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1. Introduction

In this paper, we shall consider the existence of multiple positive solutions for the following

p-Laplacian differential equation

(ϕp(u
′))′ + a(t)f(u(t)) = 0, 0 < t < 1, (1.1)

subject to one of the following boundary conditions

αϕp(u(0)) − βϕp(u
′(ξ)) = 0, γϕp(u(1)) + δϕp(u

′(1)) = 0, (1.2)

or

αϕp(u(0)) − βϕp(u
′(0)) = 0, γϕp(u(1)) + δϕp(u

′(η)) = 0, (1.3)

where ϕp(x) = |x|p−2x, p > 1, ϕq(x) = |x|q−2x is the inverse function to ϕp,
1
p

+ 1
q

= 1, α > 0,

β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈ (0, 1) are prescribed.

In recent years, the study of the existence of multiple positive solutions for three-point bound-

ary value problem with p-Laplacian operator has been an interesting topic, and much attention

is currently focused on the study of nonlinear three-point boundary value problem[1−12]. Liu et

al.[1] and Li et al.[3] studied the existence of at least two or three positive solutions of Eq.(1.1)

subject to one of the following two pairs of three-point boundary value conditions:

u(0) − B0(u
′(η)) = 0, u′(1) = 0, (1.4)
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u′(0) = 0, u(1) + B1(u
′(η)) = 0, (1.5)

by applying the three functionals fixed point theorem and the five functionals fixed point theorem

duo to Avery and Henderson[10,11], respectively. In a recent paper[2], by using two new existence

principles, Ma et al. considered the existence of positive solution of Eq.(1.1) subject to the

following two pairs of nonlinear three-point boundary value conditions

u(0) − g(u′(0)) = 0, u(1) − βu(η) = 0, (1.6)

u(0) − αu(η) = 0, u(1) − g(u′(1)) = 0. (1.7)

Liu[4,6] studied the existence of one and two positive solutions and infinitely many positive

solutions of Eq.(1.1) subject to the nonlinear three-point boundary value conditions

u′(0) = 0, u(1) = βu(η). (1.8)

The main tool is the fixed point index theory. He and Ge[7,8] discussed the existence of twin

positive solutions Eq.(1.1) subject to the following two-, three-point boundary value conditions

u(0) − B0(u
′(0)) = 0, u(1) + B1(u

′(1)) = 0, (1.9)

u(0) − B0(u
′(η)) = 0, u(1) + B1(u

′(1)) = 0, (1.10)

u(0) − B0(u
′(0)) = 0, u(1) + B1(u

′(η)) = 0, (1.11)

by using the three functionals fixed point theorem duo to Avery and Henderson. Ma and Ge[5]

applied the monotone iterative technique to prove the existence of positive pseudo-symmetric

solutions for the following three-point second order p-Laplacian BVP

(ϕp(u
′(t)))′ + q(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(η) = u(1). (1.12)

Avery and Henderson[10] considered the existence of at least three positive solutions Eq.(1.1)–

(1.12) by means of the five functionals fixed point theorem duo to Avery and Henderson. Su et

al.[12] studied the existence of positive solutions Eq.(1.1) subject to the following boundary value

conditions

αϕp(u(0)) − βϕp(u
′(0)) = 0, γϕp(u(1)) + δϕp(u

′(1)) = 0, (1.13)

by using the fixed-point theorem duo to Guo and Krasnoselskii.

However, for Eq.(1.1) and (1.2) or (1.3), there are currently few papers dealing with the

existence of three positive solutions. Motivated by the papers mentioned above, we shall consider

in this paper that nonlinear singular boundary value problem (1.1) and (1.2) or (1.3) has at least

three positive solutions, by using the Leggett-Williams fixed point theorem. The results obtained

in this paper essentially improve and generalize many well-known results.

In the rest of the paper, we make the following assumption:

(H1) f : [0,∞) → [0,∞) is continuous;

(H2) a(t) ∈ C((0, 1), [0,∞)), and 0 <
∫ 1

0
a(t)dt < ∞. Furthermore, a(t) is not identically

zero on any subinterval of (0, 1).
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2. Preliminaries and lemmas

In this section, we provide some background materials from the theory of cones in Banach

spaces and some lemmas, and we state a three fixed point theorem duo to Leggett-Williams[13]

for multiple fixed-point of a cone preserving operator.

Definition 2.1 Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E is

called a cone if it satisfies the following two conditions:

(i) u ∈ P, λ ≥ 0, implies λu ∈ P ;

(ii) u ∈ P,−u ∈ P , implies u = 0.

