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Abstract We give the structures of a cyclic code over ring
R=F+uFs +u*F, = {0, 1,u,u2,v,v2,uv,v3},

where u® = 0, of odd length and its dual code. For the cyclic code, necessary and sufficient
conditions for the existence of self-dual code are provided.
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1. Introduction

From the 1990s, the theory of codes over finite rings has gained prominence since the sig-
nificant discovery of Nechaev!!!. Nechaev showed that several well-known prominent families
of good nonlinear binary codes can be identified as images of linear codes over Z; under the
Gray map. Since then, codes over finite rings have received much attention?=4. Many re-
sults in codes over finite rings especially over ring Z; have been obtained. Recently, a new ring
Fy +uFy; ={0,1,u,1+ u}, where u? = 0, has been studied in [5-7].

In this paper, we obtain the structures of a cyclic code over R = Fy+uFs+u?F; of odd length
and its cyclic dual code. We also provide necessary and sufficient conditions for the existence of

self-dual code for the cyclic code.

2. Notations and definitions

R is a commutative chain ring of 8 elements which are {0, 1, u, u?,v,v?, uv, v3}, where u® = 0,
v=1+u v>=1+u% v> =14+ u+u? and uv = u + u?. The elements of R are the
polynomials over F; modulo the ideal (u?) of Fy[u], where Fj is the binary field {0,1}. Addition
and multiplication operations over R are given in the Tables 1 and 2. The ring R has maximal
ideal uR = {0, u,u? uv}.
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+ 0 1 u v 2w | 02| 0®
0 0 1 u v 2w | 02| ®
1 1 0 v w | v2 | v | w? | w
U U v 0 1 | w | w? | o3| v?
v v u 1 0 | 3| o2 | wo | u?
w? | u? | v? | w | 08 0 U 1 v
wo | uv | 03 | w2 | v? U 0 v 1
v2 | v? | u? 31 ww 1 v 0 u
03| v | | 02| W v 1 u 0
Table 1 Addition operator
0 1 U v || w | v? | V3
0|0 O 0 0 0 0 0
1 0 1 U v || w | v? | V3
w |0 w | w|uvl| O | u? u | uv
v |0 v | wuv | v? | u? v3 1
w? | 0| u? 0 | u? 0 0 | w? | u?
wo | 0| wv | u? U 0| w | wv| u
v2 | 0| v? u | 3| u? | ww 1 v
v 0| v? | w 1 w? | wu v V2

Table 2 Multiplication operator

For a finite ring R, consider the set R™ of n-tuples of elements from R as a module over

R in the usual way. A subset C' C R™ is called a linear codes of length n over R if C' is an

R-submodule of R". C is called cyclic if for every codeword x = (zg,21,...,2n—1) € C, its
cyclic shift (x,—1,20,...,2n—2) is also in C.
Given x = (20, Z1,...,Zn—1) and y = (Yo,¥1,--.,Yn—1) € R", their scalar product (or dot

product) is (X,y) = Zoyo+ - -+ Tn—1Yn—1 € R. Two words z, y are called orthogonal if (x,y) = 0.
For a linear code C over R, its dual code C* is the set of words over R that are orthogonal to
all codewords of C, i.e., C+ = {x € R"|(x,¢c) = 0,Vc € C}.

A code C is called self-dual if C' = C*+. An n-tuple ¢ = (cg,c1,...,¢,1) € R" is identified
with the polynomial cg + ¢12 + - -+ + ¢, 12"~ in R[z]/(z"™ — 1), which is called the polynomial
representation of ¢ = (cg,c1, ..., c,—1). For any A = 7(A) +ug(A\) +u?p(\) € R, 7(N), q¢(A\), p(A) €
Fy. Let A = r()\) denote the reduction of \.

Define a polynomial reduction mapping
u: R[z] — Fz], f(x) = Zaixi — Za}-xi.
i=0 i=0

A monic polynomial f(z) over R[z] is said to be a basic irreducible polynomial if its projection

uf(x) is irreducible over F[z].
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Let C be a linear code over R. We define the reduction code C|1) and the torsion code C(2) of
C as follows. C(1) = {z € F§ | Jy,z € F3' s.t. x+yu+zu? € C} and Cpoy = {z € FJ' | v’z € C}.

