Cyclic Code and Self-Dual Code over $F_2 + uF_2 + u^2F_2$

FENG Qian Qian¹, ZHOU Wei Gang²

(1. Department of Mathematics, Xiangfan University, Hubei 441053, China;

2. School of Mathematics and Statistics, Wuhan University, Hubei 430072, China)

(E-mail: qiuyu4094@sina.com)

Abstract We give the structures of a cyclic code over ring

 $R = F_2 + uF_2 + u^2F_2 = \{0, 1, u, u^2, v, v^2, uv, v^3\},\$

where $u^3 = 0$, of odd length and its dual code. For the cyclic code, necessary and sufficient conditions for the existence of self-dual code are provided.

Keywords ring $F_2 + uF_2 + u^2F_2$; cyclic code; residue code; torsion code; self-dual code.

Document code A MR(2000) Subject Classification 94B15; 11H71 Chinese Library Classification 0157.4

1. Introduction

From the 1990s, the theory of codes over finite rings has gained prominence since the significant discovery of Nechaev^[1]. Nechaev showed that several well-known prominent families of good nonlinear binary codes can be identified as images of linear codes over Z_4 under the Gray map. Since then, codes over finite rings have received much attention^[2-4]. Many results in codes over finite rings especially over ring Z_4 have been obtained. Recently, a new ring $F_2 + uF_2 = \{0, 1, u, 1 + u\}$, where $u^2 = 0$, has been studied in [5–7].

In this paper, we obtain the structures of a cyclic code over $R = F_2 + uF_2 + u^2F_2$ of odd length and its cyclic dual code. We also provide necessary and sufficient conditions for the existence of self-dual code for the cyclic code.

2. Notations and definitions

R is a commutative chain ring of 8 elements which are $\{0, 1, u, u^2, v, v^2, uv, v^3\}$, where $u^3 = 0$, v = 1 + u, $v^2 = 1 + u^2$, $v^3 = 1 + u + u^2$ and $uv = u + u^2$. The elements of *R* are the polynomials over F_2 modulo the ideal (u^3) of $F_2[u]$, where F_2 is the binary field $\{0, 1\}$. Addition and multiplication operations over *R* are given in the Tables 1 and 2. The ring *R* has maximal ideal $uR = \{0, u, u^2, uv\}$.

Received date: 2007-05-11; Accepted date: 2008-05-07

+	0	1	u	v	u^2	uv	v^2	v^3
0	0	1	u	v	u^2	uv	v^2	v^3
1	1	0	v	u	v^2	v^3	u^2	uv
u	u	v	0	1	uv	u^2	v^3	v^2
v	v	u	1	0	v^3	v^2	uv	u^2
u^2	u^2	v^2	uv	v^3	0	u	1	v
uv	uv	v^3	u^2	v^2	u	0	v	1
v^2	v^2	u^2	v^3	uv	1	v	0	u
v^3	v^3	uv	v^2	u^2	v	1	u	0

Table 1 Addition operator

•	0	1	u	v	u^2	uv	v^2	v^3
0	0	0	0	0	0	0	0	0
1	0	1	u	v	u^2	uv	v^2	v^3
u	0	u	u^2	uv	0	u^2	u	uv
v	0	v	uv	v^2	u^2	u	v^3	1
u^2	0	u^2	0	u^2	0	0	u^2	u^2
uv	0	uv	u^2	u	0	u^2	uv	u
v^2	0	v^2	u	v^3	u^2	uv	1	v
v^3	0	v^2	uv	1	u^2	u	v	v^2

Table 2 Multiplication operator

For a finite ring R, consider the set R^n of n-tuples of elements from R as a module over R in the usual way. A subset $C \subseteq R^n$ is called a linear codes of length n over R if C is an R-submodule of R^n . C is called cyclic if for every codeword $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1}) \in C$, its cyclic shift $(x_{n-1}, x_0, \ldots, x_{n-2})$ is also in C.

Given $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$ and $\mathbf{y} = (y_0, y_1, \dots, y_{n-1}) \in \mathbb{R}^n$, their scalar product (or dot product) is $\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 + \dots + x_{n-1} y_{n-1} \in \mathbb{R}$. Two words x, y are called orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. For a linear code C over \mathbb{R} , its dual code C^{\perp} is the set of words over \mathbb{R} that are orthogonal to all codewords of C, i.e., $C^{\perp} = \{\mathbf{x} \in \mathbb{R}^n | \langle \mathbf{x}, \mathbf{c} \rangle = 0, \forall \mathbf{c} \in C\}$.

