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Abstract By using the continuation theorem of Mawhin’s coincidence degree theory, Hölder

inequality and some analysis techniques, some effective results are obtained ensuring existence

and global exponential stability of periodic solutions in delayed cellular neural networks with

impulses. An illustrative example is given to demonstrate the effectiveness of the obtained

results.
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1. Introduction

It is well known that Hopfield neural networks[1] have been extensively studied in past years

and found many applications in different areas such as pattern recognition, associative mem-

ory and combinatorial optimization[2−3]. However, the delays in electronic neural networks are

inevitably encountered because of finite switching speed of amplifiers.

In recent years, the study of the existence of periodic solutions and almost periodic solutions

of the nonautonomous delayed neural networks has received much attention and obtained some

interesting results[4−8]. Therefore, many physical systems are also under abrupt changes at

certain moments due to instantaneous perturbations, which lead to impulsive effects. So, it is

important to investigate the dynamic behavior of delayed neural networks with impulses. Many

results about periodic solutions with impulses can be found in [9–11].

In this paper, we consider the following nonautonomous delayed cellular neural networks

model with impulses


















ẋi(t) = −aixi(t) +
n
∑

j=1

bijfj(xj(t)) +
n
∑

j=1

cijfj(xj(t− τij(t))) + Ji(t), t ≥ 0, t 6= tk,

△xi(tk) = xi(t
+
k ) − xi(t

−
k ) = Ik(xi(tk)), t = tk,

xi(t) = φi(t), t ∈ [−τ, 0], i = 1, 2, . . . , n, k = 1, 2, . . .

(1)
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where △xi(tk) = xi(t
+
k ) − xi(t

−
k ) are the impulses at moments tk and t1 < t2 < · · · is a strictly

increasing sequence such that limk→∞ tk = +∞; xi(t) corresponds to the state of the ith unit at

time t, fj(xj(t)) denotes the output of the jth unit at time t, bij denotes the strength of the jth

unit on the ith unit at time t, cij denotes the strength of the jth unit on the ith unit at time

t−τij(t), Ji(t) is the external bias on the ith unit at time t, τij(t) denotes the transmission delay

along the axon of the jth unit, and ai represents the rate with which the ith unit will reset its

potential to the resting state when disconnected from the network and external. The functions

Ik(·) : R → R and φi : [−τ, 0] → R both are continuous.

As usual in the theory of impulsive differential equations, at the points of discontinuity tk of

the solution t 7→ xi(t) we assume that xi(tk) ≡ x′i(t
−
k ). It is clear that, in general, the derivatives

x′i(tk) do not exist. On the other hand, according to the first equality of (1) there exist the limits

x′i(t
∓
k ). According to the above convention, we assume x′i(tk) ≡ x′i(t

−
k ).

Throughout this paper, we assume that:

(H1) Functions fj(u) (j = 1, 2, . . . , n) satisfy the Lipschitz condition, i.e., there are constants

Lj > 0 such that

|fj(u1) − fj(u2)| ≤ Lj|u1 − u2|, ∀u1, u2 ∈ R, u1 6= u2, fj(0) = 0.

(H2) There exists a positive integer p and constants Īk > 0 such that tk+p = tk + ω,

Ik+p(x) = Ik(x) and |Ik(xi(tk))| ≤ Īk, k = 1, 2, . . . , i = 1, 2, . . . , n.

(H3) τij ∈ C1(R,R), 0 ≤ τij(t) ≤ τ , ˙τij(t) ∈ C(R,R), ˙τij(t) < 1, t ∈ R, ai > 0, Ji(t) ∈
C(R,R), τij(t+ ω) = τij(t), Ji(t+ ω) = Ji(t), i = 1, 2, . . . , n.

Our main aim of this paper is to investigate the stability and existence of periodic solutions

of system (1) by using Mawhin’s continuation theorem of coincidence degree theory and by

constructing Lyapunov functions. As far as we know, there are few papers to deal with such a

problem by using Mawhin’s continuation theorem of coincidence degree theory and some analysis

techniques.