Let f1(x), fo(z) € Rlz]. f1(z) is called an associate of fo(x) if there is an invertible element
r € R such that fi(z) = rfa(x).

3. Main results and proof

It is well known that a linear code C of odd length, denoted n, over R is cyclic code if and

only if the set of polynomial representation of its codewords is an ideal of R[z]/(a2™ — 1).

Lemma 3.1 If f is a basic irreducible polynomial of the ring R[z|, then R[x]/(f(x)) has the
following ideals: (0), (1 + (f(2))), (u + (f(2))), (u? + (f(x))).

Proof (1) First we show that for distinct values of i,j € 0,1,2, (u’ + (f(x))) # (v + (f())).
Suppose (u’ + (f(z))) = (v + (f(z))). There exists g(x) € R[z] with deg(g) < deg(f) such that
u' + (f) = v/ g(x) + (f). That means u/g(z) — u’ € (f). As

deg(u’g(z) — u') < deg(g(z)) < deg(f),

it follows that u/g(x) — u® = 0. Multiplying by 437 gives u3~7*? = 0, which is a contradiction
to our hypothesis that u has nilpotency 3 and 0 <3 — j 41 < 3.

(2) Let I be a nonzero ideal of R[z]/(f) and h+(f) a nonzero element of I. By assumption, f
is a basic irreducible polynomial in R[z]. Hence, f is irreducible in R[z]. Therefore, ged(h, f) = 1
or f. If ged(h, f) = 1, i.e., h and f are coprime in R[z], then h and f are coprime in R[z]. So
there exist a,b € R[z] such that ah + bf = 1. That implies (a + (f))(h + (f)) = 1+ (f), whence
h + (f) is invertible in R[x]/(f). Therefore, I = (14 (f)). For the case ged(h, f) = f, for all
h + (f) € I, which means f|h and f|h. Hence, there exist p,v € R[z] such that h = fp + uv,
whence h + (f) € (u+ (f)) for all h+ (f) € I, implying I C (u + (f)). Let k be the greatest
integer < 3 such that I C (u* + (f)). Then, as I ¢ (u*** + (f)), there is a nonzero element
ho + (f) € I such that hg + (f)E(u**! + (f)). Since ho + (f) € I C (u* + (f)), there exist
po, vo € R[] such that hg = pof +vou®. Now ged(vp, f) = 1 or f. Suppose ged (g, f) = f. Then
flvo and f|vg. So there exist py, vy € R[z] such that vy = py f + v1u. Hence,

ho = pof +vou* = pof + (prf + viw)u® = (po + pru®) f +uFo;.

It follows that ho + (f) € (u**! + (f)), a contradiction. Thus, ged(vp, f) = 1. The same
arguement as above yields that v + (f) is invertible in R[z]/(f), which means that there exists
wo + (f) € R[z]/(f) such that (wo + (f))(vo + (f)) =1+ (f). Therefore,

uf + () = (wo + () (wFvo + (f) = (wo + (£)(ho + (f)) € 1.
Consequently, I = (u* + (f)) (k=0,1,2). O

Theorem 3.2 Let 2" — 1 = fy, fa,..., fr be a representation of x™ — 1 as a product of basic
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irreducible pairwise-coprime polynomials in R[z]. Then any ideal in R[x]/(z™ — 1) is a sum of
(fi+ @ =1), (ufi+ @ =1), @fi+ @ -1),

where 0 < i < r and fz = (2" - 1)/fi = Wz fj.

Proof By the Chinese Remainder theorem, we have

Ry = Rlz]/(z" = 1) = R[z]/(f1) 0 (f2) 0 --- O (fr)
= Rlz]/(f1) @ R[z]/(f2) & --- © Rlz]/(fr)-

Thus, any ideal I of R[z]/(z™ — 1) is of the form @® Y, I;, where I; ia an ideal of R[z]/(f;).
By Lemma 3.1, I; = (0) or (u™ + (f;)) for 0 < m < 2. Then I; corresponds to (u™ f; + (z" —
1)) (0 <m <2) € R[z]/(z" - 1). O

Theorem 3.3 Let C be a cyclic code of odd length n. Then there exists a unique family of
pairwise coprime monic polynomials Fy, Fy, F», F5 € R|x] such that "™ — 1 = FoFy F5F5 and

C = (Fl,uﬁ‘g,u2ﬁ‘3).

