The Common Solution for the Question of Fixed Points and the Question of Variational Inclusions

LIU Ying ${ }^{1}$, CHEN Yong $L i^{2}$
(1. College of Mathematics and Computer, Hebei University, Hebei 071002, China;
2. College of Technology, North China Electric Power University, Hebei 071051, China)
(E-mail: nanbei00@sina.com)

Abstract

In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.

Keywords inverse-strongly monotone mapping; nonexpansive mapping; variational inclusion; strong convergence.
Document code A
MR(2000) Subject Classification $47 \mathrm{H} 05 ; 47 \mathrm{H} 09$
Chinese Library Classification O177.91

1. Introduction

Let H be a real Hilbert space, $A: H \rightarrow H$ be a single-valued mapping and $M: H \rightarrow 2^{H}$ be a multivalued mapping. The variational inclusion problem is to find a $u \in H$ such that

$$
\begin{equation*}
0 \in A(u)+M(u) \tag{1.1}
\end{equation*}
$$

The set of solutions of the variational inclusion(1.1) is denoted by $V I(H, A, M)$.

Special Cases

(1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz continuous mapping, problem (1.1) has been studied by Huang ${ }^{[1]}$.
(2) If $M=\partial \phi$, where $\partial \phi$ denotes the subdifferential of a proper, convex and lower semicontinuous function $\phi: H \rightarrow R \bigcup\{+\infty\}$, then problem (1.1) reduces to the following problem: find $u \in H$, such that

$$
\begin{equation*}
\langle A(u), v-u\rangle+\phi(v)-\phi(u) \geq 0, \quad \forall v \in H \tag{1.2}
\end{equation*}
$$

which is called a nonlinear variational inequality and has been studied by many authors ${ }^{[2,3]}$.
(3) If $M=\partial \delta_{K}$, where δ_{K} is the indicator function of a nonempty, closed and convex subset K of H, then problem (1.1) reduces to the following problem: find $u \in K$, such that

$$
\begin{equation*}
\langle A(u), v-u\rangle \geq 0, \quad \forall v \in K \tag{1.3}
\end{equation*}
$$

Received date: 2007-03-01; Accepted date: 2007-10-30
which is the classical variational inequality ${ }^{[4,5]}$.
A single-valued mapping A of H into itself is called α-inverse-strongly monotone if there exists a positive real number α such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in H^{[5-9]}$. A mapping S of H into itself is called nonexpansive if

$$
\|S x-S y\| \leq\|x-y\|, \quad \forall x, y \in H
$$

We denote by $F(S)$ the set of fixed points of S.
In this paper, we introduce a new iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. The result generalized Theorem 3.1 in [5] from variational inequality (1.3) to variational inclusion (1.1), which not only makes the result of Theorem 3.1 in [5] become a special case of this paper, but also remove a lot of assumptions. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.

2. Preliminaries

In what follows, we always let X be a real Banach space with dual space X^{*}, H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let C be a closed convex subset of H. We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $y \in C$. P_{C} is called the metric projection of H into C. We know that P_{C} is a nonexpansive mapping of H onto C. It is also known that P_{C} satisfies

$$
\begin{equation*}
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \quad \forall x, y \in H \tag{2.1}
\end{equation*}
$$

A set-valued mapping $M: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, u \in M x, v \in M y$ imply $\langle x-y, u-v\rangle \geq 0$. A monotone mapping $M: H \rightarrow 2^{H}$ is maximal if $(I+\lambda M) H=H$, for all $\lambda>0$, where I denotes the identity mapping on H. It is known that a monotone mapping M is maximal if and only if for $(x, u) \in H \times H,\langle x-y, u-v\rangle \geq 0$ for every $(y, v) \in G(M)$ (the graph of M) implies $u \in M x$.

If A is an α-inverse-strongly monotone mapping of H into itself, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous monotone mapping. We also have that for all $x, y \in H$ and $\lambda>0$,

$$
\begin{align*}
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} & =\|(x-y)-\lambda(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} . \tag{2.2}
\end{align*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of H into itself.

A Banach space is said to have the $K-K$ property if a sequence $\left\{x_{n}\right\} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$. It is well known that if H is a Hilbert space, then H has the $K-K$ property.