Definition 2.2 A map α is said to be a nonnegative continuous concave functional on cone P

of real Banach space E if α : P → [0,∞) is continuous and α(tu+(1− t)v) ≥ tα(u)+ (1− t)α(v)

for all u, v ∈ P and t ∈ [0, 1].

Let 0 < a < b, r > 0 be real numbers, and α(u) be a nonnegative continuous concave

functional on P . We define the following convex sets

Pr = {u ∈ P : ‖u‖ < r}, P r = {u ∈ P : ‖u‖ ≤ r},

∂Pr = {u ∈ P : ‖u‖ = r}, P (α, a, b) = {u ∈ P : a ≤ α(u), ‖u‖ ≤ b}.

Lemma 2.1 Suppose condition (H2) holds. Then there exists a constant ω ∈ (0, 1
2 ) that satisfies

0 <

∫ 1−ω

ω

a(t)dt < ∞.

Furthermore, the function

A(t) = ϕq

(

∫ t

ω

a(t) dt
)

+ ϕq

(

∫ 1−ω

t

a(t) dt
)

, ω ≤ t ≤ 1 − ω

is positive continuous function on [ω, 1−ω]. Therefore, A(t) has a minimum on [ω, 1−ω]. Hence

we suppose that there exists L > 0 such that L = mint∈[ω,1−ω] A(t).

Proof By condition (H2), it is easily seen that

0 <

∫ 1−ω

ω

a(t)dt < ∞

is satisfied. And it is easy to prove that A(t) is continuous on [ω, 1 − ω]. Next, let

A1(t) = ϕq

(

∫ t

ω

a(t) dt
)

, A2(t) = ϕq

(

∫ 1−ω

t

a(t) dt
)

.

Then, it follows from condition (H2) that the function A1(t) is strictly monotone increasing on

[ω, 1−ω] and A1(ω) = 0, and A2(t) is strictly monotone decreasing on [ω, 1−ω] and A2(1−ω) = 0,

which shows L = mint∈[ω,1−ω] A(t) > 0. The proof is completed. 2

For convenience, we write

λ1 = ϕq

(β

α

∫ 1

ξ

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r) dr
)

ds,
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λ2 = ϕq

( δ

γ

∫ η

0

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ s

0

a(r) dr
)

ds.

In order to obtain multiple positive solutions of (1.1)–(1.2), the following fixed point theorem

of Leggett and Williams will be fundamental.

Theorem A[13] Let c > 0 and T : P c → P c be completely continuous and φ(u) be a nonnegative

continuous concave functional on P such that φ(u) ≤ ‖u‖, for arbitrary u ∈ P c. Suppose there

exists 0 < a < b < d ≤ c, such that

(C1) {u ∈ P (φ, b, d) : φ(u) > b} 6= ∅, and φ(Tu) > b, for arbitrary u ∈ P (φ, b, d);

(C2) ‖Tu‖ < a, for ‖u‖ ≤ a;

(C3) φ(Tu) > b for u ∈ P (φ, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2 and u3 on P c satisfying

‖u1‖ < a, b < φ(u2), and ‖u3‖ > a with φ(u3) < b.

3. Existence of three positive solutions of problem (1.1)–(1.2)

In this section, we firstly define an appropriate Banach space and a cone, then give our main

result and proof of the result.

Let E = C[0, 1]. Then E is a Banach space with the norm ‖u‖ = supt∈[0,1] |u(t)|. Let

P = {u ∈ E : u(t) ≥ 0, αϕp(u(0)) − βϕp(u
′(ξ)) = 0, γϕp(u(1)) + δϕp(u

′(1)) = 0, u(t) is concave

function on [0, 1]}. It is easy to prove that P is a cone of E.

In the proof of our main results, we will make use of the following lemmas:

Lemma 3.1[4,12,Lemma 2.2] Let u ∈ P and ω be as in Lemma 2.1. Then

u(t) ≥ ω‖u‖, t ∈ [ω, 1 − ω].

