strongly monotone mapping of H into itself, then it is obvious that A is $\frac{1}{\alpha}$ -Lipschitz continuous monotone mapping. We also have that for all $x, y \in H$ and $\lambda > 0$,

$$\|(I - \lambda A)x - (I - \lambda A)y\|^{2} = \|(x - y) - \lambda (Ax - Ay)\|^{2}$$

= $\|x - y\|^{2} - 2\lambda \langle x - y, Ax - Ay \rangle + \lambda^{2} \|Ax - Ay\|^{2}$
$$\leq \|x - y\|^{2} + \lambda (\lambda - 2\alpha) \|Ax - Ay\|^{2}.$$
 (2.2)

So, if $\lambda \leq 2\alpha$, then $I - \lambda A$ is a nonexpansive mapping of H into itself.

A Banach space is said to have the K - K property if a sequence $\{x_n\} \rightarrow x$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$. It is well known that if H is a Hilbert space, then H has the K - K property.

Definition 2.1^[13] If M is a maximal monotone operator on H, then the resolvent operator associated with M is defined by

$$J_{M,\lambda}(u) = (I + \lambda M)^{-1} u, \quad \forall u \in H,$$

where $\lambda > 0$ is a constant and I is the identity operator.

Definition 2.2^[14] A single-valued operator $A : H \to H$ is said to be hemi-continuous if for any fixed $x, y, z \in H$, the function $t \to \langle A(x + ty), z \rangle$ is continuous at 0^+ . It is well known that a continuous mapping must be hemi-continuous.

Definition 2.3^[14] A set-valued operator $A : X \to 2^{X^*}$ is said to be bounded if A(B) is bounded for every bounded subset B of X.

Lemma 2.1^[13] The resolvent operator $J_{M,\lambda}$ is single-valued and nonexpansive, that is,

$$\|J_{M,\lambda}(u) - J_{M,\lambda}(v)\| \le \|u - v\|, \quad \forall u, v \in H.$$

Lemma 2.2 The resolvent operator $J_{M,\lambda}$ is inverse-strongly monotone, that is

$$\langle J_{M,\lambda}u - J_{M,\lambda}v, u - v \rangle \ge \|J_{M,\lambda}u - J_{M,\lambda}v\|^2, \quad \forall u, v \in H.$$

$$(2.3)$$

Proof Let u, v be any given points in H, let $x = J_{M,\lambda}u, y = J_{M,\lambda}v$. It follows from Definition 2.1 that $u - x \in \lambda M x$ and $v - y \in \lambda M y$. Since M is maximal monotone, we have

$$0 \leq \langle (u-x) - (v-y), x-y \rangle = \langle (u-v) - (x-y), x-y \rangle$$

It follows that

$$\langle u - v, x - y \rangle \ge \|x - y\|^2.$$

Lemma 2.3^[15] There holds the identity in a real Hilbert space H:

$$||u - v||^2 = ||u||^2 - ||v||^2 - 2\langle u - v, v \rangle, \quad \forall u, v \in H.$$

Lemma 2.4^[15] Let C be a closed convex subset of a real Hilbert space H and let $S : C \to C$ be a nonexpansive mapping such that $F(S) \neq \emptyset$. If a sequence $\{x_n\}$ in C is such that $x_n \to z$ and $x_n - Sx_n \to 0$, then z = Sz.

Lemma 2.5^[15] Let H be a real Hilbert space. Given a closed convex subset $C \subset H$ and points $x, y, z \in H$, given also a real number $a \in R$. The set

$$D := \{ v \in C : \|y - v\|^2 \le \|x - v\|^2 + \langle w, v \rangle + a \}$$

is convex (and closed).

Lemma 2.6^[16] If $T: X \to 2^{X^*}$ is a maximal monotone mapping and $P: X \to X^*$ is a hemicontinuous bounded monotone operator with D(P) = X, then the sum S = T + P is a maximal monotone mapping.

