Complete Convergence and Strong Laws of Large Numbers for Weighted Sums of Sequences of Independent B-Valued Random Elements

QIU De Hua
(Department of Mathematics, Guangdong University of Business Studies, Guangdong 510320, China)
(E-mail: qiudhua@sina.com)

Abstract

In this paper, we obtain theorems of complete convergence and strong laws of large numbers for weighted sums of sequences of independent random elements in a Banach space of type $p(1 \leq p \leq 2)$. The results improve and extend the corresponding results on real random variables obtained by [1] and [2].

Keywords B-valued random elements; weighted sums; complete convergence; strong laws of large numbers; space of type p.

Document code A
MR(2000) Subject Classification 60F15
Chinese Library Classification O211.4

1. Introduction

When $\left\{X, X_{n}, n \geq 1\right\}$ is a sequence of i.i.d. random variables and $\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ is an array of real constants, the convergence of weighted sums $\sum_{i=1}^{n} a_{n i} X_{i}$ was studied by many authors ${ }^{[1-5]}$. We recommend the paper of Rosalsky and Sreehari ${ }^{[3]}$ for more information. Recently, Bai and Cheng ${ }^{[1]}$ proved the strong law of large numbers

$$
\begin{equation*}
n^{-1 / q} \sum_{i=1}^{n} a_{n i} X_{i} \rightarrow 0 \quad \text { a.s. } \tag{1}
\end{equation*}
$$

where $\left\{X, X_{n}, n \geq 1\right\}$ is a sequence of i.i.d. random variables satisfying $E X=0, E|X|^{\beta}<\infty$, and $\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ is an array of real constants satisfying

$$
\begin{equation*}
A_{\alpha, n}^{\alpha}=\frac{1}{n} \sum_{i=1}^{n}\left|a_{n i}\right|^{\alpha}, \quad A_{\alpha}=\lim \sup _{n \rightarrow \infty} A_{\alpha, n}<\infty \tag{2}
\end{equation*}
$$

for some $1<\alpha, \beta<\infty, 1<q<2$, and $1 / q=1 / \alpha+1 / \beta$.
In this paper, we let $\{\Omega, \Im, P\}$ be a complete probability space and B be a real separable Banach space with norm $\|\cdot\|$. The Banach space B is called type $p(1 \leq p \leq 2)$ if there exists a $C=C_{p}>0$ such that

$$
E\left\|\sum_{i=1}^{n} X_{i}\right\|^{p} \leq C \sum_{i=1}^{n} E\left\|X_{i}\right\|^{p}
$$

Received date: 2007-05-10; Accepted date: 2008-05-21
Foundation item: The Initiation of Research Project of Guangdong University of Business Studies.
where the independent B-valued random elements $X_{1}, X_{2}, \ldots, X_{n}$ have mean zero and $E\left\|X_{i}\right\|^{p}<$ $\infty, i=1,2, \ldots, n$.

Hereinafter in this paper, C always stands for a positive constant which may differ from one place to another; $\left\{X_{n}, n \geq 1\right\} \prec X$ means $\sup _{n \geq 1} P\left(\left\|X_{n}\right\| \geq x\right) \leq C P(X \geq x)$, where $x>0$ and X is a non-negative real-valued random variable.

In this paper, we shall extend the result of Bai and Cheng ${ }^{[1]}$ and Cuzick ${ }^{[2]}$ to independent B-valued random elements, and remove the identical distribution condition. The method of proof in this paper differs from that used by Bai and Cheng ${ }^{[1]}$ and it is simpler than Bai and Cheng's ${ }^{[1]}$. In addition, the complete convergence of independent B-valued random elements is studied.