Lemma 3.2 Suppose that conditions (H1),(H2) hold. Then u(t) ∈ E
⋂

C2(0, 1) is a solution of

boundary value problem (1.1)–(1.2), if and only if u(t) ∈ E is a solution of the following integral

equation:

u(t) =







ϕq

(

β
α

∫ σ

ξ
a(r)f(u(r)) dr

)

+
∫ t

0 ϕq

(∫ σ

s
a(r)f(u(r)) dr

)

ds, 0 ≤ t ≤ σ,

ϕq

(

δ
γ

∫ 1

σ
a(r)f(u(r)) dr

)

+
∫ 1

t
ϕq

(∫ s

σ
a(r)f(u(r)) dr

)

ds, σ ≤ t ≤ 1,
(3.1)

where σ ∈ [ξ, 1] and u′(σ) = 0.

Proof Firstly, assume that(3.1) holds. We have

u′(t) =

{

ϕq

(∫ σ

t
a(r)f(u(r)) dr

)

≥ 0, 0 ≤ t ≤ σ,

−ϕq

(

∫ t

σ
a(r)f(u(r)) dr

)

≤ 0, σ ≤ t ≤ 1.
(3.2)

Hence, thanks to (3.2), we have (ϕp(u
′(t)))′ + a(t)f(u(t)) = 0, 0 < t < 1, i.e., equation (1.1)

holds. Furthermore, by letting t = 0 and t = 1 on (3.1) and letting t = ξ and t = 1(3.2), we can

show the boundary conditions (1.2) are satisfied. Consequently, sufficiency is proved.
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Next, by the boundary conditions (1.2), we have u′(ξ) ≥ 0, u′(1) ≤ 0. Then there exists a

constant σ ∈ [ξ, 1] such that u′(σ) = 0. Thus, for t ∈ (0, σ), by integrating the equation (1.1) on

(0, σ), and note that u′(σ) = 0, we have

ϕp(u
′(σ)) − ϕp(u

′(t)) = −
∫ σ

t

a(s)f(u(s)) ds. (3.3)

Then u′(t) = ϕq

(∫ σ

t
a(s)f(u(s)) ds

)

. Hence,

u(σ) − u(t) =

∫ σ

t

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds. (3.4)

Let t = ξ in (3.3) and note that u′(σ) = 0. We have

ϕp(u
′(ξ)) =

∫ σ

ξ

a(s)f(u(s)) ds.

With the boundary conditions (1.2), we have ϕp(u(0)) = β
α
ϕp(u

′(ξ)). Then

u(0) = ϕq

(β

α

∫ σ

ξ

a(s)f(u(s)) ds
)

. (3.5)

Let t = 0 in (3.4). With (3.4) and (3.5), we can obtain

u(t) = ϕq

(β

α

∫ σ

ξ

a(r)f(u(r)) dr
)

+

∫ t

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds, 0 ≤ t ≤ σ.

Similarly, for t ∈ (σ, 1), by integrating the equation (1.1) on (σ, 1), we can obtain

u(t) = ϕq

( δ

γ

∫ 1

σ

a(r)f(u(r)) dr
)

+

∫ 1

t

ϕq

(

∫ s

σ

a(r)f(u(r)) dr
)

ds, σ ≤ t ≤ 1.

Therefore, the necessity holds. The proof of Lemma 3.2 is completed. 2

We are now ready to apply the Leggett-Williams fixed point theorem to give sufficient con-

ditions for the existence of at least three positive solutions to problem (1.1)–(1.2).

Theorem 3.1 Assume that (H1), (H2) hold, and suppose that there exist positive constants

a, b, d such that 0 < a < ωb < b < d. Also assume that f satisfies

(H3) f(u) < ϕp(
a
λ1

), for 0 ≤ u ≤ a;

(H4) One of the following conditions holds:

(i) There exists constant e > d such that f(u) ≤ ϕp(
e

λ1

) for 0 ≤ u ≤ e or

(ii) lim supu→∞
f(u)
up−1 < ϕp(

1
λ1

).

(H5) f(u) > ϕp(
2b
ωL

), for ωb ≤ u ≤ d.

Then the boundary value problem (1.1)–(1.2) has at least three positive solutions u1, u2, and u3

satisfying

‖u1‖ < a, φ(u2) > b, ‖u3‖ > a, and φ(u3) < b.

