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Abstract In this paper, we introduce an iterative scheme for finding a common element of the

set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion

for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert

space. Then we show that the sequence converges strongly to a common element of two sets.

Using the result, we consider the problem of finding a common fixed point of a nonexpansive

mapping and a strictly pseudocontractive mapping in a real Hilbert space.

Keywords inverse-strongly monotone mapping; nonexpansive mapping; variational inclusion;

strong convergence.

Document code A

MR(2000) Subject Classification 47H05; 47H09

Chinese Library Classification O177.91

1. Introduction

Let H be a real Hilbert space, A : H → H be a single-valued mapping and M : H → 2H be

a multivalued mapping. The variational inclusion problem is to find a u ∈ H such that

0 ∈ A(u) + M(u). (1.1)

The set of solutions of the variational inclusion(1.1) is denoted by V I(H, A, M).

Special Cases

(1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz

continuous mapping, problem (1.1) has been studied by Huang[1].

(2) If M = ∂φ, where ∂φ denotes the subdifferential of a proper, convex and lower semi-

continuous function φ : H → R
⋃

{+∞}, then problem (1.1) reduces to the following problem:

find u ∈ H , such that

〈A(u), v − u〉 + φ(v) − φ(u) ≥ 0, ∀v ∈ H, (1.2)

which is called a nonlinear variational inequality and has been studied by many authors[2,3].

(3) If M = ∂δK , where δK is the indicator function of a nonempty, closed and convex subset

K of H , then problem (1.1) reduces to the following problem: find u ∈ K, such that

〈A(u), v − u〉 ≥ 0, ∀v ∈ K, (1.3)
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which is the classical variational inequality[4,5].

A single-valued mapping A of H into itself is called α-inverse-strongly monotone if there

exists a positive real number α such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2,

for all x, y ∈ H [5−9]. A mapping S of H into itself is called nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ H.

We denote by F (S) the set of fixed points of S.

In this paper, we introduce a new iterative scheme for finding a common element of the set

of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion

for an inverse-strongly monotone mapping and a maximal monotone mapping in a Hilbert space.

Then we show that the sequence converges strongly to a common element of two sets. The result

generalized Theorem 3.1 in [5] from variational inequality (1.3) to variational inclusion (1.1),

which not only makes the result of Theorem 3.1 in [5] become a special case of this paper, but

also remove a lot of assumptions. Using the result, we consider the problem of finding a common

fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert

space.

2. Preliminaries

In what follows, we always let X be a real Banach space with dual space X∗, H be a real

Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a closed convex subset of H .

We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x implies that

{xn} converges strongly to x. For every point x ∈ H, there exists a unique nearest point in C,

denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC is called the metric projection

of H into C. We know that PC is a nonexpansive mapping of H onto C. It is also known that

PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H. (2.1)

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, u ∈ Mx, v ∈ My

imply 〈x− y, u− v〉 ≥ 0. A monotone mapping M : H → 2H is maximal if (I + λM)H = H, for

all λ > 0, where I denotes the identity mapping on H . It is known that a monotone mapping

M is maximal if and only if for (x, u) ∈ H × H, 〈x − y, u − v〉 ≥ 0 for every (y, v) ∈ G(M) (the

graph of M) implies u ∈ Mx.

If A is an α-inverse-strongly monotone mapping of H into itself, then it is obvious that A is
1
α
-Lipschitz continuous monotone mapping. We also have that for all x, y ∈ H and λ > 0,

‖(I − λA)x − (I − λA)y‖2 = ‖(x − y) − λ(Ax − Ay)‖2

= ‖x − y‖2 − 2λ〈x − y, Ax − Ay〉 + λ2‖Ax − Ay‖2

≤ ‖x − y‖2 + λ(λ − 2α)‖Ax − Ay‖2. (2.2)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of H into itself.
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A Banach space is said to have the K −K property if a sequence {xn} ⇀ x and ‖xn‖ → ‖x‖,

then xn → x. It is well known that if H is a Hilbert space, then H has the K − K property.

