Journal of Mathematical Research & Exposition May, 2009, Vol. 29, No. 3, pp. 528–534 DOI:10.3770/j.issn:1000-341X.2009.03.018 Http://jmre.dlut.edu.cn

Complete Convergence and Strong Laws of Large Numbers for Weighted Sums of Sequences of Independent *B*-Valued Random Elements

QIU De Hua

(Department of Mathematics, Guangdong University of Business Studies, Guangdong 510320, China) (E-mail: qiudhua@sina.com)

Abstract In this paper, we obtain theorems of complete convergence and strong laws of large numbers for weighted sums of sequences of independent random elements in a Banach space of type $p(1 \le p \le 2)$. The results improve and extend the corresponding results on real random variables obtained by [1] and [2].

Keywords B-valued random elements; weighted sums; complete convergence; strong laws of large numbers; space of type p.

Document code A MR(2000) Subject Classification 60F15 Chinese Library Classification 0211.4

1. Introduction

When $\{X, X_n, n \ge 1\}$ is a sequence of i.i.d. random variables and $\{a_{ni}, 1 \le i \le n, n \ge 1\}$ is an array of real constants, the convergence of weighted sums $\sum_{i=1}^{n} a_{ni}X_i$ was studied by many authors^[1-5]. We recommend the paper of Rosalsky and Sreehari^[3] for more information. Recently, Bai and Cheng^[1] proved the strong law of large numbers

$$n^{-1/q} \sum_{i=1}^{n} a_{ni} X_i \to 0$$
 a.s. (1)

where $\{X, X_n, n \ge 1\}$ is a sequence of i.i.d. random variables satisfying $EX = 0, E|X|^{\beta} < \infty$, and $\{a_{ni}, 1 \le i \le n, n \ge 1\}$ is an array of real constants satisfying

$$A_{\alpha,n}^{\alpha} = \frac{1}{n} \sum_{i=1}^{n} |a_{ni}|^{\alpha}, \quad A_{\alpha} = \lim \sup_{n \to \infty} A_{\alpha,n} < \infty,$$
(2)

for some $1 < \alpha, \beta < \infty, 1 < q < 2$, and $1/q = 1/\alpha + 1/\beta$.

In this paper, we let $\{\Omega, \Im, P\}$ be a complete probability space and B be a real separable Banach space with norm $\|\cdot\|$. The Banach space B is called type $p \ (1 \le p \le 2)$ if there exists a $C = C_p > 0$ such that

$$E \| \sum_{i=1}^{n} X_i \|^p \le C \sum_{i=1}^{n} E \| X_i \|^p,$$

Received date: 2007-05-10; Accepted date: 2008-05-21

Foundation item: The Initiation of Research Project of Guangdong University of Business Studies.

where the independent *B*-valued random elements X_1, X_2, \ldots, X_n have mean zero and $E ||X_i||^p < \infty, i = 1, 2, \ldots, n$.

Hereinafter in this paper, C always stands for a positive constant which may differ from one place to another; $\{X_n, n \ge 1\} \prec X$ means $\sup_{n\ge 1} P(||X_n|| \ge x) \le CP(X \ge x)$, where x > 0 and X is a non-negative real-valued random variable.

In this paper, we shall extend the result of Bai and $\text{Cheng}^{[1]}$ and $\text{Cuzick}^{[2]}$ to independent *B*-valued random elements, and remove the identical distribution condition. The method of proof in this paper differs from that used by Bai and $\text{Cheng}^{[1]}$ and it is simpler than Bai and $\text{Cheng}^{[1]}$. In addition, the complete convergence of independent *B*-valued random elements is studied.

In order to prove our main results, we need the following lemmas. By Corollary 2.4 of Shao^[6], we immediately have the following:

Lemma 1 Let Banach space B be of type $p(1 \le p \le 2)$ and $\{X_n, n \ge 1\}$ be a sequence of independent B-valued random elements with mean zero. Then for $q \ge p$,

$$E \max_{1 \le k \le n} \|\sum_{i=1}^{k} X_i\|^q \le C[\sum_{i=1}^{n} E \|X_i\|^q + (\sum_{i=1}^{n} E \|X_i\|^p)^{q/p}], \quad n \ge 1.$$

Where C is a constant independent of n.