This paper is organized as follows: In Section 2, we introduce some definitions and preliminary

results which are needed in later sections. In Section 3, the existence of periodic solutions of

system (1) is studied by using the continuation theorem of coincidence degree theory proposed

by Gains and Mawhin[12]. In Section 4, the global exponential stability of periodic solutions is

discussed based on constructing Lyapunov functions. In Section 5, an illustrative example is

given to demonstrate the effectiveness of the obtained results.

2. Preliminaries

We shall introduce some definitions and state some preliminary results.

For any φ ∈ C([−τ, 0] → Rn), we define ‖ φ ‖=
∑n

i=1 maxt∈[−τ,0] |φi(t)|.

Definition 1 A piecewise continuous function x(t) = (x1(t), . . . , xn(t))T : [−τ,+∞) → Rn is

called a solution of Eq. (1), if

(I) x(t) is continuous at t 6= tk, x(tk) = x(t−k ) and x(t+k ) exist for ∀k ∈ N ;
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(II) x(t) satisfies Eq. (1) for t ≥ 0, tk, k ∈ N , {tk} ∩ [0, ω] = {t1, t2, . . . , tp}.

Definition 2 A piecewise continuous function x(t) : [0, ω] → Rn is called an ω-periodic solution

of system (1), if

(I) x(t) satisfies (I) and (II) of Definition1 in the interval [0, ω];

(II) x(t) = x(t+ ω), t ∈ R.

Definition 3 The periodic solution x(t) of system (1) is said to be global exponential stable if

there exist some ε > 0 and M > 1 such that
n

∑

i=1

|xi(t) − x∗i (t)| ≤M ‖ φ− φ∗ ‖ e−εt, t > 0,

where ‖ φ− φ∗ ‖= ∑n

i=1 maxt∈[−τ,0] |φi − φ∗i |. Definitions 1, 2 and 3 can be found in [13].

For the system (1), finding the periodic solutions is equivalent to finding solutions of the

following boundary-value problem:






ẋi(t) = −aixi(t) +
n
∑

j=1

bijfj(xj(t)) +
n
∑

j=1

cijfj(xj(t− τij(t))) + Ji(t), t 6= tk, t ∈ [0, ω],

△xi(tk) = xi(t
+
k ) − xi(t

−
k ) = Ik(xi(tk)), t = tk, xi(0) = xi(ω),

(2)

where i = 1, . . . , n, k = 1, . . . , p.

3. Existence of periodic solutions

In this section, we shall study the existence of at least one periodic solution of system (1)

based on the Mawhin’s continuation theorem. To do so, we shall study the following preparations.

For any nonnegative integer q, let C(q)[0, ω; t1, t2, . . . , tp] = {x : [0, ω] → Rn|xq(t) exist for t 6=
t1, t2, . . . , tp; x

(q)(t+k ) and x(q)(t−k ) exist at t1, t2, . . . , tp; and x(j)(tk) = x(j)(t−k ), k = 1, 2, . . . , p,

j = 1, 2, . . . , q} with the norm ‖ x ‖q= max{supt∈[0,ω] ‖ x(j)(t) ‖}q
j=1, where ‖. ‖ is any norm

of Rn. It is easy to show that C(q)[0, ω; t1, t2, . . . , tp] is a Banach space and the functions in

C[0, ω; t1, t2, . . . , tp] are continuous with respect to t different from t1, t2, . . . , tp.

Let X,Y be real Banach spaces, L : DomL ⊂ X → Y be a linear mapping, and N : X → Y

be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if

dimKerL = codimImL < +∞ and ImL is closed in Y . If L is a Fredfolm mapping of index

zero and there exist continuous projectors P : X → X and Q : Y → Y such that ImP = KerL,

KerQ = ImL = Im(I−Q), it follows that mapping L|DomL∩KerP : (I −P )X → ImL is invertible.

We denote the inverse of that mapping by KP . If Ω is an open bounded subset ofX , the mapping

N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is compact.

Since ImL is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

Now, we introduce Mawhin’s continuation theorem[12] as follows.

Lemma 1
[12] Let Ω ⊂ X be an open bounded set and let N : X → Y be a continuous operator

which is L-compact on Ω̄. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, Lx 6= λNx;
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(b) x ∈ ∂Ω ∩ KerL, QNx 6= 0;

(c) deg{QN,Ω ∩ KerL, 0} 6= 0.

