Cyclic Code and Self-Dual Code over $F_{2}+u F_{2}+u^{2} F_{2}$

FENG Qian Qian ${ }^{1}$, ZHOU Wei Gang ${ }^{2}$
(1. Department of Mathematics, Xiangfan University, Hubei 441053, China;
2. School of Mathematics and Statistics, Wuhan University, Hubei 430072, China)
(E-mail: qiuyu4094@sina.com)

Abstract

We give the structures of a cyclic code over ring $$
R=F_{2}+u F_{2}+u^{2} F_{2}=\left\{0,1, u, u^{2}, v, v^{2}, u v, v^{3}\right\},
$$

where $u^{3}=0$, of odd length and its dual code. For the cyclic code, necessary and sufficient conditions for the existence of self-dual code are provided.

Keywords ring $F_{2}+u F_{2}+u^{2} F_{2}$; cyclic code; residue code; torsion code; self-dual code.
Document code A
MR(2000) Subject Classification 94B15; 11H71
Chinese Library Classification O157.4

1. Introduction

From the 1990s, the theory of codes over finite rings has gained prominence since the significant discovery of Nechaev ${ }^{[1]}$. Nechaev showed that several well-known prominent families of good nonlinear binary codes can be identified as images of linear codes over Z_{4} under the Gray map. Since then, codes over finite rings have received much attention ${ }^{[2-4]}$. Many results in codes over finite rings especially over ring Z_{4} have been obtained. Recently, a new ring $F_{2}+u F_{2}=\{0,1, u, 1+u\}$, where $u^{2}=0$, has been studied in [5-7].

In this paper, we obtain the structures of a cyclic code over $R=F_{2}+u F_{2}+u^{2} F_{2}$ of odd length and its cyclic dual code. We also provide necessary and sufficient conditions for the existence of self-dual code for the cyclic code.

2. Notations and definitions

R is a commutative chain ring of 8 elements which are $\left\{0,1, u, u^{2}, v, v^{2}, u v, v^{3}\right\}$, where $u^{3}=0$, $v=1+u, v^{2}=1+u^{2}, v^{3}=1+u+u^{2}$ and $u v=u+u^{2}$. The elements of R are the polynomials over F_{2} modulo the ideal $\left(u^{3}\right)$ of $F_{2}[u]$, where F_{2} is the binary field $\{0,1\}$. Addition and multiplication operations over R are given in the Tables 1 and 2. The ring R has maximal ideal $u R=\left\{0, u, u^{2}, u v\right\}$.

+	0	1	u	v	u^{2}	$u v$	v^{2}	v^{3}
0	0	1	u	v	u^{2}	$u v$	v^{2}	v^{3}
1	1	0	v	u	v^{2}	v^{3}	u^{2}	$u v$
u	u	v	0	1	$u v$	u^{2}	v^{3}	v^{2}
v	v	u	1	0	v^{3}	v^{2}	$u v$	u^{2}
u^{2}	u^{2}	v^{2}	$u v$	v^{3}	0	u	1	v
$u v$	$u v$	v^{3}	u^{2}	v^{2}	u	0	v	1
v^{2}	v^{2}	u^{2}	v^{3}	$u v$	1	v	0	u
v^{3}	v^{3}	$u v$	v^{2}	u^{2}	v	1	u	0

Table 1 Addition operator

\cdot	0	1	u	v	u^{2}	$u v$	v^{2}	v^{3}
0	0	0	0	0	0	0	0	0
1	0	1	u	v	u^{2}	$u v$	v^{2}	v^{3}
u	0	u	u^{2}	$u v$	0	u^{2}	u	$u v$
v	0	v	$u v$	v^{2}	u^{2}	u	v^{3}	1
u^{2}	0	u^{2}	0	u^{2}	0	0	u^{2}	u^{2}
$u v$	0	$u v$	u^{2}	u	0	u^{2}	$u v$	u
v^{2}	0	v^{2}	u	v^{3}	u^{2}	$u v$	1	v
v^{3}	0	v^{2}	$u v$	1	u^{2}	u	v	v^{2}

Table 2 Multiplication operator
For a finite ring R, consider the set R^{n} of n-tuples of elements from R as a module over R in the usual way. A subset $C \subseteq R^{n}$ is called a linear codes of length n over R if C is an R-submodule of R^{n}. C is called cyclic if for every codeword $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in C$, its cyclic shift $\left(x_{n-1}, x_{0}, \ldots, x_{n-2}\right)$ is also in C.