Proof We define the operator T : P → E given by

(Tu)(t) =







ϕq

(

β
α

∫ σ

ξ
a(r)f(u(r)) dr

)

+
∫ t

0 ϕq

(∫ σ

s
a(r)f(u(r)) dr

)

ds, 0 ≤ t ≤ σ,

ϕq

(

δ
γ

∫ 1

σ
a(r)f(u(r)) dr

)

+
∫ 1

t
ϕq

(∫ s

σ
a(r)f(u(r)) dr

)

ds, σ ≤ t ≤ 1.
(3.6)
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Thus, it follows from Lemma 3.2 that operator T is well-defined. Since

(Tu)′(t) =

{

ϕq

(∫ σ

t
a(r)f(u(r)) dr

)

≥ 0, 0 ≤ t ≤ σ,

−ϕq

(

∫ t

σ
a(r)f(u(r)) dr

)

≤ 0, σ ≤ t ≤ 1,
(3.7)

it is easy to see that the operator (Tu)′ is continuous monotone decreasing on [0, 1], and

(Tu)′(σ) = 0. Meanwhile, it follows from the definition of operator T that for each u ∈ P, Tu ∈ E

is nonnegative continuous. And with (3.6), (3.7), we can obtain

αϕp((Tu)(0)) − βϕp((Tu)′(ξ)) = 0, γϕp((Tu)(1)) + δϕp((Tu)′(1)) = 0.

These show Tu ∈ P , i.e., T (P ) ⊂ P , and (Tu)(σ) = ‖Tu‖ with

ϕq

(β

α

∫ σ

ξ

a(r)f(u(r)) dr
)

+

∫ σ

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds

= ϕq

( δ

γ

∫ 1

σ

a(r)f(u(r)) dr
)

+

∫ 1

σ

ϕq

(

∫ s

σ

a(r)f(u(r)) dr
)

ds.

Furthermore, we can also obtain that operator T : P → P is completely continuous[11,Lemma 2.4],

and it follows from Lemma 3.2 that each fixed point of T in P is a positive solution of problem

(1.1)–(1.2).

We now show that the conditions of Theorem A are satisfied. Firstly, we define

φ(u) =
1

2
(u(ω) + u(1 − ω)), for all u ∈ P. (3.8)

Obviously, φ(u) is concave functional, and we have φ(u) ≤ ‖u‖, for arbitrary u ∈ P . Now we

choose u ∈ Pa. Then ‖u‖ ≤ a and assumption (H3) yields f(u(t)) < ϕp(
a
λ1

), for 0 ≤ t ≤ 1.

Thus, by Lemmas 2.1 and 3.2, we have

‖Tu‖ = (Tu)(σ) = ϕq

(β

α

∫ σ

ξ

a(r)f(u(r)) dr
)

+

∫ σ

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds

≤ ϕq

(β

α

∫ 1

ξ

a(r)f(u(r)) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r)f(u(r)) dr
)

ds

<
a

λ1

[

ϕq

(β

α

∫ 1

ξ

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r) dr
)

ds
]

=
a

λ1
· λ1 = a.

Hence, condition (C2) of Theorem A is satisfied.

Secondly, we claim that condition (H4) guarantees the existence of a number c with c > d

and

T : P c → P c. (3.9)

It is clear that if (i) holds, then as the proof above we immediately have (3.9) with e = c. Suppose

now that (ii) is satisfied. Then there exist l > 0 and ε < ϕp(
1
λ1

) such that

f(u)

ϕp(u)
≤ ε, for u ≥ l. (3.10)
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Let M = maxu∈[0,l] f(u). In view of (3.10), it is easy to see that

f(u) ≤ M + εϕp(u), for u ≥ 0. (3.11)

Now, assume that there exists a constant c such that

ϕp(c) > max{ϕp(d), M(ϕp(
1

λ1
) − ε)−1}. (3.12)

Then, for arbitrary u ∈ P c and t ∈ [0, 1], from (3.11), (3.12) and Lemma 3.2, we can obtain

‖Tu‖ = (Tu)(σ) = ϕq

(β

α

∫ σ

ξ

a(r)f(u(r)) dr
)

+

∫ σ

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds

≤ ϕq

(β

α

∫ 1

ξ

a(r)f(u(r)) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r)f(u(r)) dr
)

ds

≤ ϕq

(β

α

∫ 1

ξ

a(r)(M + εϕp(u(r))) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r)(M + εϕp(u(r))) dr
)

ds

<
[

ϕq

(β

α

∫ 1

ξ

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r) dr
)

ds
]

ϕq

(

ϕp(c)(ϕp(
1

λ1
) − ε) + εϕp(c)

)

= λ1 ·
c

λ1
= c.

Hence, (3.9) holds.

We shall now show that condition (C1) of theorem A is satisfied. For this, we suppose that

u(t) ≡ b + d

2
.