In order to prove our main results, we need the following lemmas. By Corollary 2.4 of Shao ${ }^{[6]}$, we immediately have the following:

Lemma 1 Let Banach space B be of type $p(1 \leq p \leq 2)$ and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent B-valued random elements with mean zero. Then for $q \geq p$,

$$
E \max _{1 \leq k \leq n}\left\|\sum_{i=1}^{k} X_{i}\right\|^{q} \leq C\left[\sum_{i=1}^{n} E\left\|X_{i}\right\|^{q}+\left(\sum_{i=1}^{n} E\left\|X_{i}\right\|^{p}\right)^{q / p}\right], \quad n \geq 1
$$

Where C is a constant independent of n.
Lemma $\mathbf{2}^{[7]}$ Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent symmetric B-valued random elements. Then for every integer $j \geq 1$ and every $t>0$,

$$
P\left(\left\|\sum_{i=1}^{n} X_{i}\right\|>3^{j} t\right) \leq C_{j} P\left(\max _{1 \leq i \leq n}\left\|X_{i}\right\|>t\right)+D_{j}\left(P\left(\left\|\sum_{i=1}^{n} X_{i}\right\|>t\right)\right)^{2^{j}}
$$

where C_{j} and D_{j} are positive depending only on j.
Lemma $3^{[8]}$ Suppose that X_{0} is a B-valued random element, and

$$
\left.P\left(\left\|X_{0}\right\| \geq x\right)\right) \leq C P(X \geq x), \quad \forall x>0
$$

where X is a non-negative real-valued random variable. Then $\forall t>0, x>0$,

$$
\begin{gathered}
E\left\|X_{0}\right\|^{t} I\left(\left\|X_{0}\right\| \leq x\right) \leq C x^{t} P(X>x)+C E X^{t} I(X \leq x) \\
E\left\|X_{0}\right\|^{t} I\left(\left\|X_{0}\right\|>x\right) \leq C E X^{t} I(X>x)
\end{gathered}
$$

2. Main results and proofs

Theorem 1 Assume $1 \leq p \leq 2,0<\alpha, \beta, v<\infty, \alpha<v \beta, 0<q<p$ and $1 / q=1 / \alpha+1 / \beta$. Let $h(x)>0$ be a slowly varying function as $x \rightarrow+\infty$, Banach space B be of type $p,\left\{a_{n i}, 1 \leq i \leq\right.$ $n, n \geq 1\}$ be an array of constants satisfying (2) and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent B-valued random elements with $\left\{X_{n}, n \geq 1\right\} \prec X, E X^{v \beta} h\left(X^{\beta}\right)<\infty$. If $\alpha>1$, moreover we
assume that $E X_{n}=0, n \geq 1$. Then for any $\epsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{v-1} h(n) P\left(\max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} X_{i}\right\|>\epsilon n^{1 / q}\right)<\infty \tag{3}
\end{equation*}
$$

Proof For any $t: 0<t<\alpha$, by (2) and the Hölder's inequality, we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{n i}\right|^{t} \leq\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{\alpha}\right)^{t / \alpha}\left(\sum_{i=1}^{n} 1\right)^{1-t / \alpha} \leq C n \tag{4}
\end{equation*}
$$

For any $t: t \geq \alpha$, by (2) and the C_{r}-inequality, we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{n i}\right|^{t}=\sum_{i=1}^{n}\left(\left|a_{n i}\right|^{\alpha}\right)^{t / \alpha} \leq\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{\alpha}\right)^{t / \alpha} \leq C n^{t / \alpha} \tag{5}
\end{equation*}
$$

Putting $\gamma=\min \{\alpha, p\}$, since $\alpha<v \beta$, we have $E X^{\gamma}<\infty$.
When $0<\gamma \leq 1$, by the C_{r}-inequality and (4), we have

$$
\begin{equation*}
P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}\right\|>\epsilon n^{1 / q}\right) \leq C n^{-\gamma / q} \sum_{i=1}^{n}\left|a_{n i}\right|^{\gamma} E\left\|X_{i}\right\|^{\gamma} \leq C n^{(1-\gamma / q)} . \tag{6}
\end{equation*}
$$

When $\gamma>1$, since Banach space B is of type p, it is of type γ. So, it follows from Lemma 1 and (4),

$$
\begin{equation*}
P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}\right\|>\epsilon n^{1 / q}\right) \leq C n^{-\gamma / q} \sum_{i=1}^{n}\left|a_{n i}\right|^{\gamma} E\left\|X_{i}\right\|^{\gamma} \leq C n^{(1-\gamma / q)} \tag{7}
\end{equation*}
$$