Definition 2.1 ${ }^{[13]}$ If M is a maximal monotone operator on H, then the resolvent operator associated with M is defined by

$$
J_{M, \lambda}(u)=(I+\lambda M)^{-1} u, \quad \forall u \in H
$$

where $\lambda>0$ is a constant and I is the identity operator.
Definition 2.2 ${ }^{[14]}$ A single-valued operator $A: H \rightarrow H$ is said to be hemi-continuous if for any fixed $x, y, z \in H$, the function $t \rightarrow\langle A(x+t y), z\rangle$ is continuous at 0^{+}. It is well known that a continuous mapping must be hemi-continuous.

Definition 2.3 ${ }^{[14]}$ A set-valued operator $A: X \rightarrow 2^{X^{*}}$ is said to be bounded if $A(B)$ is bounded for every bounded subset B of X.

Lemma 2.1 ${ }^{[13]}$ The resolvent operator $J_{M, \lambda}$ is single-valued and nonexpansive, that is,

$$
\left\|J_{M, \lambda}(u)-J_{M, \lambda}(v)\right\| \leq\|u-v\|, \quad \forall u, v \in H
$$

Lemma 2.2 The resolvent operator $J_{M, \lambda}$ is inverse-strongly monotone, that is

$$
\begin{equation*}
\left\langle J_{M, \lambda} u-J_{M, \lambda} v, u-v\right\rangle \geq\left\|J_{M, \lambda} u-J_{M, \lambda} v\right\|^{2}, \quad \forall u, v \in H . \tag{2.3}
\end{equation*}
$$

Proof Let u, v be any given points in H, let $x=J_{M, \lambda} u, y=J_{M, \lambda} v$. It follows from Definition 2.1 that $u-x \in \lambda M x$ and $v-y \in \lambda M y$. Since M is maximal monotone, we have

$$
0 \leq\langle(u-x)-(v-y), x-y\rangle=\langle(u-v)-(x-y), x-y\rangle
$$

It follows that

$$
\langle u-v, x-y\rangle \geq\|x-y\|^{2}
$$

Lemma 2.3 ${ }^{[15]}$ There holds the identity in a real Hilbert space H :

$$
\|u-v\|^{2}=\|u\|^{2}-\|v\|^{2}-2\langle u-v, v\rangle, \quad \forall u, v \in H
$$

Lemma 2.4 ${ }^{[15]}$ Let C be a closed convex subset of a real Hilbert space H and let $S: C \rightarrow C$ be a nonexpansive mapping such that $F(S) \neq \emptyset$. If a sequence $\left\{x_{n}\right\}$ in C is such that $x_{n} \rightharpoonup z$ and $x_{n}-S x_{n} \rightarrow 0$, then $z=S z$.

Lemma 2.5 ${ }^{[15]}$ Let H be a real Hilbert space. Given a closed convex subset $C \subset H$ and points $x, y, z \in H$, given also a real number $a \in R$. The set

$$
D:=\left\{v \in C:\|y-v\|^{2} \leq\|x-v\|^{2}+\langle w, v\rangle+a\right\}
$$

is convex (and closed).
Lemma 2.6 ${ }^{[16]}$ If $T: X \rightarrow 2^{X^{*}}$ is a maximal monotone mapping and $P: X \rightarrow X^{*}$ is a hemicontinuous bounded monotone operator with $D(P)=X$, then the sum $S=T+P$ is a maximal
monotone mapping.
Lemma 2.7 ${ }^{[15]}$ Let K be a closed convex subset of real Hilbert space H and let P_{K} be the metric projection from H onto K (i.e, for $x \in H, P_{K} x$ is the only point in K such that $\left\|x-P_{K} x\right\|=$ $\inf \{\|x-z\|: z \in K\}$). Given $x \in H$ and $z \in K$, then $z=P_{K} x$ if and only if there holds the relation: $\langle x-z, y-z\rangle \leq 0$, for all $y \in K$.

3. Strong convergence theorem

Lemma 3.1 The function $u \in H$ is a solution of variational inclusion (1.1) if and only if $u \in H$ satisfies the relation

$$
u=J_{M, \lambda}[u-\lambda A u],
$$

where $\lambda>0$ is a constant, M is a maximal monotone mapping and $J_{M, \lambda}=(I+\lambda M)^{-1}$ is the resolvent operator.

