
Journal of Mathematical Research & Exposition

May, 2009, Vol. 29, No. 3, pp. 500–506

DOI:10.3770/j.issn:1000-341X.2009.03.015

Http://jmre.dlut.edu.cn

Cyclic Code and Self-Dual Code over F2 + uF2 + u
2
F2

FENG Qian Qian1, ZHOU Wei Gang2

(1. Department of Mathematics, Xiangfan University, Hubei 441053, China;

2. School of Mathematics and Statistics, Wuhan University, Hubei 430072, China)

(E-mail: qiuyu4094@sina.com)

Abstract We give the structures of a cyclic code over ring

R = F2 + uF2 + u
2
F2 = {0, 1, u, u

2
, v, v

2
, uv, v

3},

where u3 = 0, of odd length and its dual code. For the cyclic code, necessary and sufficient

conditions for the existence of self-dual code are provided.
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1. Introduction

From the 1990s, the theory of codes over finite rings has gained prominence since the sig-

nificant discovery of Nechaev[1]. Nechaev showed that several well-known prominent families

of good nonlinear binary codes can be identified as images of linear codes over Z4 under the

Gray map. Since then, codes over finite rings have received much attention[2−4]. Many re-

sults in codes over finite rings especially over ring Z4 have been obtained. Recently, a new ring

F2 + uF2 = {0, 1, u, 1 + u}, where u2 = 0, has been studied in [5–7].

In this paper, we obtain the structures of a cyclic code over R = F2+uF2+u2F2 of odd length

and its cyclic dual code. We also provide necessary and sufficient conditions for the existence of

self-dual code for the cyclic code.

2. Notations and definitions

R is a commutative chain ring of 8 elements which are {0, 1, u, u2, v, v2, uv, v3}, where u3 = 0,

v = 1 + u, v2 = 1 + u2, v3 = 1 + u + u2 and uv = u + u2. The elements of R are the

polynomials over F2 modulo the ideal (u3) of F2[u], where F2 is the binary field {0, 1}. Addition

and multiplication operations over R are given in the Tables 1 and 2. The ring R has maximal

ideal uR = {0, u, u2, uv}.
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+ 0 1 u v u2 uv v2 v3

0 0 1 u v u2 uv v2 v3

1 1 0 v u v2 v3 u2 uv

u u v 0 1 uv u2 v3 v2

v v u 1 0 v3 v2 uv u2

u2 u2 v2 uv v3 0 u 1 v

uv uv v3 u2 v2 u 0 v 1

v2 v2 u2 v3 uv 1 v 0 u

v3 v3 uv v2 u2 v 1 u 0

Table 1 Addition operator

· 0 1 u v u2 uv v2 v3

0 0 0 0 0 0 0 0 0

1 0 1 u v u2 uv v2 v3

u 0 u u2 uv 0 u2 u uv

v 0 v uv v2 u2 u v3 1

u2 0 u2 0 u2 0 0 u2 u2

uv 0 uv u2 u 0 u2 uv u

v2 0 v2 u v3 u2 uv 1 v

v3 0 v2 uv 1 u2 u v v2

Table 2 Multiplication operator

For a finite ring R, consider the set Rn of n-tuples of elements from R as a module over

R in the usual way. A subset C ⊆ Rn is called a linear codes of length n over R if C is an

R-submodule of Rn. C is called cyclic if for every codeword x = (x0, x1, . . . , xn−1) ∈ C, its

cyclic shift (xn−1, x0, . . . , xn−2) is also in C.

Given x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) ∈ Rn, their scalar product (or dot

product) is 〈x,y〉 = x0y0+· · ·+xn−1yn−1 ∈ R. Two words x, y are called orthogonal if 〈x,y〉 = 0.

For a linear code C over R, its dual code C⊥ is the set of words over R that are orthogonal to

all codewords of C, i.e., C⊥ = {x ∈ Rn|〈x, c〉 = 0, ∀c ∈ C}.