By (6) and (7) and $q<\gamma$, we have

$$
n^{-1 / q} \sum_{i=1}^{n} a_{n i} X_{i} \xrightarrow{p} 0
$$

Hence by the Ottaviani inequality ${ }^{[10]}$ we have

$$
P\left(\max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} X_{i}\right\| \geq \epsilon n^{1 / q}\right) \leq C P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}\right\|>\frac{\epsilon}{2} n^{1 / q}\right)
$$

By symmetrization inequality ${ }^{[10]}$, in order to prove (3), it suffices to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{v-1} h(n) P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}^{s}\right\|>\frac{\epsilon}{4} n^{1 / q}\right)<\infty \tag{8}
\end{equation*}
$$

where $\left\{X_{n}^{s}, n \geq 1\right\}$ is a symmetrized version of $\left\{X_{n}, n \geq 1\right\}$. So we assume $\left\{X_{n}, n \geq 1\right\}$ is a sequence of independent symmetric B-valued random elements.

Define $X_{n i}=X_{i} I\left(\left\|X_{i}\right\| \leq n^{1 / \beta}\right)$ and $Y_{n i}=X_{i} I\left(\left\|X_{i}\right\|>n^{1 / \beta}\right)$ for $1 \leq i \leq n$ and $n \geq 1$.
Case $1 \alpha \leq p$.
Taking $t>\max (p, v \beta)$, by Lemma 1, Lemma 3, (5) and the C_{r}-inequality we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{v-1} h(n) P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{n i}\right\|>\frac{\epsilon}{8} n^{1 / q}\right) \\
& \quad \leq C \sum_{n=1}^{\infty} n^{(v-1-t / q)} h(n)\left[\left(\sum_{i=1}^{n} E\left\|a_{n i} X_{n i}\right\|^{p}\right)^{t / p}+\sum_{i=1}^{n} E\left\|a_{n i} X_{n i}\right\|^{t}\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & C \sum_{n=1}^{\infty} n^{(v-1-t / \beta)} h(n)\left[E X^{t} I\left(X \leq n^{1 / \beta}\right)+n^{t / \beta} P\left(X \geq n^{1 / \beta}\right)\right] \\
= & C \sum_{n=1}^{\infty} n^{(v-1-t / \beta)} h(n) E X^{t} I\left(X \leq n^{1 / \beta}\right)+ \\
& C \sum_{n=1}^{\infty} n^{v-1} h(n) P\left(X \geq n^{1 / \beta}\right) \triangleq A+B . \tag{9}
\end{align*}
$$

Since $t>v \beta$, by the property of slowly varying function and Lemma 1 of Bai and $\mathrm{Su}^{[9]}$, we have

$$
\begin{align*}
A & =C \sum_{i=0}^{\infty} \sum_{2^{i} \leq n<2^{i+1}} n^{(v-1-t / \beta)} h(n) E X^{t} I\left(X \leq n^{1 / \beta}\right) \\
& \leq C+C \sum_{i=0}^{\infty} 2^{i(v-t / \beta)} h\left(2^{i}\right) E X^{t} I\left(X \leq 2^{(i+1) / \beta}\right) \\
& \leq C+C \sum_{i=0}^{\infty} 2^{i(v-t / \beta)} h\left(2^{i}\right) \sum_{j=0}^{i} E X^{t} I\left(2^{j / \beta}<X \leq 2^{(j+1) / \beta}\right) \\
& \leq C+C \sum_{j=0}^{\infty} E X^{t} I\left(2^{j / \beta}<X \leq 2^{(j+1) / \beta}\right) \sum_{i=j}^{\infty} 2^{i(v-t / \beta)} h\left(2^{i}\right) \\
& \leq C+C \sum_{j=0}^{\infty} 2^{j(v-t / \beta)} h\left(2^{j}\right) E X^{t} I\left(2^{j / \beta}<X \leq 2^{(j+1) / \beta}\right) \\
& \leq C+C \sum_{j=0}^{\infty} 2^{j v} h\left(2^{j}\right) P\left(2^{j / \beta}<X \leq 2^{(j+1) / \beta}\right) \\
& \leq C+C E X^{v \beta} h\left(X^{\beta}\right)<\infty . \tag{10}
\end{align*}
$$