A code *C* is called self-dual if $C = C^{\perp}$. An *n*-tuple $c = (c_0, c_1, \ldots, c_{n-1}) \in \mathbb{R}^n$ is identified with the polynomial $c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ in $\mathbb{R}[x]/(x^n - 1)$, which is called the polynomial representation of $c = (c_0, c_1, \ldots, c_{n-1})$. For any $\lambda = r(\lambda) + uq(\lambda) + u^2 p(\lambda) \in \mathbb{R}$, $r(\lambda), q(\lambda), p(\lambda) \in \mathbb{F}_2$. Let $\overline{\lambda} = r(\lambda)$ denote the reduction of λ .

Define a polynomial reduction mapping

$$u: R[x] \longrightarrow F_2[x], \ f(x) = \sum_{i=0}^r a_i x^i \longrightarrow \sum_{i=0}^r \bar{a}_i x^i.$$

A monic polynomial f(x) over R[x] is said to be a basic irreducible polynomial if its projection uf(x) is irreducible over $F_2[x]$.

Let C be a linear code over R. We define the reduction code $C_{(1)}$ and the torsion code $C_{(2)}$ of C as follows. $C_{(1)} = \{x \in F_2^n \mid \exists y, z \in F_2^n \text{ s.t. } x + yu + zu^2 \in C\}$ and $C_{(2)} = \{x \in F_2^n \mid u^2x \in C\}$.

Let $f_1(x)$, $f_2(x) \in R[x]$. $f_1(x)$ is called an associate of $f_2(x)$ if there is an invertible element $r \in R$ such that $f_1(x) = rf_2(x)$.

3. Main results and proof

It is well known that a linear code C of odd length, denoted n, over R is cyclic code if and only if the set of polynomial representation of its codewords is an ideal of $R[x]/(x^n - 1)$.

Lemma 3.1 If f is a basic irreducible polynomial of the ring R[x], then R[x]/(f(x)) has the following ideals: $(0), (1 + (f(x))), (u + (f(x))), (u^2 + (f(x))).$

Proof (1) First we show that for distinct values of $i, j \in 0, 1, 2, (u^i + (f(x))) \neq (u^j + (f(x)))$. Suppose $(u^i + (f(x))) = (u^j + (f(x)))$. There exists $g(x) \in R[x]$ with $\deg(g) < \deg(f)$ such that $u^i + (f) = u^j g(x) + (f)$. That means $u^j g(x) - u^i \in (f)$. As

$$\deg(u^j g(x) - u^i) \le \deg(g(x)) < \deg(f),$$

it follows that $u^j g(x) - u^i = 0$. Multiplying by u^{3-j} gives $u^{3-j+i} = 0$, which is a contradiction to our hypothesis that u has nilpotency 3 and 0 < 3 - j + i < 3.

(2) Let I be a nonzero ideal of R[x]/(f) and h+(f) a nonzero element of I. By assumption, f is a basic irreducible polynomial in R[x]. Hence, \bar{f} is irreducible in $\bar{R}[x]$. Therefore, $gcd(\bar{h}, \bar{f}) = 1$ or \bar{f} . If $gcd(\bar{h}, \bar{f}) = 1$, i.e., \bar{h} and \bar{f} are coprime in $\bar{R}[x]$, then h and f are coprime in R[x]. So there exist $a, b \in R[x]$ such that ah + bf = 1. That implies (a + (f))(h + (f)) = 1 + (f), whence h + (f) is invertible in R[x]/(f). Therefore, I = (1 + (f)). For the case $gcd(\bar{h}, \bar{f}) = \bar{f}$, for all $h + (f) \in I$, which means $\bar{f}|\bar{h}$ and f|h. Hence, there exist $p, v \in R[x]$ such that h = fp + uv, whence $h + (f) \in (u + (f))$ for all $h + (f) \in I$, implying $I \subseteq (u + (f))$. Let k be the greatest integer < 3 such that $I \subseteq (u^k + (f))$. Then, as $I \nsubseteq (u^{k+1} + (f))$, there is a nonzero element $h_0 + (f) \in I$ such that $h_0 + (f) \in (u^{k+1} + (f))$. Since $h_0 + (f) \in I \subseteq (u^k + (f))$, there exist $p_0, v_0 \in R[x]$ such that $h_0 = p_0 f + v_0 u^k$. Now $gcd(\bar{v}_0, \bar{f}) = 1$ or \bar{f} . Suppose $gcd(\bar{v}_0, \bar{f}) = \bar{f}$. Then $\bar{f}|\bar{v}_0$ and $f|v_0$. So there exist $p_1, v_1 \in R[x]$ such that $v_0 = p_1 f + v_1 u$. Hence,

$$h_0 = p_0 f + v_0 u^k = p_0 f + (p_1 f + v_1 u) u^k = (p_0 + p_1 u^k) f + u^{k+1} v_1.$$