Then Lx = Nx has at least one ω-periodic solution in Ω̄ ∩ DomL.

For the sake of convenience, let

‖ x ‖2=
(

∫ ω

0

|x(t)|2dt
)

1
2

, x ∈ C(R,R),

kij =
(

max
0≤t≤ω

1

1 − ˙τij(t)

)
1
2

, J̄i =
1

ω

∫ ω

0

Ji(t)dt.

We are now in a position to state and prove the existence of periodic solutions of system (1).

Theorem 1 Assume (H1)–(H3) holds and

ai −
1

2

n
∑

j=1

(

(|bij | + |cij |)Lj + (|bji| + |cji|k2
ji)Li

)

> 0, i = 1, 2, . . . , n.

Then system (1) has at least one ω-periodic solution.

Proof According to the discussion in Section 2, we need to prove that boundary value problem

(2) has a solution. In order to use the continuation theorem of coincidence degree theorem to

establish the existence of an ω-periodic solution of (1), we take

X =
{

x ∈ C[0, ω; t1, t2, . . . , tp] : x(0) = x(ω)
}

, Y = X ×Rn×(p+1).

Then X is a Banach space with the norm ‖ x ‖0= supt∈[0,ω]

∑n

i=1 |xi(t)| and Y is also a Banach

space with the norm ‖ z ‖=‖ x ‖0 + ‖ y ‖, x ∈ X , y ∈ Rn×(p+1).

Let

DomL =
{

x = (x1, x2, . . . , xn)T ∈ C1[0, ω; t1, t2, . . . , tp] : x(0) = x(ω)
}

,

L : DomL→ Y, x→
(

x′,△x(t1),△x(t2), . . . ,△x(tp), 0
)

,

N : X → Y,

Nx =
(

A,△xi(t1),△xi(t2), . . . ,△xi(tp), 0
)

n×(p+2)
,

where A = −aixi(t) +
∑n

j=1 bijfj(xj(t)) +
∑n

j=1 cijfj(xj(t− τij(t))) + Ji(t). Obviously

KerL =
{

x ∈ Rn, t ∈ [0, ω]
}

,

ImL =
{

z = (f, c1, c2, . . . , cn, d) ∈ Y :

∫ ω

0

f(s)ds+

p
∑

k=1

ck + d = 0
}

= X ×Rn×p × {0}

and

dimKerL = codimImL = n < +∞.

So, ImL is closed in Y , L is a Fredholm mapping of index zero. Define two projectors

Px =
1

ω

∫ ω

0

x(t)dt
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and

Qy = Q(f, c1, c2, . . . , cn, d) =
( 1

ω
[

∫ ω

0

f(s)ds+

p
∑

k=1

ck + d], 0, 0, . . . , 0, 0
)

.

It is easy to show that P and Q are continuous and satisfy

ImP = KerL, ImL = KerQ = Im(I −Q).

Further, through an easy computation, we can find the inverse KP : ImL → KerP ∩ DomL of

LP has the form

KP (z) =

∫ t

0

f(s)ds+
∑

t>tk

ck − 1

ω

∫ ω

0

∫ t

0

f(s)dsdt−
p

∑

k=1

ck +
1

ω

p
∑

k=1

tkck.

Thus, the expression of QNx is

( 1

ω

∫ ω

0

Adt− 1

ω

p
∑

k=1

Ii(xi(tk)), 0, 0, . . . , 0
)

n×1
,

where A = −aixi(t) +
∑n

j=1 bijfj(xj(t)) +
∑n

j=1 cijfj(xj(t− τij(t))) + Ji(t) and then

KP (I −Q)Nx =
(

(

∫ t

0

Ads−
∑

t>tk

Ii(xi(tk))
)

−
( 1

ω

∫ ω

0

∫ t

0

(

− aixi(s) +

n
∑

j=1

bijfj(xj(s))+

n
∑

j=1

cijfj(xj(s− τij(s))) + Ji(s)
)

dsdt+
( t

ω
− 1

2

)(

∫ t

0

(

− aixi(s) +

n
∑

j=1

bijfj(xj(s))+

n
∑

j=1

cijfj(xj(s− τij(s))) + Ji(s)
)

ds−
(

p
∑

k=1

Ii(xi(tk))
)