Similar to the proof of (10), we have

$$
\begin{equation*}
B \leq C+C E X^{v \beta} h\left(X^{\beta}\right)<\infty . \tag{11}
\end{equation*}
$$

Since $\alpha<v \beta$, we have $\alpha<(v+1) q$. When $1<\alpha \leq p$ by Lemma 1 or $0<\alpha \leq 1$ by the C_{r}-inequality, the property of slowly varying function and Lemma 1 of Bai and $\mathrm{Su}^{[9]}$, similar to the proof of (10), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{v-1} h(n) P\left(\left\|\sum_{i=1}^{n} a_{n i} Y_{n i}\right\|>\frac{\epsilon}{8} n^{1 / q}\right) \\
& \quad \leq C \sum_{n=1}^{\infty} n^{(v-1-\alpha / q)} h(n) \sum_{i=1}^{n} E\left\|a_{n i} Y_{n i}\right\|^{\alpha} \leq C+C E X^{v \beta} h\left(X^{\beta}\right)<\infty . \tag{12}
\end{align*}
$$

Therefore, if $\alpha \leq p$, by (9)-(12), (8) holds.
Case $2 \alpha>p$.
By Lemma 2, we have

$$
P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}\right\|>\epsilon n^{1 / q}\right) \leq C_{j} P\left(\max _{1 \leq i \leq n}\left\|a_{n i} X_{i}\right\|>3^{-j} \epsilon n^{1 / q}\right)+D_{j}\left(P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{i}\right\|>3^{-j} \epsilon n^{1 / q}\right)\right)^{2^{j}},
$$

where C_{j} and D_{j} are positive depending only on j. We can choose integer j such that $v+(1-$ $\gamma / q) 2^{j}<0$. So by (7), in order to prove (8), it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{v-1} h(n) \sum_{i=1}^{n} P\left(\left\|a_{n i} X_{i}\right\|>3^{-j} \epsilon n^{1 / q}\right)<\infty \tag{13}
\end{equation*}
$$

Define $\epsilon_{1}=3^{-j} \epsilon / 2$, by Lemma 3 and the Markov's inequality, similar to the proof of (10), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{v-1} h(n) \sum_{i=1}^{n} P\left(\left\|a_{n i} Y_{n i}\right\|>\epsilon_{1} n^{1 / q}\right) \leq C \sum_{n=1}^{\infty} n^{(v-1-\alpha / q)} h(n) \sum_{i=1}^{n} E\left\|a_{n i} Y_{n i}\right\|^{\alpha} \\
& \leq C \sum_{n=1}^{\infty} n^{(v-\alpha / q)} h(n) E X^{\alpha} I\left(X>n^{1 / \beta}\right) \leq C+C E X^{v \beta} h\left(X^{\beta}\right)<\infty \tag{14}
\end{align*}
$$

Choosing $t>\max (\alpha, v \beta)$, by Lemma 3 and the Markov's inequality, similar to the proof of (10), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{v-1} h(n) \sum_{i=1}^{n} P\left(\left\|a_{n i} X_{n i}\right\|>\epsilon_{1} n^{1 / q}\right) \leq C \sum_{n=1}^{\infty} n^{(v-1-t / q)} h(n) \sum_{i=1}^{n} E\left\|a_{n i} X_{n i}\right\|^{t} \\
& \quad \leq C \sum_{n=1}^{\infty} n^{(v-1-t / q)} h(n)\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{t}\right)\left[E X^{t} I\left(X \leq n^{1 / \beta}\right)+n^{t / \beta} P\left(X>n^{1 / \beta}\right)\right] \\
& \quad \leq C \sum_{n=1}^{\infty} n^{(v-1-t / \beta)} h(n)\left[E X^{t} I\left(X \leq n^{1 / \beta}\right)+n^{t / \beta} P\left(X>n^{1 / \beta}\right]\right. \\
& \quad \leq C+C E X^{v \beta} h\left(X^{\beta}\right)<\infty . \tag{15}
\end{align*}
$$