Definition 2.1[13] If M is a maximal monotone operator on H , then the resolvent operator

associated with M is defined by

JM,λ(u) = (I + λM)−1u, ∀u ∈ H,

where λ > 0 is a constant and I is the identity operator.

Definition 2.2[14] A single-valued operator A : H → H is said to be hemi-continuous if for any

fixed x, y, z ∈ H , the function t → 〈A(x + ty), z〉 is continuous at 0+. It is well known that a

continuous mapping must be hemi-continuous.

Definition 2.3[14] A set-valued operator A : X → 2X∗

is said to be bounded if A(B) is bounded

for every bounded subset B of X .

Lemma 2.1[13] The resolvent operator JM,λ is single-valued and nonexpansive, that is,

‖JM,λ(u) − JM,λ(v)‖ ≤ ‖u − v‖, ∀u, v ∈ H.

Lemma 2.2 The resolvent operator JM,λ is inverse-strongly monotone, that is

〈JM,λu − JM,λv, u − v〉 ≥ ‖JM,λu − JM,λv‖2, ∀u, v ∈ H. (2.3)

Proof Let u, v be any given points in H , let x = JM,λu, y = JM,λv. It follows from Definition

2.1 that u − x ∈ λMx and v − y ∈ λMy. Since M is maximal monotone, we have

0 ≤ 〈(u − x) − (v − y), x − y〉 = 〈(u − v) − (x − y), x − y〉.

It follows that

〈u − v, x − y〉 ≥ ‖x − y‖2.

Lemma 2.3[15] There holds the identity in a real Hilbert space H :

‖u − v‖2 = ‖u‖2 − ‖v‖2 − 2〈u − v, v〉, ∀u, v ∈ H.

Lemma 2.4[15] Let C be a closed convex subset of a real Hilbert space H and let S : C → C

be a nonexpansive mapping such that F (S) 6= ∅. If a sequence {xn} in C is such that xn ⇀ z

and xn − Sxn → 0, then z = Sz.

Lemma 2.5[15] Let H be a real Hilbert space. Given a closed convex subset C ⊂ H and points

x, y, z ∈ H , given also a real number a ∈ R. The set

D := {v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈w, v〉 + a}

is convex (and closed).

Lemma 2.6[16] If T : X → 2X∗

is a maximal monotone mapping and P : X → X∗ is a hemi-

continuous bounded monotone operator with D(P ) = X , then the sum S = T + P is a maximal
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monotone mapping.

Lemma 2.7[15] Let K be a closed convex subset of real Hilbert space H and let PK be the metric

projection from H onto K (i.e, for x ∈ H, PKx is the only point in K such that ‖x − PKx‖ =

inf{‖x − z‖ : z ∈ K}). Given x ∈ H and z ∈ K, then z = PKx if and only if there holds the

relation: 〈x − z, y − z〉 ≤ 0, for all y ∈ K.

3. Strong convergence theorem

Lemma 3.1 The function u ∈ H is a solution of variational inclusion (1.1) if and only if u ∈ H

satisfies the relation

u = JM,λ[u − λAu],

where λ > 0 is a constant, M is a maximal monotone mapping and JM,λ = (I + λM)−1 is the

resolvent operator.

Theorem 3.1 Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone mapping

of H into itself and M : H → 2Hbe a maximal monotone mapping. Let T be a nonexpansive

mapping of H into itself such that F (T )
⋂

V I(H, A, M) 6= ∅. Assume that {tn} ⊂ (0, 1), such

that limn→∞ tn = 0, let {λn}∞n=0 is a sequence in [0, 2α] such that λn ∈ [a, b] for some a, b with

0 < a < b < 2α. Define a sequence {xn}
∞

n=0 in H by the algorithm:










































x0 ∈ H,

yn = JM,λn
(xn − λnAxn),

zn = tnx0 + (1 − tn)Tyn,

Cn = {v ∈ H : ‖zn − v‖2 ≤ ‖xn − v‖2 + tn(‖x0‖2 + 2〈xn − x0, v〉)},

Qn = {v ∈ H : 〈xn − v, xn − x0〉 ≤ 0},

xn+1 = PCn

⋂

Qn
x0.