)

n×1
, i = 1, 2, . . . , n,

where A = −aixi(s) +
∑n

j=1 bijfj(xj(s)) +
∑n

j=1 cijfj(xj(s − τij(s))) + Ji(s). Clearly, QN and

KP (I − Q)N are continuous. Using the Arzela-Ascoli theorem, it is not difficult to show that

QN(Ω̄), KP (I − Q)(Ω̄) are relatively compact for any open bounded set Ω ⊂ X . So, N is

L-compact on Ω̄ for any open bounded set Ω ⊂ X .

Now we reach the position to search for an appropriate open, bounded Ω for the application

of the continuation theorem. Corresponding to operator equation Lx = λNx, λ ∈ (0, 1), we have






ẋi(t) = λ
{

− aixi(t) +
n
∑

j=1

bijfj(xj(t)) +
n
∑

j=1

cijfj(xj(t− τij(t))) + Ji(t)
}

, t > 0, t 6= tk,

△xi(tk) = xi(t
+
k ) − xi(t

−
k ) = λIk(xi(tk)), i = 1, 2, . . . , n, k = 1, 2, . . .

(3)

Suppose that x(t) =
(

x1(t), x2(t), . . . , xn(t)
)T ∈ X is a solution of system (3) for a certain

λ ∈ (0, 1). Integrating (3) over the interval [0, ω], we obtain

∫ ω

0

(

− aixi(t) +

n
∑

j=1

bijfj(xj(t)) +

n
∑

j=1

cijfj(xj(t− τij(t))) + Ji(t)
)

dt+

p
∑

k=1

Ik(xi(tk)) = 0.

Hence
∫ ω

0

aixi(s)ds =

∫ ω

0

(

n
∑

j=1

bijfj(xj(s)) +
n

∑

j=1

cijfj(xj(s− τij(s))) + Ji(s)
)

ds+

p
∑

k=1

Ik(xi(tk)). (4)
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Let t0 = t+0 = 0, tp+1 = ω. From (2), (4) and Hölder inequality, we have

∫ ω

0

|x′i(t)|dt =

p
∑

k=1

∫ tk

tk−1+0

|x′i(t)|dt+

p
∑

k=1

|xi(t
+
k ) − xi(tk)|

≤
∫ ω

0

ai|xi(t)|dt+

∫ ω

0

n
∑

j=1

|bij ||fj(xj(t))|dt+

∫ ω

0

n
∑

j=1

|cij ||fj(xj(t− τij(t)))|dt+

∫ ω

0

|Ji(t)|dt+

p
∑

k=1

|Ik(xi(tk))|

≤ai

√
ω ‖ xi ‖2 +

n
∑

j=1

|bij |Lj

√
ω ‖ xj ‖2 +

n
∑

j=1

|cij |Ljkij

√
ω ‖ xj ‖2 +

√
ω ‖ Ji ‖2 +

p
∑

k=1

Īk. (5)

Since
∫ ω

0

xi(t)x
′
i(t)dt =

λ

2

{

xi(t1) − xi(0) +

p
∑

l=2

[x2
i (tl) − x2

i (t
+
l−1)] + x2

i (ω) − x2
i (t

+
p )

}

=
λ

2

p
∑

l=1

[x2
i (tl) − x2

i (t
+
l−1)]

= −λ
p

∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk)),

multiplying both sides of (3) by xi(t) and integrating over interval [0, ω], we obtain

0 =

∫ ω

0

xi(t)x
′
i(t)dt = λ

(
∫ ω

0

(

− aixi(t) +

n
∑

j=1

bijfj(xj(t)) +

n
∑

j=1

cijfj(xj(t− τij(t)))+

Ji(t)
)

xi(t)dt

)

+ λ

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk)),

ai

∫ ω

0

|xi(t)|2dt ≤
n

∑

j=1

|bij |
∫ ω

0

|fj(xj(t))||xi(t)|dt +

n
∑

j=1

|cij |
∫ ω

0

|fj(xj(t− τij(t)))||xi(t)|dt+

∫ ω

0

|Ji(t)||xi(t)|dt+

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk))