Therefore by (14)-(15), (13) holds, so (3) holds.
Theorem 2 Assume $1 \leq p \leq 2,0<\alpha, \beta<\infty, 0<q<p$ and $1 / q=1 / \alpha+1 / \beta$. Let Banach space B be of type $p,\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ be an array of constants satisfying (2) and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent B-valued random elements with $\left\{X_{n}, n \geq 1\right\} \prec X, E X^{\beta}<\infty$. If $\min \{\alpha, \beta\}>1$, moreover we assume that $E X_{n}=0, n \geq 1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1 / q} \max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} X_{i}\right\|=0, \quad \text { a.s. } \tag{16}
\end{equation*}
$$

Proof Define $X_{n i}=X_{i} I\left(\left\|X_{i}\right\| \leq i^{1 / \beta}\right), Y_{n i}=X_{i} I\left(\left\|X_{i}\right\|>i^{1 / \beta}\right), 1 \leq i \leq n, n \geq 1$. To prove (16), we only need to prove that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n^{-1 / q} \max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} X_{n i}\right\|=0, \quad \text { a.s. }, \tag{17}\\
& \lim _{n \rightarrow \infty} n^{-1 / q} \max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} Y_{n i}\right\|=0, \quad \text { a.s. } \tag{18}
\end{align*}
$$

Noting that $E X^{\beta}<\infty \Longleftrightarrow \sum_{n=1}^{\infty} P\left(X>n^{1 / \beta}\right)<\infty$, we have $\sum_{n=1}^{\infty} P\left(\left\|X_{n}\right\|>n^{1 / \beta}\right)<\infty$.

Hence by the Borel-Cantelli lemma, we can get $P\left(\left\|X_{n}\right\|>n^{1 / \beta}, i . o.\right)=0$. It follows that

$$
\begin{equation*}
n^{-1 / q} \max _{1 \leq j \leq n}\left\|\sum_{i=1}^{j} a_{n i} Y_{n i}\right\| \leq n^{-1 / q} \max _{1 \leq i \leq n}\left|a_{n i}\right| \sum_{i=1}^{n}\left\|Y_{n i}\right\| \leq A_{\alpha, n} n^{-1 / \beta} \sum_{i=1}^{n}\left\|Y_{n i}\right\| \rightarrow 0 \quad \text { a.s. } \tag{19}
\end{equation*}
$$

Therefore, (18) holds.
Putting $\gamma=\min \{\alpha, \beta, p\}$, as in Theorem 1, we have

$$
\begin{equation*}
P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{n i}\right\| \geq \epsilon 3^{-j} n^{1 / q}\right) \leq C n^{(1-\gamma / q)} \tag{20}
\end{equation*}
$$

Therefore, we can get

$$
n^{-1 / q} \sum_{i=1}^{n} a_{n i} X_{i} \xrightarrow{p} 0
$$

To prove (17), by the Ottaviani inequality ${ }^{[10]}$, the symmetrization inequality ${ }^{[10]}$ and the BorelCantelli lemma, it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{n i}^{s}\right\|>\epsilon n^{1 / q}\right)<\infty, \quad \forall \epsilon>0 \tag{21}
\end{equation*}
$$

where $\left\{X_{n i}^{s}, 1 \leq i \leq n, n \geq 1\right\}$ is a symmetrized version of $\left\{X_{n i}, 1 \leq i \leq n, n \geq 1\right\}$. So we assume $\left\{X_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ is symmetric B-valued random elements. By Lemma 2 , we have

$$
\begin{align*}
& P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{n i}\right\|>\epsilon n^{1 / q}\right) \\
& \quad \leq C_{j} P\left(\max _{1 \leq i \leq n}\left\|a_{n i} X_{n i}\right\|>\epsilon 3^{-j} n^{1 / q}\right)+D_{j}\left(P\left(\left\|\sum_{i=1}^{n} a_{n i} X_{n i}\right\| \geq \epsilon 3^{-j} n^{1 / q}\right)\right)^{2^{j}} \tag{22}
\end{align*}
$$