(3.1)

Then {xn} converges strongly to PF (T )
⋂

V I(H,A,M)x0.

Proof It follows from Lemma 3.1 that V I(H, A, M) = F (JM,λ(I −λA)) (the set of fixed points

of JM,λ(I − λA) ). By Lemma 2.1 and formula (2.2), we have JM,λ(I − λA) is a nonexpansive

mapping of H into itself. Thus, V I(H, A, M) is closed and convex. From the definition of Cn

and Qn, it is obvious that Cn is closed and Qn is closed and convex for each n ∈ N
⋃

{0}. By

Lemma 2.5, we observe that Cn is also convex. Next, we show that F (T )
⋂

V I(H, A, M) ⊂ Cn

for all n. Indeed, for all p ∈ F (T )
⋂

V I(H, A, M), we have

‖zn − p‖2 = ‖tn(x0 − p) + (1 − tn)(Tyn − p)‖2

≤ tn‖x0 − p‖2 + (1 − tn)‖Tyn − p‖2

≤ tn‖x0 − p‖2 + (1 − tn)‖yn − p‖2

≤ tn‖x0 − p‖2 + (1 − tn)‖xn − p‖2

= ‖xn − p‖2 + tn(‖x0 − p‖2 − ‖xn − p‖2)

≤ ‖xn − p‖2 + tn(‖x0‖
2 + 2〈xn − x0, p〉). (3.2)
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So, p ∈ Cn for all n. Next, we show that

F (T )
⋂

V I(H, A, M) ⊂ Qn for all n ≥ 0. (3.3)

We prove this by induction. For n = 0, we have F (T )
⋂

V I(H, A, M) ⊂ H = Q0. Assume that

F (T )
⋂

V I(H, A, M) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn

⋂

Qn, we have

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀z ∈ Cn

⋂

Qn.

As F (T )
⋂

V I(H, A, M) ⊂ Cn

⋂

Qn by the induction assumption, the last inequality holds, in

particular, for all z ∈ F (T )
⋂

V I(H, A, M). This together with the definition of Qn+1 implies

that F (T )
⋂

V I(H, A, M) ⊂ Qn+1. Hence (3.3) holds for all n ≥ 0.

Now since xn = PQn
x0 (by the definition of Qn) and F (T )

⋂

V I(H, A, M) ⊂ Qn, we have

‖xn − x0‖ ≤ ‖p− x0‖ for all p ∈ F (T )
⋂

V I(H, A, M). In particular, {xn} is bounded and

‖xn − x0‖ ≤ ‖q − x0‖, (3.4)

where q = PF (T )
⋂

V I(H,A,M)x0. Hence {zn}, {yn} are also bounded. The fact that xn+1 ∈ Qn

implies that 〈xn+1 − xn, xn − x0〉 ≥ 0. This together with Lemma 2.3 implies

‖xn+1 − xn‖
2 = ‖(xn+1 − x0) − (xn − x0)‖

2

= ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2.

It follows that

‖xn+1 − xn‖ → 0. (3.5)

That xn+1 ∈ Cn implies that

‖zn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + tn(‖x0‖
2 + 2〈xn − x0, xn+1〉) → 0. (3.6)

Therefore, we have

‖zn − xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ → 0. (3.7)

‖zn − Tyn‖ = tn‖x0 − Tyn‖ → 0. (3.8)

For p ∈ F (T )
⋂

V I(H, A, M), by formula (2.2), we obtain

‖zn − p‖2 ≤ tn‖x0 − p‖2 + (1 − tn)‖Tyn − p‖2

≤ tn‖x0 − p‖2 + (1 − tn)‖yn − p‖2

≤ tn‖x0 − p‖2 + (1 − tn)‖xn − λnAxn − (p − λnAp)‖2

≤ tn‖x0 − p‖2 + (1 − tn)[‖xn − p‖2 + λn(λn − 2α)‖Axn − Ap‖2]

≤ tn‖x0 − p‖2 + (1 − tn)[‖xn − p‖2 + a(b − 2α)‖Axn − Ap‖2].