≤
n

∑

j=1

|bij |Lj

∫ ω

0

|xj(t)||xi(t)|dt+

n
∑

j=1

|cij |Lj

∫ ω

0

|xj(t− τij(t))||xi(t)|dt

∫ ω

0

|Ji(t)||xi(t)|dt+

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk))

≤1

2

n
∑

j=1

|bij |Lj

∫ ω

0

|xj(t)|2dt+

1

2

n
∑

j=1

|bij |Lj

∫ ω

0

|xi(t)|2dt+
1

2

n
∑

j=1

|cij |Lj

∫ ω

0

|xi(t)|2dt+
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1

2

n
∑

j=1

|cij |Lj

∫ ω

0

|xj(t− τij(t))|2dt+
(

∫ ω

0

|Ji(t)|2dt
)

1
2
(

∫ ω

0

|xi(t)|2dt
)

1
2 +

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk))

≤1

2

n
∑

j=1

|bij |Lj ‖ xj ‖2
2 +

1

2

n
∑

j=1

|bij |Lj ‖ xi ‖2
2 +

1

2

n
∑

j=1

|cij |Ljk
2
ij ‖ xj ‖2

2 +

1

2

n
∑

j=1

|cij |Lj ‖ xi ‖2
2 + ‖ Ji ‖2‖ xi ‖2 +

p
∑

k=1

[xi(tk)+

1

2
Ik(xi(tk))]Ik(xi(tk)). (6)

From (6) it follows that

n
∑

i=1

(

ai −
1

2

n
∑

j=1

[(|bij | + |cij |)Lj + (|bji| + |cjik
2
ji)Li]

)

‖ xi ‖2
2 +

‖ Ji ‖2‖ xi ‖2 +

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk)) ≤ 0.

Obviously, E ‖ xi ‖2
2 −F ‖ xi ‖2 −G ≤ 0, where

E = max
1≤i≤n

ai −
1

2

n
∑

j=1

[(|bij | + |cij |)Lj + (|bji| + |cji|k2
ji)Li], F = min

1≤i≤n
‖ Ji ‖2,

G = min
1≤i≤n

p
∑

k=1

[xi(tk) +
1

2
Ik(xi(tk))]Ik(xi(tk)).

From which it follows that

‖ xi ‖2≤
F +

√
F 2 + 4EG

2E
:= Ri, i = 1, 2, . . . , n. (7)

Let ξ ∈ [0, ω](t 6= tk), k = 1, 2, . . . , p, such that xi(ξ) = inft∈[0,ω] xi(t), i = 1, 2, . . . , n. From (7),

we get

| xi(ξ) |≤
Ri√
ω
, i = 1, 2, . . . , n. (8)

Substituting (7) into (5), we obtain

∫ ω

0

|x′i(t)|dt ≤ ai

√
ωRi +

n
∑

j=1

|bij |Lj

√
ωRj +

n
∑

j=1

|cij |Ljkij

√
ωRj +

√
ω ‖ Ji ‖2 +

p
∑

k=1

Īk. (9)

Since for t ∈ [0, ω],

|xi(t)| ≤ |xi(ξ)| +
∫ ω

0

|x′i(s)|ds, (10)

from (8), (9) and (10), there exist positive constants Di (i = 1, 2, . . . , n) such that for t ∈ [0.ω],

|xi(t)| ≤ Di, i = 1, 2, . . . , n.
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Clearly, Di (i = 1, 2, . . . , n) are independent of λ. Denote R =
∑n

i=1Di + H , where H > 0 is

taken sufficiently large so that

min
1≤i≤n

(

ai −
n

∑

j=1

Li|bji + cji| +
1

ω

p
∑

k=1

Īk
)

R >

n
∑

i=1

J̄i.

Now, we take Ω =
{

x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X | ‖ x ‖≤ R, x(tk + 0) ∈ Ω, k =

1, 2, . . . , p
}

, it is clear that Ω satisfies the condition (a) of Lemma 1. When x ∈ KerL ∩ ∂Ω, x is

a constant vector in Rn with ‖ x ‖= ∑n

i=1 |xi| = R. Then

QNx =
(

− aixi +

n
∑

j=1

bijfj(xj) +

n
∑

j=1

cijfj(xj) +
1

ω

∫ ω

0

Ji(t)dt−
1

ω

p
∑

k=1

Ik(xi(tk))
)

n×1
.