Given $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in R^{n}$, their scalar product (or dot product) is $\langle\mathbf{x}, \mathbf{y}\rangle=x_{0} y_{0}+\cdots+x_{n-1} y_{n-1} \in R$. Two words x, y are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. For a linear code C over R, its dual code C^{\perp} is the set of words over R that are orthogonal to all codewords of C, i.e., $C^{\perp}=\left\{\mathbf{x} \in R^{n} \mid\langle\mathbf{x}, \mathbf{c}\rangle=0, \forall \mathbf{c} \in C\right\}$.

A code C is called self-dual if $C=C^{\perp}$. An n-tuple $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$ is identified with the polynomial $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ in $R[x] /\left(x^{n}-1\right)$, which is called the polynomial representation of $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. For any $\lambda=r(\lambda)+u q(\lambda)+u^{2} p(\lambda) \in R, r(\lambda), q(\lambda), p(\lambda) \in$ F_{2}. Let $\bar{\lambda}=r(\lambda)$ denote the reduction of λ.

Define a polynomial reduction mapping

$$
u: R[x] \longrightarrow F_{2}[x], f(x)=\sum_{i=0}^{r} a_{i} x^{i} \longrightarrow \sum_{i=0}^{r} \overline{a_{i}} x^{i}
$$

A monic polynomial $f(x)$ over $R[x]$ is said to be a basic irreducible polynomial if its projection $u f(x)$ is irreducible over $F_{2}[x]$.

Let C be a linear code over R. We define the reduction code $C_{(1)}$ and the torsion code $C_{(2)}$ of C as follows. $C_{(1)}=\left\{x \in F_{2}^{n} \mid \exists y, z \in F_{2}^{n}\right.$ s.t. $\left.x+y u+z u^{2} \in C\right\}$ and $C_{(2)}=\left\{x \in F_{2}^{n} \mid u^{2} x \in C\right\}$.

Let $f_{1}(x), f_{2}(x) \in R[x] . f_{1}(x)$ is called an associate of $f_{2}(x)$ if there is an invertible element $r \in R$ such that $f_{1}(x)=r f_{2}(x)$.

3. Main results and proof

It is well known that a linear code C of odd length, denoted n, over R is cyclic code if and only if the set of polynomial representation of its codewords is an ideal of $R[x] /\left(x^{n}-1\right)$.

Lemma 3.1 If f is a basic irreducible polynomial of the ring $R[x]$, then $R[x] /(f(x))$ has the following ideals: $(0),(1+(f(x))),(u+(f(x))),\left(u^{2}+(f(x))\right)$.

Proof (1) First we show that for distinct values of $i, j \in 0,1,2,\left(u^{i}+(f(x))\right) \neq\left(u^{j}+(f(x))\right)$. Suppose $\left(u^{i}+(f(x))\right)=\left(u^{j}+(f(x))\right)$. There exists $g(x) \in R[x]$ with $\operatorname{deg}(g)<\operatorname{deg}(f)$ such that $u^{i}+(f)=u^{j} g(x)+(f)$. That means $u^{j} g(x)-u^{i} \in(f)$. As

$$
\operatorname{deg}\left(u^{j} g(x)-u^{i}\right) \leq \operatorname{deg}(g(x))<\operatorname{deg}(f)
$$