A code C is called self-dual if C = C⊥. An n-tuple c = (c0, c1, . . . , cn−1) ∈ Rn is identified

with the polynomial c0 + c1x + · · · + cn−1x
n−1 in R[x]/(xn − 1), which is called the polynomial

representation of c = (c0, c1, . . . , cn−1). For any λ = r(λ)+uq(λ)+u2p(λ) ∈ R, r(λ), q(λ), p(λ) ∈

F2. Let λ̄ = r(λ) denote the reduction of λ.

Define a polynomial reduction mapping

u : R[x] −→ F2[x], f(x) =
r

∑

i=0

aix
i −→

r
∑

i=0

āix
i.

A monic polynomial f(x) over R[x] is said to be a basic irreducible polynomial if its projection

uf(x) is irreducible over F2[x].
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Let C be a linear code over R. We define the reduction code C(1) and the torsion code C(2) of

C as follows. C(1) = {x ∈ Fn
2 | ∃y, z ∈ Fn

2 s.t. x+yu+zu2 ∈ C} and C(2) = {x ∈ Fn
2 | u2x ∈ C}.

Let f1(x), f2(x) ∈ R[x]. f1(x) is called an associate of f2(x) if there is an invertible element

r ∈ R such that f1(x) = rf2(x).

3. Main results and proof

It is well known that a linear code C of odd length, denoted n, over R is cyclic code if and

only if the set of polynomial representation of its codewords is an ideal of R[x]/(xn − 1).

Lemma 3.1 If f is a basic irreducible polynomial of the ring R[x], then R[x]/(f(x)) has the

following ideals: (0), (1 + (f(x))), (u + (f(x))), (u2 + (f(x))).

Proof (1) First we show that for distinct values of i, j ∈ 0, 1, 2, (ui + (f(x))) 6= (uj + (f(x))).

Suppose (ui + (f(x))) = (uj + (f(x))). There exists g(x) ∈ R[x] with deg(g) < deg(f) such that

ui + (f) = ujg(x) + (f). That means ujg(x) − ui ∈ (f). As

deg(ujg(x) − ui) ≤ deg(g(x)) < deg(f),

it follows that ujg(x) − ui = 0. Multiplying by u3−j gives u3−j+i = 0, which is a contradiction

to our hypothesis that u has nilpotency 3 and 0 < 3 − j + i < 3.

(2) Let I be a nonzero ideal of R[x]/(f) and h+(f) a nonzero element of I. By assumption, f

is a basic irreducible polynomial in R[x]. Hence, f̄ is irreducible in R̄[x]. Therefore, gcd(h̄, f̄) = 1

or f̄ . If gcd(h̄, f̄) = 1, i.e., h̄ and f̄ are coprime in R̄[x], then h and f are coprime in R[x]. So

there exist a, b ∈ R[x] such that ah + bf = 1. That implies (a + (f))(h + (f)) = 1 + (f), whence

h + (f) is invertible in R[x]/(f). Therefore, I = (1 + (f)). For the case gcd(h̄, f̄) = f̄ , for all

h + (f) ∈ I, which means f̄ |h̄ and f |h. Hence, there exist p, v ∈ R[x] such that h = fp + uv,

whence h + (f) ∈ (u + (f)) for all h + (f) ∈ I, implying I ⊆ (u + (f)). Let k be the greatest

integer < 3 such that I ⊆ (uk + (f)). Then, as I * (uk+1 + (f)), there is a nonzero element

h0 + (f) ∈ I such that h0 + (f)∈̄(uk+1 + (f)). Since h0 + (f) ∈ I ⊆ (uk + (f)), there exist

p0, v0 ∈ R[x] such that h0 = p0f +v0u
k. Now gcd(v̄0, f̄) = 1 or f̄ . Suppose gcd(v̄0, f̄) = f̄ . Then

f̄ |v̄0 and f |v0. So there exist p1, v1 ∈ R[x] such that v0 = p1f + v1u. Hence,

h0 = p0f + v0u
k = p0f + (p1f + v1u)uk = (p0 + p1u

k)f + uk+1v1.