Lemma 2^[7] Let $\{X_n, n \ge 1\}$ be a sequence of independent symmetric *B*-valued random elements. Then for every integer $j \ge 1$ and every t > 0,

$$P(\|\sum_{i=1}^{n} X_i\| > 3^j t) \le C_j P(\max_{1 \le i \le n} \|X_i\| > t) + D_j (P(\|\sum_{i=1}^{n} X_i\| > t))^{2^j},$$

where C_j and D_j are positive depending only on j.

Lemma 3^[8] Suppose that X_0 is a *B*-valued random element, and

$$P(||X_0|| \ge x)) \le CP(X \ge x), \quad \forall x > 0$$

where X is a non-negative real-valued random variable. Then $\forall t > 0, x > 0$,

$$E \|X_0\|^t I(\|X_0\| \le x) \le Cx^t P(X > x) + CEX^t I(X \le x)$$
$$E \|X_0\|^t I(\|X_0\| > x) \le CEX^t I(X > x).$$

2. Main results and proofs

Theorem 1 Assume $1 \le p \le 2, 0 < \alpha, \beta, v < \infty, \alpha < v\beta, 0 < q < p$ and $1/q = 1/\alpha + 1/\beta$. Let h(x) > 0 be a slowly varying function as $x \to +\infty$, Banach space B be of type p, $\{a_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of constants satisfying (2) and $\{X_n, n \ge 1\}$ be a sequence of independent B-valued random elements with $\{X_n, n \ge 1\} \prec X, EX^{v\beta}h(X^{\beta}) < \infty$. If $\alpha > 1$, moreover we

QIU D H

assume that $EX_n = 0, n \ge 1$. Then for any $\epsilon > 0$,

$$\sum_{n=1}^{\infty} n^{\nu-1} h(n) P(\max_{1 \le j \le n} \| \sum_{i=1}^{j} a_{ni} X_i \| > \epsilon n^{1/q}) < \infty.$$
(3)

Proof For any $t : 0 < t < \alpha$, by (2) and the Hölder's inequality, we get

$$\sum_{i=1}^{n} |a_{ni}|^t \le \left(\sum_{i=1}^{n} |a_{ni}|^{\alpha}\right)^{t/\alpha} \left(\sum_{i=1}^{n} 1\right)^{1-t/\alpha} \le Cn.$$
(4)

For any $t: t \geq \alpha$, by (2) and the C_r -inequality, we get

$$\sum_{i=1}^{n} |a_{ni}|^{t} = \sum_{i=1}^{n} (|a_{ni}|^{\alpha})^{t/\alpha} \le (\sum_{i=1}^{n} |a_{ni}|^{\alpha})^{t/\alpha} \le Cn^{t/\alpha}.$$
(5)

Putting $\gamma = \min\{\alpha, p\}$, since $\alpha < v\beta$, we have $EX^{\gamma} < \infty$.

When $0 < \gamma \leq 1$, by the C_r -inequality and (4), we have

$$P(\|\sum_{i=1}^{n} a_{ni}X_i\| > \epsilon n^{1/q}) \le C n^{-\gamma/q} \sum_{i=1}^{n} |a_{ni}|^{\gamma} E \|X_i\|^{\gamma} \le C n^{(1-\gamma/q)}.$$
(6)

When $\gamma > 1$, since Banach space B is of type p, it is of type γ . So, it follows from Lemma 1 and (4),

$$P(\|\sum_{i=1}^{n} a_{ni} X_i\| > \epsilon n^{1/q}) \le C n^{-\gamma/q} \sum_{i=1}^{n} |a_{ni}|^{\gamma} E \|X_i\|^{\gamma} \le C n^{(1-\gamma/q)}.$$
(7)

By (6) and (7) and $q < \gamma$, we have

$$n^{-1/q} \sum_{i=1}^{n} a_{ni} X_i \xrightarrow{p} 0.$$

Hence by the Ottaviani inequality^[10] we have

$$P(\max_{1 \le j \le n} \|\sum_{i=1}^{j} a_{ni} X_i\| \ge \epsilon n^{1/q}) \le CP(\|\sum_{i=1}^{n} a_{ni} X_i\| > \frac{\epsilon}{2} n^{1/q}).$$

By symmetrization inequality^[10], in order to prove (3), it suffices to prove that

$$\sum_{n=1}^{\infty} n^{\nu-1} h(n) P(\|\sum_{i=1}^{n} a_{ni} X_i^s\| > \frac{\epsilon}{4} n^{1/q}) < \infty,$$
(8)

where $\{X_n^s, n \ge 1\}$ is a symmetrized version of $\{X_n, n \ge 1\}$. So we assume $\{X_n, n \ge 1\}$ is a sequence of independent symmetric *B*-valued random elements.