it follows that $u^{j} g(x)-u^{i}=0$. Multiplying by u^{3-j} gives $u^{3-j+i}=0$, which is a contradiction to our hypothesis that u has nilpotency 3 and $0<3-j+i<3$.
(2) Let I be a nonzero ideal of $R[x] /(f)$ and $h+(f)$ a nonzero element of I. By assumption, f is a basic irreducible polynomial in $R[x]$. Hence, \bar{f} is irreducible in $\bar{R}[x]$. Therefore, $\operatorname{gcd}(\bar{h}, \bar{f})=1$ or \bar{f}. If $\operatorname{gcd}(\bar{h}, \bar{f})=1$, i.e., \bar{h} and \bar{f} are coprime in $\bar{R}[x]$, then h and f are coprime in $R[x]$. So there exist $a, b \in R[x]$ such that $a h+b f=1$. That implies $(a+(f))(h+(f))=1+(f)$, whence $h+(f)$ is invertible in $R[x] /(f)$. Therefore, $I=(1+(f))$. For the case $\operatorname{gcd}(\bar{h}, \bar{f})=\bar{f}$, for all $h+(f) \in I$, which means $\bar{f} \mid \bar{h}$ and $f \mid h$. Hence, there exist $p, v \in R[x]$ such that $h=f p+u v$, whence $h+(f) \in(u+(f))$ for all $h+(f) \in I$, implying $I \subseteq(u+(f))$. Let k be the greatest integer <3 such that $I \subseteq\left(u^{k}+(f)\right)$. Then, as $I \nsubseteq\left(u^{k+1}+(f)\right)$, there is a nonzero element $h_{0}+(f) \in I$ such that $h_{0}+(f) \bar{\in}\left(u^{k+1}+(f)\right)$. Since $h_{0}+(f) \in I \subseteq\left(u^{k}+(f)\right)$, there exist $p_{0}, v_{0} \in R[x]$ such that $h_{0}=p_{0} f+v_{0} u^{k}$. Now $\operatorname{gcd}\left(\overline{v_{0}}, \bar{f}\right)=1$ or \bar{f}. Suppose $\operatorname{gcd}\left(\overline{v_{0}}, \bar{f}\right)=\bar{f}$. Then $\bar{f} \mid \overline{v_{0}}$ and $f \mid v_{0}$. So there exist $p_{1}, v_{1} \in R[x]$ such that $v_{0}=p_{1} f+v_{1} u$. Hence,

$$
h_{0}=p_{0} f+v_{0} u^{k}=p_{0} f+\left(p_{1} f+v_{1} u\right) u^{k}=\left(p_{0}+p_{1} u^{k}\right) f+u^{k+1} v_{1} .
$$

It follows that $h_{0}+(f) \in\left(u^{k+1}+(f)\right)$, a contradiction. Thus, $\operatorname{gcd}\left(\overline{v_{0}}, \bar{f}\right)=1$. The same arguement as above yields that $v_{0}+(f)$ is invertible in $R[x] /(f)$, which means that there exists $w_{0}+(f) \in R[x] /(f)$ such that $\left(w_{0}+(f)\right)\left(v_{0}+(f)\right)=1+(f)$. Therefore,

$$
u^{k}+(f)=\left(w_{0}+(f)\right)\left(u^{k} v_{0}+(f)\right)=\left(w_{0}+(f)\right)\left(h_{0}+(f)\right) \in I
$$

Consequently, $I=\left(u^{k}+(f)\right)(k=0,1,2)$.
Theorem 3.2 Let $x^{n}-1=f_{1}, f_{2}, \ldots, f_{r}$ be a representation of $x^{n}-1$ as a product of basic
irreducible pairwise-coprime polynomials in $R[x]$. Then any ideal in $R[x] /\left(x^{n}-1\right)$ is a sum of

$$
\left(\hat{f}_{i}+\left(x^{n}-1\right)\right), \quad\left(u \hat{f}_{i}+\left(x^{n}-1\right)\right), \quad\left(u^{2} \hat{f}_{i}+\left(x^{n}-1\right)\right)
$$

where $0 \leqslant i \leqslant r$ and $\hat{f}_{i}=\left(x^{n}-1\right) / f_{i}=\Pi_{j \neq i} f_{j}$.
Proof By the Chinese Remainder theorem, we have

$$
\begin{aligned}
R_{n} & =R[x] /\left(x^{n}-1\right)=R[x] /\left(f_{1}\right) \cap\left(f_{2}\right) \cap \cdots \cap\left(f_{r}\right) \\
& \cong R[x] /\left(f_{1}\right) \oplus R[x] /\left(f_{2}\right) \oplus \cdots \oplus R[x] /\left(f_{r}\right)
\end{aligned}
$$

Thus, any ideal I of $R[x] /\left(x^{n}-1\right)$ is of the form $\oplus \sum_{i=1}^{r} I_{i}$, where I_{i} ia an ideal of $R[x] /\left(f_{i}\right)$.
By Lemma 3.1, $I_{i}=(0)$ or $\left(u^{m}+\left(f_{i}\right)\right)$ for $0 \leq m \leq 2$. Then I_{i} corresponds to $\left(u^{m} \hat{f}_{i}+\left(x^{n}-\right.\right.$ 1)) $(0 \leq m \leq 2) \in R[x] /\left(x^{n}-1\right)$.