Theorem 3.1 Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone mapping of H into itself and $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let T be a nonexpansive mapping of H into itself such that $F(T) \bigcap V I(H, A, M) \neq \emptyset$. Assume that $\left\{t_{n}\right\} \subset(0,1)$, such that $\lim _{n \rightarrow \infty} t_{n}=0$, let $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ is a sequence in $[0,2 \alpha]$ such that $\lambda_{n} \in[a, b]$ for some a, b with $0<a<b<2 \alpha$. Define a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in H by the algorithm:

$$
\left\{\begin{array}{l}
x_{0} \in H \tag{3.1}\\
y_{n}=J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
z_{n}=t_{n} x_{0}+\left(1-t_{n}\right) T y_{n} \\
C_{n}=\left\{v \in H:\left\|z_{n}-v\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}+t_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, v\right\rangle\right)\right\} \\
Q_{n}=\left\{v \in H:\left\langle x_{n}-v, x_{n}-x_{0}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n}} \cap Q_{n} x_{0}
\end{array}\right.
$$

Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(T) \cap V I(H, A, M)} x_{0}$.
Proof It follows from Lemma 3.1 that $V I(H, A, M)=F\left(J_{M, \lambda}(I-\lambda A)\right.$) (the set of fixed points of $J_{M, \lambda}(I-\lambda A)$). By Lemma 2.1 and formula (2.2), we have $J_{M, \lambda}(I-\lambda A)$ is a nonexpansive mapping of H into itself. Thus, $V I(H, A, M)$ is closed and convex. From the definition of C_{n} and Q_{n}, it is obvious that C_{n} is closed and Q_{n} is closed and convex for each $n \in N \bigcup\{0\}$. By Lemma 2.5, we observe that C_{n} is also convex. Next, we show that $F(T) \bigcap V I(H, A, M) \subset C_{n}$ for all n. Indeed, for all $p \in F(T) \bigcap V I(H, A, M)$, we have

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} & =\left\|t_{n}\left(x_{0}-p\right)+\left(1-t_{n}\right)\left(T y_{n}-p\right)\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|T y_{n}-p\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}+t_{n}\left(\left\|x_{0}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}\right) \\
& \leq\left\|x_{n}-p\right\|^{2}+t_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, p\right\rangle\right) . \tag{3.2}
\end{align*}
$$

So, $p \in C_{n}$ for all n. Next, we show that

$$
\begin{equation*}
F(T) \bigcap V I(H, A, M) \subset Q_{n} \text { for all } n \geq 0 \tag{3.3}
\end{equation*}
$$

We prove this by induction. For $n=0$, we have $F(T) \bigcap V I(H, A, M) \subset H=Q_{0}$. Assume that $F(T) \bigcap V I(H, A, M) \subset Q_{n}$. Since x_{n+1} is the projection of x_{0} onto $C_{n} \bigcap Q_{n}$, we have

$$
\left\langle x_{0}-x_{n+1}, x_{n+1}-z\right\rangle \geq 0, \quad \forall z \in C_{n} \bigcap Q_{n}
$$

As $F(T) \bigcap V I(H, A, M) \subset C_{n} \bigcap Q_{n}$ by the induction assumption, the last inequality holds, in particular, for all $z \in F(T) \bigcap V I(H, A, M)$. This together with the definition of Q_{n+1} implies that $F(T) \bigcap V I(H, A, M) \subset Q_{n+1}$. Hence (3.3) holds for all $n \geq 0$.