Lemma 2.7^[15] Let K be a closed convex subset of real Hilbert space H and let P_K be the metric projection from H onto K (i.e, for $x \in H, P_K x$ is the only point in K such that $||x - P_K x|| = \inf\{||x - z|| : z \in K\}$). Given $x \in H$ and $z \in K$, then $z = P_K x$ if and only if there holds the relation: $\langle x - z, y - z \rangle \leq 0$, for all $y \in K$.

3. Strong convergence theorem

Lemma 3.1 The function $u \in H$ is a solution of variational inclusion (1.1) if and only if $u \in H$ satisfies the relation

$$u = J_{M,\lambda}[u - \lambda Au],$$

where $\lambda > 0$ is a constant, M is a maximal monotone mapping and $J_{M,\lambda} = (I + \lambda M)^{-1}$ is the resolvent operator.

Theorem 3.1 Let H be a real Hilbert space. Let A be an α -inverse-strongly monotone mapping of H into itself and $M : H \to 2^H$ be a maximal monotone mapping. Let T be a nonexpansive mapping of H into itself such that $F(T) \cap VI(H, A, M) \neq \emptyset$. Assume that $\{t_n\} \subset (0, 1)$, such that $\lim_{n\to\infty} t_n = 0$, let $\{\lambda_n\}_{n=0}^{\infty}$ is a sequence in $[0, 2\alpha]$ such that $\lambda_n \in [a, b]$ for some a, b with $0 < a < b < 2\alpha$. Define a sequence $\{x_n\}_{n=0}^{\infty}$ in H by the algorithm:

$$x_{0} \in H,$$

$$y_{n} = J_{M,\lambda_{n}}(x_{n} - \lambda_{n}Ax_{n}),$$

$$z_{n} = t_{n}x_{0} + (1 - t_{n})Ty_{n},$$

$$C_{n} = \{v \in H : \|z_{n} - v\|^{2} \le \|x_{n} - v\|^{2} + t_{n}(\|x_{0}\|^{2} + 2\langle x_{n} - x_{0}, v \rangle)\},$$

$$Q_{n} = \{v \in H : \langle x_{n} - v, x_{n} - x_{0} \rangle \le 0\},$$

$$x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}.$$
(3.1)

Then $\{x_n\}$ converges strongly to $P_{F(T) \cap VI(H,A,M)}x_0$.

Proof It follows from Lemma 3.1 that $VI(H, A, M) = F(J_{M,\lambda}(I - \lambda A))$ (the set of fixed points of $J_{M,\lambda}(I - \lambda A)$). By Lemma 2.1 and formula (2.2), we have $J_{M,\lambda}(I - \lambda A)$ is a nonexpansive mapping of H into itself. Thus, VI(H, A, M) is closed and convex. From the definition of C_n and Q_n , it is obvious that C_n is closed and Q_n is closed and convex for each $n \in N \bigcup \{0\}$. By Lemma 2.5, we observe that C_n is also convex. Next, we show that $F(T) \cap VI(H, A, M) \subset C_n$ for all n. Indeed, for all $p \in F(T) \cap VI(H, A, M)$, we have

$$||z_n - p||^2 = ||t_n(x_0 - p) + (1 - t_n)(Ty_n - p)||^2$$

$$\leq t_n ||x_0 - p||^2 + (1 - t_n)||Ty_n - p||^2$$

$$\leq t_n ||x_0 - p||^2 + (1 - t_n)||y_n - p||^2$$

$$\leq t_n ||x_0 - p||^2 + (1 - t_n)||x_n - p||^2$$

$$= ||x_n - p||^2 + t_n(||x_0 - p||^2 - ||x_n - p||^2)$$

$$\leq ||x_n - p||^2 + t_n(||x_0||^2 + 2\langle x_n - x_0, p \rangle).$$
(3.2)

So, $p \in C_n$ for all n. Next, we show that

$$F(T) \bigcap VI(H, A, M) \subset Q_n \text{ for all } n \ge 0.$$
(3.3)