Theorem 3.3 Let C be a cyclic code of odd length n. Then there exists a unique family of pairwise coprime monic polynomials $F_{0}, F_{1}, F_{2}, F_{3} \in R[x]$ such that $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$ and

$$
C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)
$$

Moreover

$$
|C|=2^{l}, \quad l=\sum_{i=0}^{2}(3-i) \operatorname{deg} F_{i+1}
$$

Proof Let $x^{n}-1=f_{1}, f_{2}, \ldots, f_{r}$ be the unique factorization of $x^{n}-1$ into a product of monic basic irreducible pariwise coprime polynomials. By Theorem 3.2, C is a direct sum of ideals of the form $\left(u^{j} \hat{f}_{i}\right)(0 \leq i \leq r)$. After recordering if necessary, we can assume that C is a direct sum of the form

$$
\left(\hat{f}_{k_{1}+1}\right),\left(\hat{f}_{k_{1}+2}\right), \ldots,\left(\hat{f}_{k_{1}+k_{2}}\right) ;\left(u \hat{f}_{k_{1}+k_{2}+1}\right), \ldots,\left(u \hat{f}_{k_{1}+k_{2}+k_{3}}\right) ;\left(u^{2} \hat{f}_{k_{1}+k_{2}+k_{3}+1}\right), \ldots,\left(u^{2} \hat{f}_{r}\right)
$$

i.e.,

$$
\begin{aligned}
C= & \left(f_{1} f_{2} f_{3} \cdots f_{k_{1}} f_{k_{1}+k_{2}+1} \cdots f_{r}, u f_{1} f_{2} f_{3} \cdots f_{k_{1}+k_{2}} f_{k_{1}+k_{2}+k_{3}+1} \cdots f_{r}\right. \\
& \left.u^{2} f_{1} f_{2} f_{3} \cdots f_{k_{1}+k_{2}+k_{3}}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& \hat{F}_{1}=f_{1} f_{2} f_{3} \cdots f_{k_{1}} f_{k_{1}+k_{2}+1} \cdots f_{r} \\
& \hat{F}_{2}=f_{1} f_{2} f_{3} \cdots f_{k_{1}+k_{2}} f_{k_{1}+k_{2}+k_{3}+1} \cdots f_{r} \\
& \hat{F}_{3}=f_{1} f_{2} f_{3} \cdots f_{k_{1}+k_{2}+k_{3}}
\end{aligned}
$$

Then

$$
F_{i}=\left\{\begin{array}{cl}
1, & k_{i+1}=0 \\
f_{k_{0}+k_{1}+\cdots+k_{i}+1} \cdots f_{k_{0}+k_{1}+\cdots+k_{i+1}}, & k_{i+1} \neq 0
\end{array} \quad\left(k_{0}=0,0 \leq i \leq 3\right)\right.
$$

Then by our construction, it is clear that $C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)$ and $x^{n}-1=F_{0} F_{1} F_{2} F_{3}=$ $f_{1} f_{2} \cdots f_{r}$.

To prove the uniqueness, assume $G_{0}, G_{1}, G_{2}, G_{3}$ are pairwise coprime monic polynomials in $R[x]$ such that $G_{0} G_{1} G_{2} G_{3}=x^{n}-1$ and $C=\left(\hat{G}_{1}, u \hat{G}_{2}, u^{2} \hat{G}_{3}\right)$. Thus, $C=\left(\hat{G}_{1}\right)+\left(u \hat{G}_{2}\right)+\left(u^{2} \hat{G}_{3}\right)$.

Now there exist nonnegative integers $l_{0}=0, l_{1}, \ldots, l_{t+1}$, with $l_{0}+l_{1}+\cdots+l_{t+1}=r$, and a permutation $\left\{f_{1}^{\prime}, \ldots, f_{r}^{\prime}\right\}$ of $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ such that $G_{i}=f_{l_{0}+\cdots+l_{i}+1}^{\prime} \cdots f_{l_{0}+\cdots+l_{i+1}}^{\prime}$ for $i=$ $0,1,2,3$. Hence,

$$
C=\left(\hat{f}_{l_{1}+1}^{\prime}\right) \oplus \cdots \oplus\left(\hat{f}_{l_{1}+l_{2}}^{\prime}\right) \oplus\left(u \hat{f}_{l_{1}+l_{2}+1}^{\prime}\right) \oplus\left(u \hat{f}_{l_{1}+l_{2}+l_{3}}^{\prime}\right) \oplus\left(u^{2} \hat{f}_{l_{1}+l_{2}+l_{3}+1}^{\prime}\right) \oplus \cdots \oplus\left(u^{2} \hat{f}_{r}^{\prime}\right)
$$