Therefore, we have

−(1 − tn)a(b − 2α)‖Axn − Ap‖2 ≤tn‖x0 − p‖2 − ‖zn − p‖2 + (1 − tn)‖xn − p‖2

=tn(‖x0 − p‖2 − ‖zn − p‖2) + (1 − tn)(‖xn − p‖2 − ‖zn − p‖2)
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=tn(‖x0 − p‖2 − ‖zn − p‖2)+

(1 − tn)(‖xn − p‖ + ‖zn − p‖)(‖xn − p‖ − ‖zn − p‖)

≤tn(‖x0 − p‖2 − ‖zn − p‖2)+

(1 − tn)(‖xn − p‖ + ‖zn − p‖)‖xn − zn‖.

Since {xn}, {zn} are bounded, tn → 0 and ‖xn − zn‖ → 0, we obtain that ‖Axn − Ap‖ → 0. By

formula (2.3), we have

‖yn − p‖2 =‖JM,λn
(xn − λnAxn) − JM,λn

(p − λnAp)‖2

≤〈(xn − λnAxn) − (p − λnAp), yn − p〉

=
1

2
{‖(xn − λnAxn) − (p − λnAp)‖2 + ‖yn − p‖2−

‖(xn − λnAxn) − (p − λnAp) − (yn − p)‖2}

≤
1

2
{‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn − λn(Axn − Ap)‖2}.

Therefore, we obtain

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn − λn(Axn − Ap)‖2.

Hence

‖zn − p‖2 ≤tn‖x0 − p‖2 + (1 − tn)‖Tyn − p‖2

≤tn‖x0 − p‖2 + (1 − tn)‖yn − p‖2

≤tn‖x0 − p‖2 + (1 − tn)‖xn − p‖2 − (1 − tn)‖xn − yn − λn(Axn − Ap)‖2

=tn‖x0 − p‖2 + (1 − tn)‖xn − p‖2 − (1 − tn)‖xn − yn‖
2−

(1 − tn)λ2
n‖Axn − Ap‖2 + 2λn(1 − tn)〈xn − yn, Axn − Ap〉.

Therefore, we get

(1 − tn)‖xn − yn‖
2 ≤tn‖x0 − p‖2 − ‖zn − p‖2 + (1 − tn)‖xn − p‖2−

(1 − tn)λ2
n‖Axn − Ap‖2 + 2λn(1 − tn)〈xn − yn, Axn − Ap〉

≤tn(‖x0 − p‖2 − ‖zn − p‖2) + (1 − tn)(‖xn − p‖ + ‖zn − p‖)‖xn − zn‖−

(1 − tn)λ2
n‖Axn − Ap‖2 + 2λn(1 − tn)〈xn − yn, Axn − Ap〉.

Since {xn}, {yn}, {zn} are bounded and tn → 0, ‖xn − zn‖ → 0 and ‖Axn −Ap‖ → 0, we obtain

‖xn − yn‖ → 0. (3.9)

By (3.7), (3.8) and (3.9), we have

‖xn − Txn‖ ≤ ‖xn − zn‖ + ‖zn − Tyn‖ + ‖Tyn − Txn‖

≤ ‖xn − zn‖ + ‖zn − Tyn‖ + ‖yn − xn‖ → 0. (3.10)

Assume {xni
} is a subsequence of {xn} such that xni

⇀ w. By Lemma 2.4, w ∈ F (T ).

As ‖xn − yn‖ → 0, we obtain yni
⇀ w. We now prove that w ∈ V I(H, A, M). Since A is a

1
α
-Lipschitz continuous monotone mapping and D(A) = H , by Lemma 2.6, M + A is a maximal
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monotone mapping. Let (v, f) ∈ G(M +A). Since f −Av ∈ Mv and 1
λni

(xni
− yni

−λni
Axni

) ∈

Myni
, we have

〈v − yni
, (f − Av) −

1

λni

(xni
− yni

− λni
Axni

)〉 ≥ 0.