We prove this by induction. For n = 0, we have $F(T) \cap VI(H, A, M) \subset H = Q_0$. Assume that $F(T) \cap VI(H, A, M) \subset Q_n$. Since x_{n+1} is the projection of x_0 onto $C_n \cap Q_n$, we have

$$\langle x_0 - x_{n+1}, x_{n+1} - z \rangle \ge 0, \quad \forall z \in C_n \bigcap Q_n$$

As $F(T) \bigcap VI(H, A, M) \subset C_n \bigcap Q_n$ by the induction assumption, the last inequality holds, in particular, for all $z \in F(T) \bigcap VI(H, A, M)$. This together with the definition of Q_{n+1} implies that $F(T) \bigcap VI(H, A, M) \subset Q_{n+1}$. Hence (3.3) holds for all $n \geq 0$.

Now since $x_n = P_{Q_n} x_0$ (by the definition of Q_n) and $F(T) \bigcap VI(H, A, M) \subset Q_n$, we have $||x_n - x_0|| \leq ||p - x_0||$ for all $p \in F(T) \bigcap VI(H, A, M)$. In particular, $\{x_n\}$ is bounded and

$$||x_n - x_0|| \le ||q - x_0||, \tag{3.4}$$

where $q = P_{F(T) \cap VI(H,A,M)} x_0$. Hence $\{z_n\}, \{y_n\}$ are also bounded. The fact that $x_{n+1} \in Q_n$ implies that $\langle x_{n+1} - x_n, x_n - x_0 \rangle \ge 0$. This together with Lemma 2.3 implies

$$\begin{aligned} \|x_{n+1} - x_n\|^2 &= \|(x_{n+1} - x_0) - (x_n - x_0)\|^2 \\ &= \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 - 2\langle x_{n+1} - x_n, x_n - x_0\rangle \\ &\leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2. \end{aligned}$$

It follows that

$$\|x_{n+1} - x_n\| \to 0. \tag{3.5}$$

That $x_{n+1} \in C_n$ implies that

$$||z_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + t_n(||x_0||^2 + 2\langle x_n - x_0, x_{n+1}\rangle) \to 0.$$
(3.6)

Therefore, we have

$$||z_n - x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - z_n|| \to 0.$$
(3.7)

$$||z_n - Ty_n|| = t_n ||x_0 - Ty_n|| \to 0.$$
(3.8)

For $p \in F(T) \bigcap VI(H, A, M)$, by formula (2.2), we obtain

$$\begin{aligned} \|z_n - p\|^2 &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|Ty_n - p\|^2 \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|y_n - p\|^2 \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|x_n - \lambda_n A x_n - (p - \lambda_n A p)\|^2 \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) [\|x_n - p\|^2 + \lambda_n (\lambda_n - 2\alpha) \|A x_n - A p\|^2] \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) [\|x_n - p\|^2 + a(b - 2\alpha) \|A x_n - A p\|^2]. \end{aligned}$$

Therefore, we have

$$-(1-t_n)a(b-2\alpha)\|Ax_n - Ap\|^2 \le t_n \|x_0 - p\|^2 - \|z_n - p\|^2 + (1-t_n)\|x_n - p\|^2$$
$$= t_n(\|x_0 - p\|^2 - \|z_n - p\|^2) + (1-t_n)(\|x_n - p\|^2 - \|z_n - p\|^2)$$

$$=t_n(||x_0 - p||^2 - ||z_n - p||^2) + (1 - t_n)(||x_n - p|| + ||z_n - p||)(||x_n - p|| - ||z_n - p||) \\ \le t_n(||x_0 - p||^2 - ||z_n - p||^2) + (1 - t_n)(||x_n - p|| + ||z_n - p||)||x_n - z_n||.$$