It follows that h0 + (f) ∈ (uk+1 + (f)), a contradiction. Thus, gcd(v̄0, f̄) = 1. The same

arguement as above yields that v0 + (f) is invertible in R[x]/(f), which means that there exists

w0 + (f) ∈ R[x]/(f) such that (w0 + (f))(v0 + (f)) = 1 + (f). Therefore,

uk + (f) = (w0 + (f))(ukv0 + (f)) = (w0 + (f))(h0 + (f)) ∈ I.

Consequently, I = (uk + (f)) (k = 0, 1, 2). 2

Theorem 3.2 Let xn − 1 = f1, f2, . . . , fr be a representation of xn − 1 as a product of basic
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irreducible pairwise-coprime polynomials in R[x]. Then any ideal in R[x]/(xn − 1) is a sum of

(f̂i + (xn − 1)), (uf̂i + (xn − 1)), (u2f̂i + (xn − 1)),

where 0 6 i 6 r and f̂i = (xn − 1)/fi = Πj 6=ifj.

Proof By the Chinese Remainder theorem, we have

Rn = R[x]/(xn − 1) = R[x]/(f1) ∩ (f2) ∩ · · · ∩ (fr)

∼= R[x]/(f1) ⊕ R[x]/(f2) ⊕ · · · ⊕ R[x]/(fr).

Thus, any ideal I of R[x]/(xn − 1) is of the form ⊕
∑r

i=1 Ii, where Ii ia an ideal of R[x]/(fi).

By Lemma 3.1, Ii = (0) or (um + (fi)) for 0 ≤ m ≤ 2. Then Ii corresponds to (umf̂i + (xn −

1)) (0 ≤ m ≤ 2) ∈ R[x]/(xn − 1). 2

Theorem 3.3 Let C be a cyclic code of odd length n. Then there exists a unique family of

pairwise coprime monic polynomials F0, F1, F2, F3 ∈ R[x] such that xn − 1 = F0F1F2F3 and

C = (F̂1, uF̂2, u
2F̂3).

Moreover

| C |= 2l, l =

2
∑

i=0

(3 − i) deg Fi+1.

Proof Let xn − 1 = f1, f2, . . . , fr be the unique factorization of xn − 1 into a product of monic

basic irreducible pariwise coprime polynomials. By Theorem 3.2, C is a direct sum of ideals of

the form (uj f̂i) (0 ≤ i ≤ r). After recordering if necessary, we can assume that C is a direct sum

of the form

(f̂k1+1), (f̂k1+2), . . . , (f̂k1+k2
); (uf̂k1+k2+1), . . . , (uf̂k1+k2+k3

); (u2f̂k1+k2+k3+1), . . . , (u
2f̂r),

i.e.,

C = (f1f2f3 · · · fk1
fk1+k2+1 · · · fr, uf1f2f3 · · · fk1+k2

fk1+k2+k3+1 · · · fr,

u2f1f2f3 · · · fk1+k2+k3
).

Let

F̂1 = f1f2f3 · · · fk1
fk1+k2+1 · · · fr,

F̂2 = f1f2f3 · · · fk1+k2
fk1+k2+k3+1 · · · fr,

F̂3 = f1f2f3 · · · fk1+k2+k3
.

Then

Fi =

{

1, ki+1 = 0;

fk0+k1+···+ki+1 · · · fk0+k1+···+ki+1
, ki+1 6= 0,

(k0 = 0, 0 ≤ i ≤ 3).

Then by our construction, it is clear that C = (F̂1, uF̂2, u
2F̂3) and xn − 1 = F0F1F2F3 =

f1f2 · · · fr.

To prove the uniqueness, assume G0, G1, G2, G3 are pairwise coprime monic polynomials in

R[x] such that G0G1G2G3 = xn−1 and C = (Ĝ1, uĜ2, u
2Ĝ3). Thus, C = (Ĝ1)+(uĜ2)+(u2Ĝ3).
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Now there exist nonnegative integers l0 = 0, l1, . . . , lt+1, with l0 + l1 + · · · + lt+1 = r, and a

permutation {f ′
1, . . . , f

′
r} of {f1, f2, . . . , fr} such that Gi = f ′

l0+···+li+1 · · · f
′
l0+···+li+1

for i =

0, 1, 2, 3. Hence,

C = (f̂ ′
l1+1) ⊕ · · · ⊕ (f̂ ′

l1+l2
) ⊕ (uf̂ ′

l1+l2+1) ⊕ (uf̂ ′
l1+l2+l3

) ⊕ (u2f̂ ′
l1+l2+l3+1) ⊕ · · · ⊕ (u2f̂ ′

r).