It follows that $l_{i}=k_{i}$ for $i=0,1,2,3$. Furthermore, $\left\{f_{l_{0}+\cdots+l_{t}+1}^{\prime}, \ldots, f_{l_{0}+\cdots+l_{t+1}}^{\prime}\right\}$ is a permutation of $\left\{f_{k_{0}+\cdots+k_{t}+1}, \ldots, f_{k_{0}+\cdots+k_{t+1}}\right\}$. Therefore, $F_{i}=G_{i}$ for $i=0,1,2,3$. To calculate the order $|C|$, note that

$$
C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right), C=\left(\hat{F}_{1}\right) \oplus\left(u \hat{F}_{2}\right) \oplus\left(u^{3} \hat{F}_{3}\right)
$$

Hence, $|C|=2^{3 \operatorname{deg} \hat{F}_{1}} 2^{2 \operatorname{deg} \hat{F}_{2}} 2^{\operatorname{deg} \hat{F}_{3}}=2^{l}$.
Theorem 3.4 Let C be a cyclic code of odd length n over R. Then there exist polynomials g_{0}, g_{1}, g_{2} in $R[x]$ such that $C=\left(g_{0}, u g_{1}, u^{2} g_{2}\right)$ and $g_{2}\left|g_{1}\right| g_{0} \mid x^{n}-1$.

Proof By Theorem 3.3, there exists a family of pairwise coprime monic polynomials $F_{0}, F_{1}, F_{2}, F_{3}$ in $R[x]$ such that $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$ and $C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)$. Define

$$
g_{0}=F_{0} F_{2} F_{3}, g_{1}=F_{0} F_{3}, g_{2}=F_{0}
$$

Clearly, $g_{2}\left|g_{1}\right| g_{0} \mid x^{n}-1$. Moreover, for $0 \leq i \leq 2$, we have

$$
u^{i} \hat{F}_{i+1}=u^{i} F_{0} F_{1} \cdots F_{i} F_{i+2} \cdots F_{3}=u^{i} g_{i} F_{1} F_{2} \cdots F_{i} .
$$

Therefore, $C \subseteq\left(g_{0}, u g_{1}, u^{2} g_{2}\right)$. On the other hand, $g_{0}=F_{0} F_{2} F_{3} \in C$. Since F_{1} and F_{2} are coprime polynomials in $R[x]$, there exist polynomials $u_{1}, v_{1} \in R[x]$ such that $u_{1} F_{1}+v_{1} F_{2}=1$. It follows that

$$
\begin{aligned}
g_{1} & =F_{0} F_{3}=\left(u_{1} F_{1}+v_{1} F_{2}\right) F_{0} F_{3}=u_{1} F_{0} F_{1} F_{3}+v_{1} F_{0} F_{2} F_{3} \\
& =u_{1} \hat{F}_{2}+v_{1} g_{0},
\end{aligned}
$$

whence $u g_{1}=u u_{1} \hat{F}_{2}+u v_{1} g_{0} \in C$. Continuing this process, we obtain $u^{2} g_{2} \in C$, which implies $C \supseteq\left(g_{0}, u g_{1}, u^{2} g_{2}\right)$. Consequently, $C=\left(g_{0}, u g_{1}, u^{2} g_{2}\right)$.

Theorem 3.5 Let C be a cyclic code of odd length n over R. With notations as in Theorem 3.4, denote $G=\hat{F}_{1}+u \hat{F}_{2}+u^{2} \hat{F}_{3}$. Then G is a generating polynomial of C, i.e., $C=(G)$.

Proof For any distinct $i, j \in\{0,1,2,3\}$, we have $\left(x^{n}-1\right) \mid \hat{F}_{i} \hat{F}_{j}$. Therefore, $\hat{F}_{i} \hat{F}_{j}=0$ in $R[x] /\left(x^{n}-\right.$ 1). Moreover, for any $1 \leq i \leq 3, F_{i}$ and \hat{F}_{i} are coprime. Hence, there exist $b_{i}, c_{i} \in R[x]$ such that $b_{i} \hat{F}_{i}+c_{i} F_{i}=1$. Thus, for any integer $1 \leq m \leq 3$, we have $\prod_{i=1}^{m}\left(b_{i} \hat{F}_{i}+c_{i} F_{i}\right)=1$. Multiplying the left-hand side of this equation out, we get that there exist polynomials $a_{m 0}, a_{m 1}, \ldots, a_{m m}$ such that

$$
a_{m 0} F_{1} F_{2} \cdots F_{m}+a_{m 1} \hat{F}_{1} F_{2} \cdots F_{m}+a_{m 2} F_{1} \hat{F}_{2} \cdots F_{m}+\cdots+a_{m m} F_{1} F_{2} \cdots F_{m-1} \hat{F}_{m}=1
$$