Since $\{x_n\}, \{z_n\}$ are bounded, $t_n \to 0$ and $||x_n - z_n|| \to 0$, we obtain that $||Ax_n - Ap|| \to 0$. By formula (2.3), we have

$$\begin{aligned} \|y_n - p\|^2 &= \|J_{M,\lambda_n}(x_n - \lambda_n A x_n) - J_{M,\lambda_n}(p - \lambda_n A p)\|^2 \\ &\leq \langle (x_n - \lambda_n A x_n) - (p - \lambda_n A p), y_n - p \rangle \\ &= \frac{1}{2} \{ \|(x_n - \lambda_n A x_n) - (p - \lambda_n A p)\|^2 + \|y_n - p\|^2 - \|(x_n - \lambda_n A x_n) - (p - \lambda_n A p) - (y_n - p)\|^2 \} \\ &\leq \frac{1}{2} \{ \|x_n - p\|^2 + \|y_n - p\|^2 - \|x_n - y_n - \lambda_n (A x_n - A p)\|^2 \}. \end{aligned}$$

Therefore, we obtain

$$||y_n - p||^2 \le ||x_n - p||^2 - ||x_n - y_n - \lambda_n (Ax_n - Ap)||^2.$$

Hence

$$\begin{aligned} \|z_n - p\|^2 &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|Ty_n - p\|^2 \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|y_n - p\|^2 \\ &\leq t_n \|x_0 - p\|^2 + (1 - t_n) \|x_n - p\|^2 - (1 - t_n) \|x_n - y_n - \lambda_n (Ax_n - Ap)\|^2 \\ &= t_n \|x_0 - p\|^2 + (1 - t_n) \|x_n - p\|^2 - (1 - t_n) \|x_n - y_n\|^2 - \\ &\quad (1 - t_n) \lambda_n^2 \|Ax_n - Ap\|^2 + 2\lambda_n (1 - t_n) \langle x_n - y_n, Ax_n - Ap \rangle. \end{aligned}$$

Therefore, we get

$$(1-t_n)\|x_n-y_n\|^2 \le t_n \|x_0-p\|^2 - \|z_n-p\|^2 + (1-t_n)\|x_n-p\|^2 - (1-t_n)\lambda_n^2 \|Ax_n-Ap\|^2 + 2\lambda_n(1-t_n)\langle x_n-y_n, Ax_n-Ap\rangle \\\le t_n(\|x_0-p\|^2 - \|z_n-p\|^2) + (1-t_n)(\|x_n-p\| + \|z_n-p\|)\|x_n-z_n\| - (1-t_n)\lambda_n^2 \|Ax_n-Ap\|^2 + 2\lambda_n(1-t_n)\langle x_n-y_n, Ax_n-Ap\rangle.$$

Since $\{x_n\}, \{y_n\}, \{z_n\}$ are bounded and $t_n \to 0, ||x_n - z_n|| \to 0$ and $||Ax_n - Ap|| \to 0$, we obtain

$$\|x_n - y_n\| \to 0. \tag{3.9}$$

By (3.7), (3.8) and (3.9), we have

$$||x_n - Tx_n|| \le ||x_n - z_n|| + ||z_n - Ty_n|| + ||Ty_n - Tx_n||$$

$$\le ||x_n - z_n|| + ||z_n - Ty_n|| + ||y_n - x_n|| \to 0.$$
(3.10)

Assume $\{x_{n_i}\}$ is a subsequence of $\{x_n\}$ such that $x_{n_i} \to w$. By Lemma 2.4, $w \in F(T)$. As $||x_n - y_n|| \to 0$, we obtain $y_{n_i} \to w$. We now prove that $w \in VI(H, A, M)$. Since A is a $\frac{1}{\alpha}$ -Lipschitz continuous monotone mapping and D(A) = H, by Lemma 2.6, M + A is a maximal The common solution for the question of fixed points and the question of variational inclusions 483

monotone mapping. Let $(v, f) \in G(M + A)$. Since $f - Av \in Mv$ and $\frac{1}{\lambda_{n_i}}(x_{n_i} - y_{n_i} - \lambda_{n_i}Ax_{n_i}) \in My_{n_i}$, we have

$$\langle v - y_{n_i}, (f - Av) - \frac{1}{\lambda_{n_i}} (x_{n_i} - y_{n_i} - \lambda_{n_i} Ax_{n_i}) \rangle \ge 0.$$