It follows that $h_0 + (f) \in (u^{k+1} + (f))$, a contradiction. Thus, $gcd(\bar{v_0}, \bar{f}) = 1$. The same argument as above yields that $v_0 + (f)$ is invertible in R[x]/(f), which means that there exists $w_0 + (f) \in R[x]/(f)$ such that $(w_0 + (f))(v_0 + (f)) = 1 + (f)$. Therefore,

$$u^{k} + (f) = (w_{0} + (f))(u^{k}v_{0} + (f)) = (w_{0} + (f))(h_{0} + (f)) \in I.$$

Consequently, $I = (u^k + (f))$ (k = 0, 1, 2).

Theorem 3.2 Let $x^n - 1 = f_1, f_2, \ldots, f_r$ be a representation of $x^n - 1$ as a product of basic

Cyclic code and self-dual code over $F_2 + uF_2 + u^2F_2$

irreducible pairwise-coprime polynomials in R[x]. Then any ideal in $R[x]/(x^n-1)$ is a sum of

$$(\hat{f}_i + (x^n - 1)), (u\hat{f}_i + (x^n - 1)), (u^2\hat{f}_i + (x^n - 1)),$$

where $0 \leq i \leq r$ and $\hat{f}_i = (x^n - 1)/f_i = \prod_{j \neq i} f_j$.

Proof By the Chinese Remainder theorem, we have

$$R_n = R[x]/(x^n - 1) = R[x]/(f_1) \cap (f_2) \cap \dots \cap (f_r)$$
$$\cong R[x]/(f_1) \oplus R[x]/(f_2) \oplus \dots \oplus R[x]/(f_r).$$

Thus, any ideal I of $R[x]/(x^n-1)$ is of the form $\bigoplus \sum_{i=1}^r I_i$, where I_i is an ideal of $R[x]/(f_i)$.

By Lemma 3.1, $I_i = (0)$ or $(u^m + (f_i))$ for $0 \le m \le 2$. Then I_i corresponds to $(u^m \hat{f}_i + (x^n - 1))$ ($0 \le m \le 2$) $\in R[x]/(x^n - 1)$.

Theorem 3.3 Let C be a cyclic code of odd length n. Then there exists a unique family of pairwise coprime monic polynomials $F_0, F_1, F_2, F_3 \in R[x]$ such that $x^n - 1 = F_0F_1F_2F_3$ and

$$C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3).$$

Moreover

$$|C| = 2^{l}, \quad l = \sum_{i=0}^{2} (3-i) \deg F_{i+1}.$$

Proof Let $x^n - 1 = f_1, f_2, \ldots, f_r$ be the unique factorization of $x^n - 1$ into a product of monic basic irreducible pariwise coprime polynomials. By Theorem 3.2, C is a direct sum of ideals of the form $(u^j \hat{f}_i)$ $(0 \le i \le r)$. After recordering if necessary, we can assume that C is a direct sum of the form

$$(\hat{f}_{k_1+1}), (\hat{f}_{k_1+2}), \dots, (\hat{f}_{k_1+k_2}); (u\hat{f}_{k_1+k_2+1}), \dots, (u\hat{f}_{k_1+k_2+k_3}); (u^2\hat{f}_{k_1+k_2+k_3+1}), \dots, (u^2\hat{f}_r),$$

i.e.,

$$C = (f_1 f_2 f_3 \cdots f_{k_1} f_{k_1 + k_2 + 1} \cdots f_r, u f_1 f_2 f_3 \cdots f_{k_1 + k_2} f_{k_1 + k_2 + k_3 + 1} \cdots f_r, u^2 f_1 f_2 f_3 \cdots f_{k_1 + k_2 + k_3}).$$