Moreover )
| Cl=2", 1= (3—i)degFi1.
i=0
Proof Let 2" — 1= f1, fo,..., fr be the unique factorization of " — 1 into a product of monic

basic irreducible pariwise coprime polynomials. By Theorem 3.2, C' is a direct sum of ideals of
the form (u? f;) (0 < i <r). After recordering if necessary, we can assume that C is a direct sum

of the form

(Frat1)s (Frr2)s - oo (Fra)s (Wkatkos1)s - oo (Ufk ks ) (U2 Frythg kg s)s - - (W2 ),
ie.,
C=(fifofs frifrrthot1r - froufifofa - frvtho fhothothat1 - fr
W fifafs frbhoths)-
Let
Fi = fifafs fao forthot1 - frs
FQ = f1f2f3 T fk1+/€2f7€1+7€2+/€3+1 T fTu
FB = f1f2f3 t fk1+k2+k3'
Then

1, kit1=0;

‘F‘i =
Thotkytthit1 " Thotkatothiirs  Kig1 70,

(ko =0,0<1i<3).

Then by our construction, it is clear that C' = (Fl,uﬁ'g,uzﬁ'g) and 2" — 1 = FoF FoFs =
fife - fr

To prove the uniqueness, assume Gg, G1, G2, G3 are pairwise coprime monic polynomials in
R[ZE] such that GOG1G2G3 =z"—1land C = (él, ’UJGQ, u2ég). ‘ThuS7 C= (Gl)—F(’UJéz)—F (uzég).
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Now there exist nonnegative integers lo = 0,11,...,l441, with lo + 11 + -+ + {41 = r, and a
permutation {f{,..., fi} of {fi, fa,..., fr} such that G; = f] 1 fiopop,,, fori=

0,1,2,3. Hence,
C= (fz/1+1) © @ (i) © (Wf g1p41) © (Wf] 4iyq0,) © (U2f1/1+12+z3+1) - B (U f)).

It follows that I; = k; for ¢ = 0,1, 2, 3. Furthermore, {fl’oJr,,,HtH, .. .,fl’oJr,,,HHl} is a permu-
tation of { fuot.thit1s-- -5 fho+-thers }- Therefore, F; = G; for i = 0,1,2,3. To calculate the
order | C' |, note that

C= (Fl,uﬁg,u2ﬁ3), C= (Fl) D (’U,Fg) D (’U,BF;J,).
Hence, | C |= 23des Fig2des Fagdeg Fs — oI, O
Theorem 3.4 Let C be a cyclic code of odd length n over R. Then there exist polynomials
90, 91, 92 in Rlz] such that C = (go,ug1,u*g2) and ga|g1|golz™ — 1.

Proof By Theorem 3.3, there exists a family of pairwise coprime monic polynomials Fy, F, F», F3
in R[z] such that 2™ — 1 = FyF1 FoF3 and C' = (Fl,uﬁg,uQFb). Define

go = FoFoF3, g1 = FoFs, g2 = Fy.
Clearly, ga|g1]|go|z™ — 1. Moreover, for 0 < i < 2, we have
Wi = u'FyFy - FiFye - Fy = u'g; 1 Fy - .

Therefore, C' C (go,ug1,u?g2). On the other hand, g9 = FoFoF3 € C. Since Fy and Fy are
coprime polynomials in R[z], there exist polynomials uq,v1 € R[x] such that ui Fy + v1 Fp = 1.
It follows that

g1 = FoF3 = (u1 Fy + v F2) Fo F3 = uy Fo Fy F3 + v Fo Fo F
=u Fy + V190,
whence ug; = wur By + uv1go € C. Continuing this process, we obtain u2g, € C, which implies