In particular, when $m=3$, multiplying both sides of the above equation by $u^{2} \hat{F}_{3}$ yields

$$
u^{2} \hat{F}_{3}=u^{2} a_{m 0} F_{1} F_{2} \hat{F}_{3}
$$

Since

$$
F_{1} F_{2} G=u^{2} F_{1} F_{2} \hat{F}_{3}
$$

$G F_{1} F_{2} a_{m 0}=u^{2} \hat{F}_{3}, u^{2} \hat{F}_{3} \in(G)$. Continuing this process, we obtain that $u \hat{F}_{2} \in(G)$ and $\hat{F}_{1} \in(G)$, i.e., $C \subset(G)$. It is clear that $C \supset(G)$. Consequently, $C=(G)$.

Next, we discuss the structure of the dual code of the cyclic code.
Lemma 3.6 ${ }^{[9]}$ Let C be a linear code of length n over $R .|R|=p^{\alpha}$. Then $|C|$ is a power of p. Assume $|C|=p^{d}$ and $\left|C^{\perp}\right|=p^{l}$. Then $d+l=n \alpha$.

Theorem 3.7 Let C be a cyclic code of odd length n over R with $C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right),|C|=2^{l}$ and $l=\sum_{i=0}^{2}(3-i) \operatorname{deg} F_{i+1}$, where $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$ and $F_{4}=F_{0}$, as in Theorem 3.4. Then

$$
\left|C^{\perp}\right|=2^{\sum_{i=1}^{3} i \operatorname{deg} F_{i+1}}
$$

and $C^{\perp}=\left(\hat{F}_{0}^{*}, u \hat{F}_{3}^{*}, u^{2} \hat{F}_{2}^{*}\right)$, where $F^{*}=x^{\operatorname{deg}(F)} F(1 / x)$.
Proof Denote $C_{1}=\left(\hat{F}_{0}^{*}, u \hat{F}_{3}^{*}, u^{2} \hat{F}_{2}^{*}\right)$. Next we show that $C_{1}=C^{\perp}$. For any $0 \leq i, j \leq 3$, we have

$$
\left(u^{i} \hat{F}_{i+1}\right)\left(u^{j} \hat{F}_{3-j+1}\right)^{*} \equiv 0\left(\bmod x^{n}-1\right)
$$

Therefore, $C_{1} \subset C^{\perp}$. Let $\left|C^{\perp}\right|=2^{h^{\prime}}$ and $|C|=2^{l}$. By Lemma 3.6, $h^{\prime}+l=3 n$. Hence $h^{\prime}=\sum_{i=1}^{3} i \operatorname{deg} F_{i+1}$. Note that $\left|C_{1}\right|=2^{\sum_{i=1}^{3} i \operatorname{deg} F_{i+1}}$. Consequently, $C_{1}=C^{\perp}$.

Next, we discuss the residue and torsion codes of the cyclic code over R.
Theorem 3.8 Let C be a cyclic code of odd length n over R with $C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)$, where $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$ and $F_{0}, F_{1}, F_{2}, F_{3}$ are pairwise coprime monic polynomials. We have the residue code $C_{(1)}=u\left(F_{0} F_{2} F_{3}\right)$ of dimension $\operatorname{deg}\left(F_{1}\right)$ and the torsion code $C_{(2)}=u\left(F_{0}\right)$ of dimension $\operatorname{deg} F_{1}+\operatorname{deg} F_{2}+\operatorname{deg} F_{3}$.

Theorem 3.9 Let $C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)$ and $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$. Then C is self-dual if and only if F_{i} is an associate of F_{j}^{*} for all $i, j \in\{0,1,2,3\}$ such that $i+j \equiv 1(\bmod 4)$.