Therefore

‖ QNx ‖ =
n

∑

j=1

|aixi +
n

ω

p
∑

k=1

Ik(xi) −
n

∑

j=1

bijfj(xj) −
n

∑

j=1

cijfj(xj) − J̄i|

≥
n

∑

i=1

ai|xi| +
n

ω

p
∑

k=1

Īk −
n

∑

i=1

n
∑

j=1

Lj |bij + cij | −
n

∑

i=1

|J̄i|

=

n
∑

i=1

(

ai −
n

∑

j=1

Lj |bij + cij | +
1

ω

p
∑

k=1

Īk
)

|xi| −
n

∑

i=1

|J̄i|

≥ min
1≤i≤n

(

ai −
n

∑

j=1

Li|bji + cji| +
1

ω

p
∑

k=1

Īk
)

n
∑

i=1

|xi| −
n

∑

i=1

|J̄i|

= min
1≤i≤n

(

ai −
n

∑

j=1

Li|bji + cji| +
1

ω

p
∑

k=1

Īk
)

R−
n

∑

i=1

|J̄i| > 0.

Consequently,

QN(x1, x2, . . . , xn)T 6= 0T for (x1, x2, . . . , xn)T ∈ KerL ∩ ∂Ω.

This satisfies condition (b) of Lemma 1. Furthermore, let ψ(µ, x) = −µx+ (1 − µ)QNx. Then

for any x ∈ KerL ∩ ∂Ω, xTψ(µ, x) < 0, we get

deg{QN,Ω ∩ KerL, 0} = deg{−x,Ω ∩ KerL, 0} 6= 0,

where x = (x1, x2, . . . , xn)T. So condition (c) of Lemma 1 is also satisfied. Thus, by Lemma

1 we know that Lx = Nx has at least one solution in X , that is, system (3) has at least one

ω-periodic solution. The proof is completed. 2

4. Global exponential stability of the periodic solution

In this section, we will discuss the stability of system (1) by constructing suitable Lyapunov

function.

Let zi(t) = xi(t) − x∗i (t), where xi(t) = φi(t) and x∗i (t) = φ∗i (t) are solutions of system (1)

when t ∈ [−τ, 0].
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Theorem 2 Assume that (H1)–(H3) holds. Furthermore, assume that the following inequalities

hold

(H4) a∗ −
∑n

j=1 |bji|Li −
∑n

j=1
|cji|Lie

τ

1− ˙τji(η
−1

ji
(t))

> 0, where η−1
ij is inverse function of ηij(t) =

t− τij(t), a∗ = min{a1, a2, . . . , an}.
(H5) The impulsive operators Ii(xi(t)) satisfy Ii(xi(t)) = −γikxi(tk), 0 < γik < 1, i =

1, 2, . . . , n, k = 1, 2, . . . .

Then the ω-periodic solution of the system (1) is of globally exponential stability.

Proof Let a∗ = min{a1, a2, . . . , an}. We define a Lyapunov function V (t) by

V (t) =
n

∑

i=1

[

eεt|zi(t)| +
n

∑

j=1

|cij |Lj

∫ t

t−τij(t)

eε(s+τij(η
−1

ij
(s)))

1 − ˙τij(η
−1
ij (s))

|zj(s)|ds
]

.

Then

dV (t)

dt
|(1) =

n
∑

i=1

[

εeεt|zi(t)| + eεtsgnzi(t)
(

− aixi(t) + aix
∗
i (t) +

n
∑

j=1

(

bijfj(xj(t)) − bijfj(x
∗
j (t))

)

+

n
∑

j=1

(

cijfj(xj(t− τij(t))) − cijfj(x
∗
j (t− τij(t)))

)

+

n
∑

j=1

|cij |Lj

(eε(t+τij(η
−1

ij
(t)))

1 − ˙τij(η
−1
ij (t))

|zj(t)| − eεt|zj(t− τij(t))|
)

]

≤
n

∑

i=1

eεt
[

ε− a∗ +

n
∑

j=1

|bji|Li +

n
∑

j=1

|cji|Lie
τ

1 − ˙τji(η
−1
ji (t))

]

|zi(t)|, t 6= tk.