Now since $x_{n}=P_{Q_{n}} x_{0}$ (by the definition of Q_{n}) and $F(T) \bigcap V I(H, A, M) \subset Q_{n}$, we have $\left\|x_{n}-x_{0}\right\| \leq\left\|p-x_{0}\right\|$ for all $p \in F(T) \bigcap V I(H, A, M)$. In particular, $\left\{x_{n}\right\}$ is bounded and

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|q-x_{0}\right\| \tag{3.4}
\end{equation*}
$$

where $q=P_{F(T) \cap V I(H, A, M)} x_{0}$. Hence $\left\{z_{n}\right\},\left\{y_{n}\right\}$ are also bounded. The fact that $x_{n+1} \in Q_{n}$ implies that $\left\langle x_{n+1}-x_{n}, x_{n}-x_{0}\right\rangle \geq 0$. This together with Lemma 2.3 implies

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|\left(x_{n+1}-x_{0}\right)-\left(x_{n}-x_{0}\right)\right\|^{2} \\
& =\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x_{0}\right\rangle \\
& \leq\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{3.5}
\end{equation*}
$$

That $x_{n+1} \in C_{n}$ implies that

$$
\begin{equation*}
\left\|z_{n}-x_{n+1}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}+t_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, x_{n+1}\right\rangle\right) \rightarrow 0 \tag{3.6}
\end{equation*}
$$

Therefore, we have

$$
\begin{gather*}
\left\|z_{n}-x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| \rightarrow 0 \tag{3.7}\\
\left\|z_{n}-T y_{n}\right\|=t_{n}\left\|x_{0}-T y_{n}\right\| \rightarrow 0 \tag{3.8}
\end{gather*}
$$

For $p \in F(T) \bigcap V I(H, A, M)$, by formula (2.2), we obtain

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} & \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|T y_{n}-p\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-\lambda_{n} A x_{n}-\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2}\right] \\
& \leq t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+a(b-2 \alpha)\left\|A x_{n}-A p\right\|^{2}\right]
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
-\left(1-t_{n}\right) a(b-2 \alpha)\left\|A x_{n}-A p\right\|^{2} & \leq t_{n}\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& =t_{n}\left(\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right)+\left(1-t_{n}\right)\left(\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & t_{n}\left(\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right)+ \\
& \left(1-t_{n}\right)\left(\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right)\left(\left\|x_{n}-p\right\|-\left\|z_{n}-p\right\|\right) \\
\leq & t_{n}\left(\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right)+ \\
& \left(1-t_{n}\right)\left(\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

Since $\left\{x_{n}\right\},\left\{z_{n}\right\}$ are bounded, $t_{n} \rightarrow 0$ and $\left\|x_{n}-z_{n}\right\| \rightarrow 0$, we obtain that $\left\|A x_{n}-A p\right\| \rightarrow 0$. By formula (2.3), we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2}= & \left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
\leq & \left\langle\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right), y_{n}-p\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\right. \\
& \left.\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)-\left(y_{n}-p\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2}\right\} .
\end{aligned}
$$

Therefore, we obtain

$$
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2} .
$$

Hence

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} \leq & t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|T y_{n}-p\right\|^{2} \\
\leq & t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|y_{n}-p\right\|^{2} \\
\leq & t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-p\right\|^{2}-\left(1-t_{n}\right)\left\|x_{n}-y_{n}-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2} \\
= & t_{n}\left\|x_{0}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-p\right\|^{2}-\left(1-t_{n}\right)\left\|x_{n}-y_{n}\right\|^{2}- \\
& \left(1-t_{n}\right) \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left(1-t_{n}\right)\left\langle x_{n}-y_{n}, A x_{n}-A p\right\rangle .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\left(1-t_{n}\right)\left\|x_{n}-y_{n}\right\|^{2} \leq & t_{n}\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}+\left(1-t_{n}\right)\left\|x_{n}-p\right\|^{2}- \\
& \left(1-t_{n}\right) \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left(1-t_{n}\right)\left\langle x_{n}-y_{n}, A x_{n}-A p\right\rangle \\
\leq & t_{n}\left(\left\|x_{0}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right)+\left(1-t_{n}\right)\left(\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right)\left\|x_{n}-z_{n}\right\|- \\
& \left(1-t_{n}\right) \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left(1-t_{n}\right)\left\langle x_{n}-y_{n}, A x_{n}-A p\right\rangle .
\end{aligned}
$$

Since $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ are bounded and $t_{n} \rightarrow 0,\left\|x_{n}-z_{n}\right\| \rightarrow 0$ and $\left\|A x_{n}-A p\right\| \rightarrow 0$, we obtain

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \rightarrow 0 \tag{3.9}
\end{equation*}
$$