Let

$$\hat{F}_1 = f_1 f_2 f_3 \cdots f_{k_1} f_{k_1 + k_2 + 1} \cdots f_r,$$

$$\hat{F}_2 = f_1 f_2 f_3 \cdots f_{k_1 + k_2} f_{k_1 + k_2 + k_3 + 1} \cdots f_r,$$

$$\hat{F}_3 = f_1 f_2 f_3 \cdots f_{k_1 + k_2 + k_3}.$$

Then

$$F_{i} = \begin{cases} 1, & k_{i+1} = 0; \\ f_{k_{0}+k_{1}+\dots+k_{i}+1} \cdots f_{k_{0}+k_{1}+\dots+k_{i+1}}, & k_{i+1} \neq 0, \end{cases} \quad (k_{0} = 0, 0 \le i \le 3).$$

Then by our construction, it is clear that $C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3)$ and $x^n - 1 = F_0F_1F_2F_3 = f_1f_2\cdots f_r$.

To prove the uniqueness, assume G_0, G_1, G_2, G_3 are pairwise coprime monic polynomials in R[x] such that $G_0G_1G_2G_3 = x^n - 1$ and $C = (\hat{G}_1, u\hat{G}_2, u^2\hat{G}_3)$. Thus, $C = (\hat{G}_1) + (u\hat{G}_2) + (u^2\hat{G}_3)$.

Now there exist nonnegative integers $l_0 = 0, l_1, \ldots, l_{t+1}$, with $l_0 + l_1 + \cdots + l_{t+1} = r$, and a permutation $\{f'_1, \ldots, f'_r\}$ of $\{f_1, f_2, \ldots, f_r\}$ such that $G_i = f'_{l_0 + \cdots + l_i + 1} \cdots f'_{l_0 + \cdots + l_{i+1}}$ for i = 0, 1, 2, 3. Hence,

$$C = (\hat{f}'_{l_1+1}) \oplus \dots \oplus (\hat{f}'_{l_1+l_2}) \oplus (u\hat{f}'_{l_1+l_2+1}) \oplus (u\hat{f}'_{l_1+l_2+l_3}) \oplus (u^2\hat{f}'_{l_1+l_2+l_3+1}) \oplus \dots \oplus (u^2\hat{f}'_r).$$

It follows that $l_i = k_i$ for i = 0, 1, 2, 3. Furthermore, $\{f'_{l_0+\dots+l_t+1}, \dots, f'_{l_0+\dots+l_{t+1}}\}$ is a permutation of $\{f_{k_0+\dots+k_t+1}, \dots, f_{k_0+\dots+k_{t+1}}\}$. Therefore, $F_i = G_i$ for i = 0, 1, 2, 3. To calculate the order |C|, note that

$$C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3), \ C = (\hat{F}_1) \oplus (u\hat{F}_2) \oplus (u^3\hat{F}_3).$$
$$\hat{F}_1 2^2 \deg \hat{F}_2 2^{\deg} \hat{F}_3 = 2^l.$$

Hence, $|C| = 2^{3 \deg \hat{F}_1} 2^{2 \deg \hat{F}_2} 2^{\deg F_3} = 2^l$.

Theorem 3.4 Let C be a cyclic code of odd length n over R. Then there exist polynomials g_0, g_1, g_2 in R[x] such that $C = (g_0, ug_1, u^2g_2)$ and $g_2|g_1|g_0|x^n - 1$.

Proof By Theorem 3.3, there exists a family of pairwise coprime monic polynomials F_0, F_1, F_2, F_3 in R[x] such that $x^n - 1 = F_0 F_1 F_2 F_3$ and $C = (\hat{F}_1, u \hat{F}_2, u^2 \hat{F}_3)$. Define

$$g_0 = F_0 F_2 F_3, \ g_1 = F_0 F_3, \ g_2 = F_0.$$

Clearly, $g_2|g_1|g_0|x^n - 1$. Moreover, for $0 \le i \le 2$, we have

$$u^{i}\hat{F}_{i+1} = u^{i}F_{0}F_{1}\cdots F_{i}F_{i+2}\cdots F_{3} = u^{i}g_{i}F_{1}F_{2}\cdots F_{i}.$$

Therefore, $C \subseteq (g_0, ug_1, u^2g_2)$. On the other hand, $g_0 = F_0F_2F_3 \in C$. Since F_1 and F_2 are coprime polynomials in R[x], there exist polynomials $u_1, v_1 \in R[x]$ such that $u_1F_1 + v_1F_2 = 1$. It follows that

$$g_1 = F_0 F_3 = (u_1 F_1 + v_1 F_2) F_0 F_3 = u_1 F_0 F_1 F_3 + v_1 F_0 F_2 F_3$$

= $u_1 \hat{F}_2 + v_1 g_0$,

whence $ug_1 = uu_1\hat{F}_2 + uv_1g_0 \in C$. Continuing this process, we obtain $u^2g_2 \in C$, which implies $C \supseteq (g_0, ug_1, u^2g_2)$.