C 2 (90, ug1, U292)- Consequently, C' = (go, ug1, U292)- U

Theorem 3.5 Let C' be a cyclic code of odd length n over R. With notations as in Theorem
3.4, denote G = Fy + uFy + u2F3. Then G is a generating polynomial of C, i.e., C = (G).
Proof For any distinct i, j € {0,1,2,3}, we have (" —1)|F; F;. Therefore, F;F; = 0 in R[z] /(2" —
1). Moreover, for any 1 < i < 3, F; and F; are coprime. Hence, there exist b;, ¢; € R[z] such that
b;F; + ¢;F; = 1. Thus, for any integer 1 < m < 3, we have Hgl(bzﬁz + ¢;F;) = 1. Multiplying
the left-hand side of this equation out, we get that there exist polynomials a0, @m1,-- -, Gmm
such that

amoF1 Py Fop + a1 F1Fy -+ Fyy + a2 F1Fy - Fy 4+ 4 @ Fi Fy -+ Fry 1 By = 1.
In particular, when m = 3, multiplying both sides of the above equation by u?Fy yields

’U,2F3 = ’U,26Lm0F1F2F3.
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Since

F1F2G = U2F1F2F3,

GF Foamo = u2F;, u?F3 € (G). Continuing this process, we obtain that uf, € (G) and
F1 € (G), ie., C C (G). Tt is clear that C' D (G). Consequently, C' = (G). O

Next, we discuss the structure of the dual code of the cyclic code.

Lemma 3.6[°) Let C be a linear code of length n over R. |R| = p®. Then |C| is a power of p.
Assume |C| = p? and |Ct| = p'. Then d + 1 = na.

Theorem 3.7 Let C be a cyclic code of odd length n over R with C = (Ey, uEy, u*E3), |C| = 2!
andl = Z?:o(?’ —i)deg F;11, where 2™ — 1 = FoF1 Fyo F3 and Fy = Fy, as in Theorem 3.4. Then

ct| = 935y ideg Fip1
and C+ = (E,uFy,u?Ey), where F* = g p(1/z).

Proof Denote Cy = (i, uFy,u?Ey). Next we show that C; = C. For any 0 < i,j < 3, we

have

(Wi Fi1) (W F3_j1)* =0 (mod ™ — 1).

Therefore, C; € C+. Let |[Ct| = 2" and |C| = 2!. By Lemma 3.6, i’ + 1 = 3n. Hence
h = 23:1 ideg F; 1. Note that |Cy| = 92X 11 ideg Firr - Consequently, Cy = C*. O

Next, we discuss the residue and torsion codes of the cyclic code over R.

Theorem 3.8 Let C be a cyclic code of odd length n over R with C' = (Fl,uﬁ'g, U2F3>7 where
" — 1 = FyF1F5F5 and Fy, Fy, Fy, F3 are pairwise coprime monic polynomials. We have the
residue code Cyy = u(FyoF>F3) of dimension deg(F1) and the torsion code C(gy = u(Fp) of
dimension deg Fy + deg F» + deg F3.

Theorem 3.9 Let C = (Fl,uFQ, u2ﬁ'3) and " —1 = FyF1 Fy F3. Then C is self-dual if and only
if F; is an associate of I} for all i,j € {0,1,2,3} such that i +j = 1 (mod4).

Proof By Theorem 3.7, C+ = (Fg,uﬁ'g,ﬁﬁ';) Hence, if F; is an associate of F} for i,j €
{0,1,2,3} such that i + j = 1 (mod4), then

C = (Fy,uFy,uFy) = (FF  uFy,u®Fy) = C*,

i.e., C is self-dual.

On the other hand, assume C' = C*. Let ¢; denote the constants of F; (0 < i < 3). Since
x"—1 = FyF1 F»F3, we have cgcicacg = —1. Therefore, ¢;s are invertible elements of R and ¢;s are
leading coefficents of Fis. For all i,j € {0,1,2,3} such that i+ j = 1 (mod4), denote G; = u,; F},
1=l — 1

. . —1 1 -1 -1 —
where u;s are monic polynomials. Note that u; = ¢, and upuiuguz = ¢y €] €y C3 =

Now

C = (Fy,uFy,u®F3) = C+ = (Ef ,uFy, u*Fy) = (G1,uGa, u*Gs).
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Also,
GoGlGQGg = (uOU1UQU3)FfF5F§F; = —FB'CFYFF‘;F‘éF
— —Ing Fo+deg F1+deg Fa+deg F3FO(:E71)F1 (:Eil)FQ(ftil)Fg(xil)
=—z"(zT"-1)=2" -1
From the uniqueness in Theorem 3.3, G; = F; and F; = u; F}". The proof is completed. O
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