It follows that li = ki for i = 0, 1, 2, 3. Furthermore, {f ′
l0+···+lt+1, . . . , f

′
l0+···+lt+1

} is a permu-

tation of {fk0+···+kt+1, . . . , fk0+···+kt+1
}. Therefore, Fi = Gi for i = 0, 1, 2, 3. To calculate the

order | C |, note that

C = (F̂1, uF̂2, u
2F̂3), C = (F̂1) ⊕ (uF̂2) ⊕ (u3F̂3).

Hence, | C |= 23 deg F̂122 deg F̂22deg F̂3 = 2l. 2

Theorem 3.4 Let C be a cyclic code of odd length n over R. Then there exist polynomials

g0, g1, g2 in R[x] such that C = (g0, ug1, u
2g2) and g2|g1|g0|x

n − 1.

Proof By Theorem 3.3, there exists a family of pairwise coprime monic polynomials F0, F1, F2, F3

in R[x] such that xn − 1 = F0F1F2F3 and C = (F̂1, uF̂2, u
2F̂3). Define

g0 = F0F2F3, g1 = F0F3, g2 = F0.

Clearly, g2|g1|g0|x
n − 1. Moreover, for 0 ≤ i ≤ 2, we have

uiF̂i+1 = uiF0F1 · · ·FiFi+2 · · ·F3 = uigiF1F2 · · ·Fi.

Therefore, C ⊆ (g0, ug1, u
2g2). On the other hand, g0 = F0F2F3 ∈ C. Since F1 and F2 are

coprime polynomials in R[x], there exist polynomials u1, v1 ∈ R[x] such that u1F1 + v1F2 = 1.

It follows that

g1 = F0F3 = (u1F1 + v1F2)F0F3 = u1F0F1F3 + v1F0F2F3

= u1F̂2 + v1g0,

whence ug1 = uu1F̂2 + uv1g0 ∈ C. Continuing this process, we obtain u2g2 ∈ C, which implies

C ⊇ (g0, ug1, u
2g2). Consequently, C = (g0, ug1, u

2g2). 2

Theorem 3.5 Let C be a cyclic code of odd length n over R. With notations as in Theorem

3.4, denote G = F̂1 + uF̂2 + u2F̂3. Then G is a generating polynomial of C, i.e., C = (G).

Proof For any distinct i, j ∈ {0, 1, 2, 3}, we have (xn−1)|F̂iF̂j . Therefore, F̂iF̂j = 0 in R[x]/(xn−

1). Moreover, for any 1 ≤ i ≤ 3, Fi and F̂i are coprime. Hence, there exist bi, ci ∈ R[x] such that

biF̂i + ciFi = 1. Thus, for any integer 1 ≤ m ≤ 3, we have
∏m

i=1(biF̂i + ciFi) = 1. Multiplying

the left-hand side of this equation out, we get that there exist polynomials am0, am1, . . . , amm

such that

am0F1F2 · · ·Fm + am1F̂1F2 · · ·Fm + am2F1F̂2 · · ·Fm + · · · + ammF1F2 · · ·Fm−1F̂m = 1.

In particular, when m = 3, multiplying both sides of the above equation by u2F̂3 yields

u2F̂3 = u2am0F1F2F̂3.



Cyclic code and self-dual code over F2 + uF2 + u2F2 505

Since

F1F2G = u2F1F2F̂3,

GF1F2am0 = u2F̂3, u2F̂3 ∈ (G). Continuing this process, we obtain that uF̂2 ∈ (G) and

F̂1 ∈ (G), i.e., C ⊂ (G). It is clear that C ⊃ (G). Consequently, C = (G). 2

Next, we discuss the structure of the dual code of the cyclic code.