Theorem 3.5 Let C be a cyclic code of odd length n over R. With notations as in Theorem 3.4, denote $G = \hat{F}_1 + u\hat{F}_2 + u^2\hat{F}_3$. Then G is a generating polynomial of C, i.e., C = (G).

Proof For any distinct $i, j \in \{0, 1, 2, 3\}$, we have $(x^n - 1)|\hat{F}_i\hat{F}_j$. Therefore, $\hat{F}_i\hat{F}_j = 0$ in $R[x]/(x^n - 1)$. Moreover, for any $1 \le i \le 3$, F_i and \hat{F}_i are coprime. Hence, there exist $b_i, c_i \in R[x]$ such that $b_i\hat{F}_i + c_iF_i = 1$. Thus, for any integer $1 \le m \le 3$, we have $\prod_{i=1}^m (b_i\hat{F}_i + c_iF_i) = 1$. Multiplying the left-hand side of this equation out, we get that there exist polynomials $a_{m0}, a_{m1}, \ldots, a_{mm}$ such that

$$a_{m0}F_1F_2\cdots F_m + a_{m1}\hat{F}_1F_2\cdots F_m + a_{m2}F_1\hat{F}_2\cdots F_m + \dots + a_{mm}F_1F_2\cdots F_{m-1}\hat{F}_m = 1.$$

In particular, when m = 3, multiplying both sides of the above equation by $u^2 \hat{F}_3$ yields

$$u^2 \hat{F}_3 = u^2 a_{m0} F_1 F_2 \hat{F}_3.$$

Cyclic code and self-dual code over $F_2 + uF_2 + u^2F_2$

Since

$$F_1 F_2 G = u^2 F_1 F_2 \hat{F}_3,$$

 $GF_1F_2a_{m0} = u^2\hat{F}_3, \ u^2\hat{F}_3 \in (G).$ Continuing this process, we obtain that $u\hat{F}_2 \in (G)$ and $\hat{F}_1 \in (G)$, i.e., $C \subset (G)$. It is clear that $C \supset (G)$. Consequently, C = (G).

Next, we discuss the structure of the dual code of the cyclic code.

Lemma 3.6^[9] Let C be a linear code of length n over R. $|R| = p^{\alpha}$. Then |C| is a power of p. Assume $|C| = p^d$ and $|C^{\perp}| = p^l$. Then $d + l = n\alpha$.

Theorem 3.7 Let C be a cyclic code of odd length n over R with $C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3), |C| = 2^l$ and $l = \sum_{i=0}^{2} (3-i) \deg F_{i+1}$, where $x^n - 1 = F_0 F_1 F_2 F_3$ and $F_4 = F_0$, as in Theorem 3.4. Then

$$|C^{\perp}| = 2^{\sum_{i=1}^{3} i \deg F_{i+1}}$$

and $C^{\perp} = (\hat{F}_0^*, u\hat{F}_3^*, u^2\hat{F}_2^*)$, where $F^* = x^{\deg(F)}F(1/x)$.

Proof Denote $C_1 = (\hat{F}_0^*, u\hat{F}_3^*, u^2\hat{F}_2^*)$. Next we show that $C_1 = C^{\perp}$. For any $0 \le i, j \le 3$, we have

$$(u^i \hat{F}_{i+1})(u^j \hat{F}_{3-j+1})^* \equiv 0 \pmod{x^n - 1}.$$

Therefore, $C_1 \subset C^{\perp}$. Let $|C^{\perp}| = 2^{h'}$ and $|C| = 2^l$. By Lemma 3.6, h' + l = 3n. Hence $h' = \sum_{i=1}^{3} i \deg F_{i+1}$. Note that $|C_1| = 2^{\sum_{i=1}^{3} i \deg F_{i+1}}$. Consequently, $C_1 = C^{\perp}$.

Next, we discuss the residue and torsion codes of the cyclic code over R.