Note that φ(u(t)) = φ( b+d
2 ) = b+d

2 > b. Thus {u ∈ P (φ, b, d) : φ(u) > b} 6= ∅. Next, let

u ∈ P (φ, b, d). Then φ(u) ≥ b, and so b ≤ ‖u‖ ≤ d. It follows from Lemma 3.1 that ωb ≤
ω‖u‖ ≤ u(t) ≤ d, t ∈ [ω, 1 − ω], and condition (H5) yields f(u(t)) > ϕp(

2b
ωL

), for ωb ≤ u(t) ≤
d, t ∈ [ω, 1 − ω]. In the following, we shall discuss it from three respects.

(i) If σ ∈ [ξ, ω], by (H5), (3.6)–(3.8) and Lemma 2.1, we have

φ(Tu) =
1

2
(Tu(ω) + Tu(1− ω)) ≥ Tu(1 − ω)

= ϕq

( δ

γ

∫ 1

σ

a(r)f(u(r)) dr
)

+

∫ 1

1−ω

ϕq

(

∫ s

σ

a(r)f(u(r)) dr
)

ds

≥
∫ 1

1−ω

ϕq

(

∫ s

σ

a(r)f(u(r)) dr
)

ds

>

∫ 1

1−ω

ϕq

(

∫ 1−ω

ω

a(r)ϕp(
2b

ωL
) dr

)

ds

> ωϕq

(

∫ 1−ω

ω

a(r) dr
) 2b

ωL
≥ 2b > b.

(ii) If σ ∈ [ω, 1 − ω], then for arbitrary u ∈ P (φ, b, d), similarly we have

2φ(Tu) = (Tu(ω) + Tu(1 − ω))

≥
∫ ω

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds +

∫ 1

1−ω

ϕq

(

∫ s

σ

a(r)f(u(r)) dr
)

ds
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≥
∫ ω

0

ϕq

(

∫ σ

ω

a(r)f(u(r)) dr
)

ds +

∫ 1

1−ω

ϕq

(

∫ 1−ω

σ

a(r)f(u(r)) dr
)

ds

> ω
(

ϕq

(

∫ σ

ω

a(r)ϕp(
2b

ωL
) dr

)

+ ϕq

(

∫ 1−ω

σ

a(r)ϕp(
2b

ωL
) dr

))

> ω
(

ϕq

(

∫ σ

ω

a(r) dr
)

+ ϕq

(

∫ 1−ω

σ

a(r) dr
)) 2b

ωL
≥ 2b.

(iii) If σ ∈ [1 − ω, 1], then for arbitrary u ∈ P (φ, b, d), similarly we have

φ(Tu) =
1

2
(Tu(ω) + Tu(1 − ω)) ≥ Tu(ω)

≥
∫ ω

0

ϕq

(

∫ σ

s

a(r)f(u(r)) dr
)

ds

>

∫ ω

0

ϕq

(

∫ 1−ω

ω

a(r)ϕp(
2b

ωL
) dr

)

ds

> ωϕq

(

∫ 1−ω

ω

a(r) dr
) 2b

ωL
≥ 2b > b.

Hence, for arbitrary u ∈ P (φ, b, d), φ(Tu) > b. Thus, condition (C1) of Theorem A is satisfied.

Finally, we show that condition (C3) of Theorem A is also satisfied. For this, let d ≥ b
ω
, and

let u ∈ P (φ, b, c) be such that ‖Tu‖ > d. Then, it follows from Lemma 3.1 that

φ(Tu) =
1

2
(Tu(ω) + Tu(1 − ω)) ≥ ω‖Tu‖ > ωd ≥ b.

Consequently, condition (C3) of Theorem A is satisfied.

Thus, it now follows from Theorem A that the boundary value problem (1.1)–(1.2) has at

least three positive solutions u1, u2 and u3 such that

‖u1‖ < a, φ(u2) > b, ‖u3‖ > a, and φ(u3) < b.

The proof of Theorem 3.1 is completed. 2

4. Existence of three positive solutions of problem (1.1)–(1.3)

Now we discuss problem (1.1)–(1.3). The method is just similar to that we have done in

Section 3, so we omit the proof of main result of this section. We define the cone P = {u ∈ E :

u(t) ≥ 0, αϕp(u(0)) − βϕp(u
′(0)) = 0, γϕp(u(1)) + δϕp(u

′(η)) = 0, u(t) is concave function on

[0, 1]}.