From condition (H4), we conclude that there exists ε > 0, such that

ε− a∗ +

n
∑

j=1

|bji|Li +

n
∑

j=1

|cji|Lie
τ

1 − ˙τji(η
−1
ji (t))

≤ 0.

Hence

dV (t)

dt
|(1) ≤

n
∑

i=1

eεt
[

ε− a∗ +

n
∑

j=1

|bji|Li +

n
∑

j=1

|cji|Lie
τ

1 − ˙τji(η
−1
ji (t))

]

|zi(t)| ≤ 0, t 6= tk.

On the other hand

V (tk+0) ≤ max
1≤i≤n

(1 − γik)V (tk) ≤ V (tk) for k ∈ N.

So V (t) ≤ V (0) for t ∈ (tk, tk+1]. By the definition of V (t), we obtain

V (0) ≤
n

∑

i=1

[

|zi(0)| +
n

∑

j=1

|cij |Lj

∫ 0

0−τij(0)

eε(s+τij(η
−1

ij
(s)))

1 − ˙τij(η
−1
ij (s))

|zi(s)|ds
]

≤
n

∑

i=1

[

|zi(0)| +
n

∑

j=1

|cij |Lje
ετ

1 − sup
s∈[−τ,0]

˙τij(η−1(s))

∫ 0

−τ

|zi(s)|ds
]

≤‖ φ− φ∗ ‖ +
n

∑

j=1

|cij |Lje
ετ τ

1 − ˙τij
‖ φ− φ∗ ‖



526 LI B L and PU W J

=
(

1 +

n
∑

j=1

|cij |Lje
εττ

1 − ˙τij

)

‖ φ− φ∗ ‖ .

On the other hand, V (t) ≥
n
∑

i=1

eεt|zi(t)|. So, we obtain

n
∑

i=1

eεt|zi(t)| ≤
(

1 +

n
∑

j=1

|cij |Lje
ετ τ

1 − ˙τij

)

‖ φ− φ∗ ‖,

i.e.,
n

∑

i=1

|xi(t) − x∗i (t)| ≤M ‖ φ− φ∗ ‖ e−εt,

where M =
(

1 +
∑n

j=1
|cij|Ljeετ τ

1− ˙τij

)

for all t > 0. The proof is completed. 2

5. An illustrative example

Consider the following delayed neural networks with impulses:










































ẋ1(t) = −50x1(t) + 1
8 sin((x1(t)) + 1

4 sin(x2(t)) + 1
6 sin((x1(t− 1 + 1

2 sin(t)))+
1
10 sin(x2(t− 1 + 1

2 cos(t))) + sin(t),

△x1(tk) = x1(t
+
k ) − x1(t

−
k ) = Ik(x1(tk)) = − 3

4 (1 − 1
2 cos 2kπ

p
),

ẋ2(t) = −100x2(t) + 1
12 sin((x1(t)) + 1

5 sin(x2(t)) + 1
14 sin((x1(t− 1 + 1

2 cos(t)))+
1
15 sin(x2(t− 1 + 1

2 sin(t))) + cos(t),

△x2(tk) = x2(t
+
k ) − x2(t

−
k ) = Ik(x2(tk)) = − 1

4 (1 − 1
2 sin 2kπ

p
),

(11)

in which tk+p = tk + 2π, [0, 2π] ∩ {tk} = {t1, t2, . . . , tp}. Through simple computations, we can

find

ai −
1

2

2
∑

j=1

((|bij | + |cij |)Lj + (|bji| + |cji|k2
ji)Li) > 0, i = 1, 2.

Then conditions (4) and (5) are satisfied. So system (11) has at least one 2π-periodic solution,

which is exponentially stable.

6. Conclusion

In this paper, we use the continuation theorem of coincidence degree theory and Lyapunov

functions to study the existence and global stability of periodic solution for delayed neural net-

work model with impulses. A set of easily verifiable sufficient conditions are obtained for the

existence and global stability of periodic solution. The method of this paper may be extended

to study some other systems.
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