Theorem 3.8 Let C be a cyclic code of odd length n over R with $C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3)$, where $x^n - 1 = F_0F_1F_2F_3$ and F_0, F_1, F_2, F_3 are pairwise coprime monic polynomials. We have the residue code $C_{(1)} = u(F_0F_2F_3)$ of dimension deg (F_1) and the torsion code $C_{(2)} = u(F_0)$ of dimension deg F_1 + deg F_2 + deg F_3 .

Theorem 3.9 Let $C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3)$ and $x^n - 1 = F_0F_1F_2F_3$. Then C is self-dual if and only if F_i is an associate of F_j^* for all $i, j \in \{0, 1, 2, 3\}$ such that $i + j \equiv 1 \pmod{4}$.

Proof By Theorem 3.7, $C^{\perp} = (\hat{F}_0^*, u\hat{F}_3^*, u^2\hat{F}_2^*)$. Hence, if F_i is an associate of F_j^* for $i, j \in \{0, 1, 2, 3\}$ such that $i + j \equiv 1 \pmod{4}$, then

$$C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3) = (\hat{F}_0^*, u\hat{F}_3^*, u^2\hat{F}_2^*) = C^{\perp},$$

i.e., C is self-dual.

On the other hand, assume $C = C^{\perp}$. Let c_i denote the constants of F_i $(0 \le i \le 3)$. Since $x^n - 1 = F_0 F_1 F_2 F_3$, we have $c_0 c_1 c_2 c_3 = -1$. Therefore, c_i s are invertible elements of R and c_i s are leading coefficients of F_i s. For all $i, j \in \{0, 1, 2, 3\}$ such that $i + j \equiv 1 \pmod{4}$, denote $G_i = u_i F_j^*$, where u_i s are monic polynomials. Note that $u_i = c_j^{-1}$, and $u_0 u_1 u_2 u_3 = c_0^{-1} c_1^{-1} c_2^{-1} c_3^{-1} = -1$. Now

$$C = (\hat{F}_1, u\hat{F}_2, u^2\hat{F}_3) = C^{\perp} = (\hat{F}_0^*, u\hat{F}_3^*, u^2\hat{F}_2^*) = (\hat{G}_1, u\hat{G}_2, u^2\hat{G}_3)$$

Also,

$$G_0G_1G_2G_3 = (u_0u_1u_2u_3)F_1^*F_0^*F_3^*F_2^* = -F_0^*F_1^*F_2^*F_3^*$$

= $-x^{\deg F_0 + \deg F_1 + \deg F_2 + \deg F_3}F_0(x^{-1})F_1(x^{-1})F_2(x^{-1})F_3(x^{-1})$
= $-x^n(x^{-n} - 1) = x^n - 1.$

From the uniqueness in Theorem 3.3, $G_i = F_i$ and $F_i = u_i F_j^*$. The proof is completed.

References

- HAMMONS A R, KUMAR P V, CALDERBANK A R. et al. The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes [J]. IEEE Trans. Inform. Theory, 1994, 40(2): 301–319.
- [2] PLESS V S, QIAN Zhongqiang. Cyclic codes and quadratic residue codes over Z₄ [J]. IEEE Trans. Inform. Theory, 1996, 42(5): 1594–1600.
- WOLFMANN J. Negacyclic and cyclic codes over Z₄ [J]. IEEE Trans. Inform. Theory, 1999, 45(7): 2527–2532.
- WOLFMANN J. Binary images of cyclic codes over Z₄ [J]. IEEE Trans. Inform. Theory, 2001, 47(5): 1773–1779.
- [5] BONNECAZE A, UDAYA P. Cyclic codes and self-dual codes over F₂+uF₂ [J]. IEEE Trans. Inform. Theory, 1999, 45(4): 1250–1255.
- [6] UDAYA P, BONNECAZE A. Decoding of cyclic codes over $F_2 + uF_2$ [J]. IEEE Trans. Inform. Theory, 1999, **45**(6): 2148–2157.
- [7] DOUGHERTY S T, GABORIT P, HARADA M. Type II codes over $F_2 + uF_2$ [J]. IEEE Trans. Inform. Theory, 1999, **45**(1): 32–45.
- [8] AL-ASHKER M M. Simplex codes over the ring $\sum_{n=0}^{s} u^n F_2$ [J]. Turkish J. Math., 2005, **29**(3): 221–233.
- [9] CALDERBANK A R, SLOANE N J A. Modular and p-adic cyclic codes [J]. Des. Codes Cryptogr., 1995, 6(1): 21–35.