Therefore, we obtain

$$\begin{split} \langle v - y_{n_i}, f \rangle \ge & \langle v - y_{n_i}, Av + \frac{1}{\lambda_{n_i}} (x_{n_i} - y_{n_i} - \lambda_{n_i} A x_{n_i}) \rangle \\ = & \langle v - y_{n_i}, Av - A x_{n_i} \rangle + \langle v - y_{n_i}, \frac{1}{\lambda_{n_i}} (x_{n_i} - y_{n_i}) \rangle \\ = & \langle v - y_{n_i}, Av - A y_{n_i} \rangle + \langle v - y_{n_i}, A y_{n_i} - A x_{n_i} \rangle + \langle v - y_{n_i}, \frac{1}{\lambda_{n_i}} (x_{n_i} - y_{n_i}) \rangle \\ \ge & \langle v - y_{n_i}, A y_{n_i} - A x_{n_i} \rangle + \langle v - y_{n_i}, \frac{1}{\lambda_{n_i}} (x_{n_i} - y_{n_i}) \rangle. \end{split}$$

Let $i \to \infty$, we obtain $\langle v - w, f \rangle \geq 0$. Since A + M is maximal monotone, we have $0 \in Aw + Mw$ and hence $w \in F(T) \cap VI(H, A, M)$. We now show that $w = P_{F(T) \cap VI(H, A, M)}x_0$ and $x_n \to w$. Put $\tilde{w} = P_{F(T) \cap VI(H, A, M)}x_0$ and consider the sequence $\{x_0 - x_{n_i}\}$. Then we have $x_0 - x_{n_i} \rightharpoonup x_0 - w$. By the weak lower semicontinuity of the norm and the fact that $\|x_0 - x_{n+1}\| \leq \|x_0 - \tilde{w}\|$ for all $n \geq 0$ which is implied by the fact that $x_{n+1} = P_{C_n \cap Q_n}x_0$ and $F(T) \cap VI(H, A, M) \subset C_n \cap Q_n$, we obtain

$$||x_0 - \tilde{w}|| \le ||x_0 - w|| \le \liminf_{i \to \infty} ||x_0 - x_{n_i}|| \le \limsup_{i \to \infty} ||x_0 - x_{n_i}|| \le ||x_0 - \tilde{w}||.$$

This implies that $||x_0 - \tilde{w}|| = ||x_0 - w||$ (hence $\tilde{w} = w$ by the uniqueness of the nearest point of x_0 onto $F(T) \bigcap VI(H, A, M)$.) and that $||x_0 - x_{n_i}|| \to ||x_0 - w||$. Using the K - K property of H, we obtain $x_0 - x_{n_i} \to x_0 - w$, hence, $x_{n_i} \to w$. Since $\{x_{n_i}\}$ is an arbitrary (weakly convergent) subsequence of $\{x_n\}$, we conclude that $x_n \to w$ and $w = P_{F(T) \bigcap VI(H,A,M)}x_0$.

4. Applications

In this section, we prove a strong convergence theorem for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space H by using Theorem 3.1. A mapping $T: H \to H$ is called k-strictly pseudocontractive if there exists k with $0 \le k < 1$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k||(I - T)x - (I - T)y||^{2}$$

for all $x, y \in H$. If k = 0, then T is nonexpansive. Put A = I - T, where $T : H \to H$ is a k-strictly pseudocontractive mapping. Then A is $\frac{1-k}{2}$ -inverse-strongly monotone^[5].