Lemma 3.6[9] Let C be a linear code of length n over R. |R| = pα. Then |C| is a power of p.

Assume |C| = pd and |C⊥| = pl. Then d + l = nα.

Theorem 3.7 Let C be a cyclic code of odd length n over R with C = (F̂1, uF̂2, u
2F̂3), |C| = 2l

and l =
∑2

i=0(3− i) deg Fi+1, where xn − 1 = F0F1F2F3 and F4 = F0, as in Theorem 3.4. Then

|C⊥| = 2
∑

3

i=1
i deg Fi+1

and C⊥ = (F̂ ∗
0 , uF̂ ∗

3 , u2F̂ ∗
2 ), where F ∗ = xdeg(F )F (1/x).

Proof Denote C1 = (F̂ ∗
0 , uF̂ ∗

3 , u2F̂ ∗
2 ). Next we show that C1 = C⊥. For any 0 ≤ i, j ≤ 3, we

have

(uiF̂i+1)(u
jF̂3−j+1)

∗ ≡ 0 (mod xn − 1).

Therefore, C1 ⊂ C⊥. Let |C⊥| = 2h′

and |C| = 2l. By Lemma 3.6, h′ + l = 3n. Hence

h′ =
∑3

i=1 i deg Fi+1. Note that |C1| = 2
∑

3
i=1

i deg Fi+1 . Consequently, C1 = C⊥. 2

Next, we discuss the residue and torsion codes of the cyclic code over R.

Theorem 3.8 Let C be a cyclic code of odd length n over R with C = (F̂1, uF̂2, u
2F̂3), where

xn − 1 = F0F1F2F3 and F0, F1, F2, F3 are pairwise coprime monic polynomials. We have the

residue code C(1) = u(F0F2F3) of dimension deg(F1) and the torsion code C(2) = u(F0) of

dimension deg F1 + deg F2 + deg F3.

Theorem 3.9 Let C = (F̂1, uF̂2, u
2F̂3) and xn −1 = F0F1F2F3. Then C is self-dual if and only

if Fi is an associate of F ∗
j for all i, j ∈ {0, 1, 2, 3} such that i + j ≡ 1 (mod4).

Proof By Theorem 3.7, C⊥ = (F̂ ∗
0 , uF̂ ∗

3 , u2F̂ ∗
2 ). Hence, if Fi is an associate of F ∗

j for i, j ∈

{0, 1, 2, 3} such that i + j ≡ 1 (mod4), then

C = (F̂1, uF̂2, u
2F̂3) = (F̂ ∗

0 , uF̂ ∗
3 , u2F̂ ∗

2 ) = C⊥,

i.e., C is self-dual.

On the other hand, assume C = C⊥. Let ci denote the constants of Fi (0 ≤ i ≤ 3). Since

xn−1 = F0F1F2F3, we have c0c1c2c3 = −1. Therefore, cis are invertible elements of R and cis are

leading coefficents of Fis. For all i, j ∈ {0, 1, 2, 3} such that i+ j ≡ 1 (mod4), denote Gi = uiF
∗
j ,

where uis are monic polynomials. Note that ui = c−1
j , and u0u1u2u3 = c−1

0 c−1
1 c−1

2 c−1
3 = −1.

Now

C = (F̂1, uF̂2, u
2F̂3) = C⊥ = (F̂ ∗

0 , uF̂ ∗
3 , u2F̂ ∗

2 ) = (Ĝ1, uĜ2, u
2Ĝ3).
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Also,

G0G1G2G3 = (u0u1u2u3)F
∗
1 F ∗

0 F ∗
3 F ∗

2 = −F ∗
0 F ∗

1 F ∗
2 F ∗

3

= −xdeg F0+deg F1+deg F2+deg F3F0(x
−1)F1(x

−1)F2(x
−1)F3(x

−1)

= −xn(x−n − 1) = xn − 1.

From the uniqueness in Theorem 3.3, Gi = Fi and Fi = uiF
∗
j . The proof is completed. 2
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