By (3.7), (3.8) and (3.9), we have

$$
\begin{align*}
\left\|x_{n}-T x_{n}\right\| & \leq\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T y_{n}\right\|+\left\|T y_{n}-T x_{n}\right\| \\
& \leq\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0 \tag{3.10}
\end{align*}
$$

Assume $\left\{x_{n_{i}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup w$. By Lemma 2.4, w $\in F(T)$. As $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, we obtain $y_{n_{i}} \rightharpoonup w$. We now prove that $w \in V I(H, A, M)$. Since A is a $\frac{1}{\alpha}$-Lipschitz continuous monotone mapping and $D(A)=H$, by Lemma $2.6, M+A$ is a maximal
monotone mapping. Let $(v, f) \in G(M+A)$. Since $f-A v \in M v$ and $\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right) \in$ $M y_{n_{i}}$, we have

$$
\left\langle v-y_{n_{i}},(f-A v)-\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \geq 0
$$

Therefore, we obtain

$$
\begin{aligned}
\left\langle v-y_{n_{i}}, f\right\rangle & \geq\left\langle v-y_{n_{i}}, A v+\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \\
& =\left\langle v-y_{n_{i}}, A v-A x_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}\right)\right\rangle \\
& =\left\langle v-y_{n_{i}}, A v-A y_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, A y_{n_{i}}-A x_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}\right)\right\rangle \\
& \geq\left\langle v-y_{n_{i}}, A y_{n_{i}}-A x_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-y_{n_{i}}\right)\right\rangle .
\end{aligned}
$$

Let $i \rightarrow \infty$, we obtain $\langle v-w, f\rangle \geq 0$. Since $A+M$ is maximal monotone, we have $0 \in$ $A w+M w$ and hence $w \in F(T) \bigcap V I(H, A, M)$. We now show that $w=P_{F(T) \cap V I(H, A, M)} x_{0}$ and $x_{n} \rightarrow w$. Put $\tilde{w}=P_{F(T) \cap V I(H, A, M)} x_{0}$ and consider the sequence $\left\{x_{0}-x_{n_{i}}\right\}$. Then we have $x_{0}-x_{n_{i}} \rightharpoonup x_{0}-w$. By the weak lower semicontinuity of the norm and the fact that $\left\|x_{0}-x_{n+1}\right\| \leq\left\|x_{0}-\tilde{w}\right\|$ for all $n \geq 0$ which is implied by the fact that $x_{n+1}=P_{C_{n}} \cap Q_{n} x_{0}$ and $F(T) \bigcap V I(H, A, M) \subset C_{n} \bigcap Q_{n}$, we obtain

$$
\left\|x_{0}-\tilde{w}\right\| \leq\left\|x_{0}-w\right\| \leq \liminf _{i \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\| \leq \limsup _{i \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\| \leq\left\|x_{0}-\tilde{w}\right\|
$$

This implies that $\left\|x_{0}-\tilde{w}\right\|=\left\|x_{0}-w\right\|$ (hence $\tilde{w}=w$ by the uniqueness of the nearest point of x_{0} onto $F(T) \bigcap V I(H, A, M)$.) and that $\left\|x_{0}-x_{n_{i}}\right\| \rightarrow\left\|x_{0}-w\right\|$. Using the $K-K$ property of H, we obtain $x_{0}-x_{n_{i}} \rightarrow x_{0}-w$, hence, $x_{n_{i}} \rightarrow w$. Since $\left\{x_{n_{i}}\right\}$ is an arbitrary (weakly convergent) subsequence of $\left\{x_{n}\right\}$, we conclude that $x_{n} \rightarrow w$ and $w=P_{F(T) \cap V I(H, A, M)} x_{0}$.

4. Applications

In this section, we prove a strong convergence theorem for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space H by using Theorem 3.1. A mapping $T: H \rightarrow H$ is called k-strictly pseudocontractive if there exists k with $0 \leq k<1$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}
$$

for all $x, y \in H$. If $k=0$, then T is nonexpansive. Put $A=I-T$, where $T: H \rightarrow H$ is a k-strictly pseudocontractive mapping. Then A is $\frac{1-k}{2}$-inverse-strongly monotone ${ }^{[5]}$.