Proof By Theorem 3.7, $C^{\perp}=\left(\hat{F}_{0}^{*}, u \hat{F}_{3}^{*}, u^{2} \hat{F}_{2}^{*}\right)$. Hence, if F_{i} is an associate of F_{j}^{*} for $i, j \in$ $\{0,1,2,3\}$ such that $i+j \equiv 1(\bmod 4)$, then

$$
C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)=\left(\hat{F}_{0}^{*}, u \hat{F}_{3}^{*}, u^{2} \hat{F}_{2}^{*}\right)=C^{\perp}
$$

i.e., C is self-dual.

On the other hand, assume $C=C^{\perp}$. Let c_{i} denote the constants of $F_{i}(0 \leq i \leq 3)$. Since $x^{n}-1=F_{0} F_{1} F_{2} F_{3}$, we have $c_{0} c_{1} c_{2} c_{3}=-1$. Therefore, c_{i} s are invertible elements of R and c_{i} s are leading coefficents of F_{i} s. For all $i, j \in\{0,1,2,3\}$ such that $i+j \equiv 1(\bmod 4)$, denote $G_{i}=u_{i} F_{j}^{*}$, where u_{i} s are monic polynomials. Note that $u_{i}=c_{j}^{-1}$, and $u_{0} u_{1} u_{2} u_{3}=c_{0}^{-1} c_{1}^{-1} c_{2}^{-1} c_{3}^{-1}=-1$. Now

$$
C=\left(\hat{F}_{1}, u \hat{F}_{2}, u^{2} \hat{F}_{3}\right)=C^{\perp}=\left(\hat{F}_{0}^{*}, u \hat{F}_{3}^{*}, u^{2} \hat{F}_{2}^{*}\right)=\left(\hat{G}_{1}, u \hat{G}_{2}, u^{2} \hat{G}_{3}\right)
$$

Also,

$$
\begin{aligned}
G_{0} G_{1} G_{2} G_{3} & =\left(u_{0} u_{1} u_{2} u_{3}\right) F_{1}^{*} F_{0}^{*} F_{3}^{*} F_{2}^{*}=-F_{0}^{*} F_{1}^{*} F_{2}^{*} F_{3}^{*} \\
& =-x^{\operatorname{deg} F_{0}+\operatorname{deg} F_{1}+\operatorname{deg} F_{2}+\operatorname{deg} F_{3} F_{0}\left(x^{-1}\right) F_{1}\left(x^{-1}\right) F_{2}\left(x^{-1}\right) F_{3}\left(x^{-1}\right)} \\
& =-x^{n}\left(x^{-n}-1\right)=x^{n}-1
\end{aligned}
$$

From the uniqueness in Theorem 3.3, $G_{i}=F_{i}$ and $F_{i}=u_{i} F_{j}^{*}$. The proof is completed.

References

[1] HAMMONS A R, KUMAR P V, CALDERBANK A R. et al. The Z_{4}-linearity of Kerdock, Preparata, Goethals, and related codes [J]. IEEE Trans. Inform. Theory, 1994, 40(2): 301-319.
[2] PLESS V S, QIAN Zhongqiang. Cyclic codes and quadratic residue codes over Z_{4} [J]. IEEE Trans. Inform. Theory, 1996, 42(5): 1594-1600.
[3] WOLFMANN J. Negacyclic and cyclic codes over Z_{4} [J]. IEEE Trans. Inform. Theory, 1999, 45(7): 25272532.
[4] WOLFMANN J. Binary images of cyclic codes over Z_{4} [J]. IEEE Trans. Inform. Theory, 2001, 47(5): 1773-1779.
[5] BONNECAZE A, UDAYA P. Cyclic codes and self-dual codes over $F_{2}+u F_{2}$ [J]. IEEE Trans. Inform. Theory, 1999, 45(4): 1250-1255.
[6] UDAYA P, BONNECAZE A. Decoding of cyclic codes over $F_{2}+u F_{2}$ [J]. IEEE Trans. Inform. Theory, 1999, 45(6): 2148-2157.
[7] DOUGHERTY S T, GABORIT P, HARADA M. Type II codes over $F_{2}+u F_{2}$ [J]. IEEE Trans. Inform. Theory, 1999, 45(1): 32-45.
[8] AL-ASHKER M M. Simplex codes over the ring $\sum_{n=0}^{s} u^{n} F_{2}$ [J]. Turkish J. Math., 2005, 29(3): 221-233.
[9] CALDERBANK A R, SLOANE N J A. Modular and p-adic cyclic codes [J]. Des. Codes Cryptogr., 1995, 6(1): $21-35$.