We can choose integer j such that $2^{j}(\gamma / q-1)>1$. So by (20) and (22), in order to prove (21), it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\max _{1 \leq i \leq n}\left\|a_{n i} X_{n i}\right\|>\epsilon 3^{-j} n^{1 / q}\right)<\infty \tag{23}
\end{equation*}
$$

In fact, choosing $t>\max (\alpha, \beta)$, by the Markov's inequality, the C_{r}-inequality and (5), we can get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\max _{1 \leq i \leq n}\left\|a_{n i} X_{n i}\right\|>\epsilon 3^{-j} n^{1 / q}\right) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} P\left(\left\|a_{n i} X_{n i}\right\|>\epsilon 3^{-j} n^{1 / q}\right) \\
& \quad \leq C \sum_{n=1}^{\infty} n^{-t / q} \sum_{i=1}^{n}\left|a_{n i}\right|^{t} E\left\|X_{i}\right\|^{t} I\left(\left\|X_{i}\right\| \leq n^{1 / \beta}\right) \\
& \quad \leq C \sum_{n=1}^{\infty} n^{-t / q} \sum_{i=1}^{n}\left|a_{n i}\right|^{t}\left[E X^{t} I\left(X \leq n^{1 / \beta}\right)+n^{t / \beta} P\left(X \geq n^{1 / \beta}\right)\right] \\
& \quad \leq C+C E X^{\beta}<\infty
\end{aligned}
$$

So (23) holds, therefore (16) holds.
Remark Noting that the real space R is of type 2, we see that Theorems 1 and 2 improve
and extend the corresponding results of Bai and Cheng ${ }^{[1]}$ and Cuzick ${ }^{[2]}$ to B-valued random elements, and remove the identical distribution condition. The method of proof differs from Bai and Cheng's ${ }^{[1]}$ and it is simpler than Bai and Cheng's ${ }^{[1]}$.

References

[1] BAI Zhidong, CHENG P E. Marcinkiewicz strong laws for linear statistics [J]. Statist. Probab. Lett., 2000, 46(2): 105-112.
[2] CUZICK J E. A strong law for weighted sums of i.i.d. random variables [J]. J. Theoret. Probab., 1995, 8(3): 625-641
[3] ROSALSKY A, SREEHARI M. On the limiting behavior of randomly weighted partial sums [J]. Statist. Probab. Lett., 1998, 40(4): 403-410.
[4] CHUNG H T, LI D, ROSALSKY A. et al, On the rate of complete convergence for weighted sums of Banach space valued random elements [J]. Theory Probab. Appl., 2002, 47(3): 455-468.
[5] SUNG S H. Strong laws for weighted sums of i.i.d. random variables [J]. Statist. Probab. Lett., 2001, 52(4): 413-419.
[6] SHAO Qiman. A moment inequality and its applications [J]. Acta Math. Sinica, 1988, 31(6): 736-747. (in Chinese)
[7] JAIN N C. Tail probabilities for sums of independent Banach space valued random variables [J]. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1975, 33(3): 155-166.
[8] SU Chun, TONG Tiejun. Almost sure convergence of the general Jamison weighted sum of B-valued random variables [J]. Acta Math. Sin. (Engl. Ser.), 2004, 20(1): 181-192.
[9] BAI Zhidong, SU Chun. The complete convergence for partial sums of i.i.d. random variables [J]. Sci. Sinica Ser. A, 1985, 28(12): 1261-1277.
[10] WU Zhiquan, WANG Xiangchen. Probabilty in Banach Space [M]. Changchun: Jilin University Press, 1990. (in Chinese)