Theorem 4.1 Let H be a real Hilbert space. Let S be a nonexpansive mapping of H into itself and let T be a k-strictly pseudocontractive mapping of H into itself such that $F(S) \bigcap F(T) \neq \emptyset$. Assume that $\left\{t_{n}\right\} \subset(0,1)$, such that $\lim _{n \rightarrow \infty} t_{n}=0$. Let $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be a sequence in $[0,1-k]$ such that $\lambda_{n} \in[a, b]$ for some a, b with $0<a<b<1-k$. Define a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in H by
the algorithm:

$$
\left\{\begin{array}{l}
x_{0} \in H \tag{4.1}\\
y_{n}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} T x_{n} \\
z_{n}=t_{n} x_{0}+\left(1-t_{n}\right) S y_{n} \\
C_{n}=\left\{v \in H:\left\|z_{n}-v\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}+t_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, v\right\rangle\right)\right\} \\
Q_{n}=\left\{v \in H:\left\langle x_{n}-v, x_{n}-x_{0}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0} .
\end{array}\right.
$$

Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap F(T)} x_{0}$.
Proof Put $A=I-T$ and $M=0$, then A is $\frac{1-k}{2}$-inverse-strongly monotone mapping. We have $F(T)=V I(H, A, M)$ and $J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} T x_{n}$. So, by Theorem 3.1, we obtain the desired result.

References

[1] HUANG Nanjing. A new completely general class of variational inclusions with noncompact valued mappings [J]. Comput. Math. Appl., 1998, 35(10): 9-14.
[2] ZENG Luchuan. Perturbed proximal point algorithm for generalized nonlinear set-valued mixed quasivariational inclusions [J]. Acta Math. Sinica (Chin. Ser.), 2004, 47(1): 11-18.
[3] ZENG Luchuan. Existence and algorithm of solutions for general multivalued mixed implicit quasi-variational inequalities [J]. Appl. Math. Mech. (English Ed.), 2003, 24(11): 1324-1333.
[4] HASSOUNI A, MOUDAFI A. A perturbed algorithm for variational inclusions [J]. J. Math. Anal. Appl., 1994, 185(3): 706-712.
[5] IIDUKA H, TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings [J]. Nonlinear Anal., 2005, 61(3): 341-350.
[6] BROWDER F E, PETRYSHYN W V. Construction of fixed points of nonlinear mappings in Hilbert space [J]. J. Math. Anal. Appl., 1967, 20: 197-228.
[7] IIDUKA H, TAKAHASHI W, TOYODA M. Approximation of solutions of variational inequalities for monotone mappings [J]. Panamer. Math. J., 2004, 14(2): 49-61.
[8] LIU Fengshan, NASHED M Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates [J]. Set-Valued Anal., 1998, 6(4): 313-344.
[9] NAKAJO K, TAKAHASHI W. Strong and weak convergence theorems by an improved splitting method [J]. Comm. Appl. Nonlinear Anal., 2002, 9(2): 99-107.
[10] TAKAHASHI W. Nonlinear variational inequalities and fixed point theorems [J]. J. Math. Soc. Japan, 1976, 28(1): 168-181.
[11] TAKAHASHI W. Convex Analysis and Approximation of Fixed Points [M]. Yokohama Publishers, Yokohama, 2000. (in Japanese)
[12] TAKAHASHI W. Nonlinear Functional Analysis [M]. Yokohama Publishers, Yokohama, 2000.
[13] NOOR M A. Equivalence of variational inclusions with resolvent equations [J]. Nonlinear Anal., 2000, 41(7-8): 963-970.
[14] FANG Yaping, HUANG Nanjing. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces [J]. Appl. Math. Lett., 2004, 17(6): 647-653.
[15] MARTINEZ-YANES C, XU Hongkun. Strong convergence of the CQ method for fixed point iteration processes [J]. Nonlinear Anal., 2006, 64(11): 2400-2411.
[16] PASCALI D, SBURLAN S. Nonlinear Mappings of Monotone Type [M]. Martinus Nijhoff Publishers, The Hague; Sijthoff \& Noordhoff International Publishers, Alphen aan den Rijn, 1978.