Therefore, we obtain

〈v − yni
, f〉 ≥〈v − yni

, Av +
1

λni

(xni
− yni

− λni
Axni

)〉

=〈v − yni
, Av − Axni

〉 + 〈v − yni
,

1

λni

(xni
− yni

)〉

=〈v − yni
, Av − Ayni

〉 + 〈v − yni
, Ayni

− Axni
〉 + 〈v − yni

,
1

λni

(xni
− yni

)〉

≥〈v − yni
, Ayni

− Axni
〉 + 〈v − yni

,
1

λni

(xni
− yni

)〉.

Let i → ∞, we obtain 〈v − w, f〉 ≥ 0. Since A + M is maximal monotone, we have 0 ∈

Aw + Mw and hence w ∈ F (T )
⋂

V I(H, A, M). We now show that w = PF (T )
⋂

V I(H,A,M)x0

and xn → w. Put w̃ = PF (T )
⋂

V I(H,A,M)x0 and consider the sequence {x0 − xni
}. Then we

have x0 − xni
⇀ x0 − w. By the weak lower semicontinuity of the norm and the fact that

‖x0 − xn+1‖ ≤ ‖x0 − w̃‖ for all n ≥ 0 which is implied by the fact that xn+1 = PCn

⋂

Qn
x0 and

F (T )
⋂

V I(H, A, M) ⊂ Cn

⋂

Qn, we obtain

‖x0 − w̃‖ ≤ ‖x0 − w‖ ≤ lim inf
i→∞

‖x0 − xni
‖ ≤ lim sup

i→∞

‖x0 − xni
‖ ≤ ‖x0 − w̃‖.

This implies that ‖x0− w̃‖ = ‖x0−w‖ (hence w̃ = w by the uniqueness of the nearest point of x0

onto F (T )
⋂

V I(H, A, M).) and that ‖x0 − xni
‖ → ‖x0 − w‖. Using the K − K property of H ,

we obtain x0 − xni
→ x0 − w, hence, xni

→ w. Since {xni
} is an arbitrary (weakly convergent)

subsequence of {xn}, we conclude that xn → w and w = PF (T )
⋂

V I(H,A,M)x0.

4. Applications

In this section, we prove a strong convergence theorem for finding a common fixed point of

a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space H by

using Theorem 3.1. A mapping T : H → H is called k-strictly pseudocontractive if there exists

k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2

for all x, y ∈ H . If k = 0, then T is nonexpansive. Put A = I − T , where T : H → H is a

k-strictly pseudocontractive mapping. Then A is 1−k
2 -inverse-strongly monotone[5].

Theorem 4.1 Let H be a real Hilbert space. Let S be a nonexpansive mapping of H into itself

and let T be a k-strictly pseudocontractive mapping of H into itself such that F (S)
⋂

F (T ) 6= ∅.

Assume that {tn} ⊂ (0, 1), such that limn→∞ tn = 0. Let {λn}∞n=0 be a sequence in [0, 1 − k]

such that λn ∈ [a, b] for some a, b with 0 < a < b < 1 − k. Define a sequence {xn}∞n=0 in H by
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the algorithm:










































x0 ∈ H,

yn = (1 − λn)xn + λnTxn,

zn = tnx0 + (1 − tn)Syn,

Cn = {v ∈ H : ‖zn − v‖2 ≤ ‖xn − v‖2 + tn(‖x0‖2 + 2〈xn − x0, v〉)},

Qn = {v ∈ H : 〈xn − v, xn − x0〉 ≤ 0},

xn+1 = PCn

⋂

Qn
x0.

(4.1)

Then {xn} converges strongly to PF (S)
⋂

F (T )x0.

Proof Put A = I −T and M = 0, then A is 1−k
2 -inverse-strongly monotone mapping. We have

F (T ) = V I(H, A, M) and JM,λn
(xn − λnAxn) = (1 − λn)xn + λnTxn. So, by Theorem 3.1, we

obtain the desired result.
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