Lemma 4.1 Suppose that conditions (H1), (H2) hold. Then u(t) ∈ E
⋂

C2(0, 1) is a solution of

boundary value problem (1.1)–(1.3), if and only if u(t) ∈ E is a solution of the following integral

equation:

u(t) =







ϕq

(

β
α

∫ σ

0
a(r)f(u(r)) dr

)

+
∫ t

0
ϕq

(∫ σ

s
a(r)f(u(r)) dr

)

ds, 0 ≤ t ≤ σ,

ϕq

(

δ
γ

∫ η

σ
a(r)f(u(r)) dr

)

+
∫ 1

t
ϕq

(∫ s

σ
a(r)f(u(r)) dr

)

ds, σ ≤ t ≤ 1,

where σ ∈ [0, η] and u′(σ) = 0.

Proof The proof is similar to Lemma 3.2, and we omit it here. 2
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Theorem 4.1 Assume that (H1),(H2) hold, and suppose that there exist positive constants

a, b, d such that 0 < a < ωb < b < d. Also assume that f satisfies

(H3) f(u) < ϕp(
a
λ2

), for 0 ≤ u ≤ a;

(H4) One of the following conditions holds:

(i) There exists constant e > d such that f(u) ≤ ϕp(
e

λ2

) for 0 ≤ u ≤ e or

(ii) lim supu→∞
f(u)
up−1 < ϕp(

1
λ2

).

(H5) f(u) > ϕp(
2b
ωL

), for ωb ≤ u ≤ d.

Then the boundary value problem (1.1)–(1.3) has at least three positive solutions u1, u2 and u3

satisfying

‖u1‖ < a, φ(u2) > b, ‖u3‖ > a, and φ(u3) < b.

Proof The proof is similar to Theorem 3.1 and we omit it here. 2

5. Application

In order to illustrate our results, we present an example as follows.

Example Consider the the following p-Laplacian differential equation

(ϕp(u
′))′ + t−

1

2 f(u) = 0, 0 < t < 1, (5.1)

subject to one of the following boundary conditions

αϕp(u(0)) − βϕp(u
′(ξ) = 0, γϕp(u(1)) + δϕp(u

′(1)) = 0, (5.2)

or

αϕp(u(0)) − βϕp(u
′(0)) = 0, γϕp(u(1)) + δϕp(u

′(η) = 0, (5.3)

where

p =
3

2
, α = 2, β = γ = 1, δ = 2, ξ =

1

4
, η =

1

2
, ω =

1

4
, a(t) = t−

1

2

and

f(u) =















u2

2 , 0 ≤ u ≤ 40,

792 + 4
5 (50 − u), 40 < u ≤ 50,

u+15790
2
√

2u
, u > 50.

Then (5.1)–(5.2) or (5.1)–(5.3) has at least three positive solutions.

Proof In this example we have

L = min
1

4
≤t≤ 3

4

A(t) = min
1

4
≤t≤ 3

4

(

ϕq

(

∫ t

1

4

t−
1

2 dt
)

+ ϕq

(

∫ 3

4

t

t−
1

2 dt
))

= 2 −
√

3,

λ1 = ϕq

(1

2

∫ 1

1

4

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ 1

s

a(r) dr
)

ds =
11

12
,

λ2 = ϕq

(

2

∫ 1

2

0

a(r) dr
)

+

∫ 1

0

ϕq

(

∫ s

0

a(r) dr
)

ds = 10.
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And obviously, condition (H1), (H2) are satisfied. Let a = 1, b = 40, d = 50. Then we have

f(u) ≤ max
0≤u≤1

f(u) =
1

2
< ϕp(

a

λ1
) = ϕp(

1

λ1
)

= ϕp(
12

11
) = (

12

11
)

1

2 , for 0 ≤ u ≤ 1

f(u) > min
10≤u≤50

f(u) = 50 > ϕp(
2b

ωL
)

= ϕp(320(2 +
√

3)) = (320(2 +
√

3))
1

2 , for 10 ≤ u ≤ 50

and

lim sup
u→∞

f(u)

u
1

2

=

√
2

4
< ϕp(

1

λ1
).

Consequently, conditions (H3), (H4)(ii) and (H5) of Theorem 3.1 are satisfied. Then by Theorem

3.1, the singular boundary value problem with p-Laplacian (5.1)–(5.2) has at least three positive

solutions such that

‖u1‖ < a, φ(u2) > b, ‖u3‖ > a, and φ(u3) < b.

Similarly, we can also show that problem (4.1)–(4.3) has at least three positive solutions.

Remark We note that in the above example, a(t) has singularity at t = 0.
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