Theorem 4.1 Let H be a real Hilbert space. Let S be a nonexpansive mapping of H into itself and let T be a k-strictly pseudocontractive mapping of H into itself such that $F(S) \cap F(T) \neq \emptyset$. Assume that $\{t_n\} \subset (0,1)$, such that $\lim_{n\to\infty} t_n = 0$. Let $\{\lambda_n\}_{n=0}^{\infty}$ be a sequence in [0, 1-k]such that $\lambda_n \in [a,b]$ for some a, b with 0 < a < b < 1-k. Define a sequence $\{x_n\}_{n=0}^{\infty}$ in H by the algorithm:

$$x_{0} \in H,$$

$$y_{n} = (1 - \lambda_{n})x_{n} + \lambda_{n}Tx_{n},$$

$$z_{n} = t_{n}x_{0} + (1 - t_{n})Sy_{n},$$

$$C_{n} = \{v \in H : ||z_{n} - v||^{2} \le ||x_{n} - v||^{2} + t_{n}(||x_{0}||^{2} + 2\langle x_{n} - x_{0}, v \rangle)\},$$

$$Q_{n} = \{v \in H : \langle x_{n} - v, x_{n} - x_{0} \rangle \le 0\},$$

$$x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}.$$

(4.1)

Then $\{x_n\}$ converges strongly to $P_{F(S) \cap F(T)}x_0$.

Proof Put A = I - T and M = 0, then A is $\frac{1-k}{2}$ -inverse-strongly monotone mapping. We have F(T) = VI(H, A, M) and $J_{M,\lambda_n}(x_n - \lambda_n A x_n) = (1 - \lambda_n)x_n + \lambda_n T x_n$. So, by Theorem 3.1, we obtain the desired result.

References

- HUANG Nanjing. A new completely general class of variational inclusions with noncompact valued mappings [J]. Comput. Math. Appl., 1998, 35(10): 9–14.
- [2] ZENG Luchuan. Perturbed proximal point algorithm for generalized nonlinear set-valued mixed quasivariational inclusions [J]. Acta Math. Sinica (Chin. Ser.), 2004, 47(1): 11–18.
- [3] ZENG Luchuan. Existence and algorithm of solutions for general multivalued mixed implicit quasi-variational inequalities [J]. Appl. Math. Mech. (English Ed.), 2003, 24(11): 1324–1333.
- [4] HASSOUNI A, MOUDAFI A. A perturbed algorithm for variational inclusions [J]. J. Math. Anal. Appl., 1994, 185(3): 706–712.
- [5] IIDUKA H, TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings [J]. Nonlinear Anal., 2005, 61(3): 341–350.
- [6] BROWDER F E, PETRYSHYN W V. Construction of fixed points of nonlinear mappings in Hilbert space [J]. J. Math. Anal. Appl., 1967, 20: 197–228.
- [7] IIDUKA H, TAKAHASHI W, TOYODA M. Approximation of solutions of variational inequalities for monotone mappings [J]. Panamer. Math. J., 2004, 14(2): 49–61.
- [8] LIU Fengshan, NASHED M Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates [J]. Set-Valued Anal., 1998, 6(4): 313–344.
- [9] NAKAJO K, TAKAHASHI W. Strong and weak convergence theorems by an improved splitting method [J]. Comm. Appl. Nonlinear Anal., 2002, 9(2): 99–107.
- [10] TAKAHASHI W. Nonlinear variational inequalities and fixed point theorems [J]. J. Math. Soc. Japan, 1976, 28(1): 168–181.
- [11] TAKAHASHI W. Convex Analysis and Approximation of Fixed Points [M]. Yokohama Publishers, Yokohama, 2000. (in Japanese)
- [12] TAKAHASHI W. Nonlinear Functional Analysis [M]. Yokohama Publishers, Yokohama, 2000.
- [13] NOOR M A. Equivalence of variational inclusions with resolvent equations [J]. Nonlinear Anal., 2000, 41(7-8): 963–970.
- [14] FANG Yaping, HUANG Nanjing. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces [J]. Appl. Math. Lett., 2004, 17(6): 647–653.
- [15] MARTINEZ-YANES C, XU Hongkun. Strong convergence of the CQ method for fixed point iteration processes [J]. Nonlinear Anal., 2006, 64(11): 2400–2411.
- [16] PASCALI D, SBURLAN S. Nonlinear Mappings of Monotone Type [M]. Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978.