Define $X_{ni} = X_i I(||X_i|| \le n^{1/\beta})$ and $Y_{ni} = X_i I(||X_i|| > n^{1/\beta})$ for $1 \le i \le n$ and $n \ge 1$.

Case 1 $\alpha \leq p$.

Taking $t > \max(p, v\beta)$, by Lemma 1, Lemma 3, (5) and the C_r -inequality we have

$$\sum_{n=1}^{\infty} n^{v-1} h(n) P(\|\sum_{i=1}^{n} a_{ni} X_{ni}\| > \frac{\epsilon}{8} n^{1/q})$$

$$\leq C \sum_{n=1}^{\infty} n^{(v-1-t/q)} h(n) [(\sum_{i=1}^{n} E \|a_{ni} X_{ni}\|^p)^{t/p} + \sum_{i=1}^{n} E \|a_{ni} X_{ni}\|^t]$$

530

$$\leq C \sum_{n=1}^{\infty} n^{(v-1-t/\beta)} h(n) [EX^{t}I(X \leq n^{1/\beta}) + n^{t/\beta}P(X \geq n^{1/\beta})]$$

$$= C \sum_{n=1}^{\infty} n^{(v-1-t/\beta)} h(n) EX^{t}I(X \leq n^{1/\beta}) +$$

$$C \sum_{n=1}^{\infty} n^{v-1} h(n) P(X \geq n^{1/\beta}) \stackrel{\triangle}{=} A + B.$$
(9)

Since $t > v\beta$, by the property of slowly varying function and Lemma 1 of Bai and Su^[9], we have

$$\begin{split} A &= C \sum_{i=0}^{\infty} \sum_{2^{i} \le n < 2^{i+1}} n^{(v-1-t/\beta)} h(n) E X^{t} I(X \le n^{1/\beta}) \\ &\le C + C \sum_{i=0}^{\infty} 2^{i(v-t/\beta)} h(2^{i}) E X^{t} I(X \le 2^{(i+1)/\beta}) \\ &\le C + C \sum_{i=0}^{\infty} 2^{i(v-t/\beta)} h(2^{i}) \sum_{j=0}^{i} E X^{t} I(2^{j/\beta} < X \le 2^{(j+1)/\beta}) \\ &\le C + C \sum_{j=0}^{\infty} E X^{t} I(2^{j/\beta} < X \le 2^{(j+1)/\beta}) \sum_{i=j}^{\infty} 2^{i(v-t/\beta)} h(2^{i}) \\ &\le C + C \sum_{j=0}^{\infty} 2^{j(v-t/\beta)} h(2^{j}) E X^{t} I(2^{j/\beta} < X \le 2^{(j+1)/\beta}) \\ &\le C + C \sum_{j=0}^{\infty} 2^{jv} h(2^{j}) P(2^{j/\beta} < X \le 2^{(j+1)/\beta}) \\ &\le C + C E X^{v\beta} h(X^{\beta}) < \infty. \end{split}$$
(10)

Similar to the proof of (10), we have

$$B \le C + CEX^{\nu\beta}h(X^{\beta}) < \infty.$$
⁽¹¹⁾

Since $\alpha < v\beta$, we have $\alpha < (v+1)q$. When $1 < \alpha \leq p$ by Lemma 1 or $0 < \alpha \leq 1$ by the C_r -inequality, the property of slowly varying function and Lemma 1 of Bai and Su^[9], similar to the proof of (10), we have

$$\sum_{n=1}^{\infty} n^{\nu-1} h(n) P(\|\sum_{i=1}^{n} a_{ni} Y_{ni}\| > \frac{\epsilon}{8} n^{1/q})$$

$$\leq C \sum_{n=1}^{\infty} n^{(\nu-1-\alpha/q)} h(n) \sum_{i=1}^{n} E \|a_{ni} Y_{ni}\|^{\alpha} \leq C + CE X^{\nu\beta} h(X^{\beta}) < \infty.$$
(12)

Therefore, if $\alpha \leq p$, by (9)–(12), (8) holds.

Case 2 $\alpha > p$.

By Lemma 2, we have

$$P(\|\sum_{i=1}^{n} a_{ni}X_i\| > \epsilon n^{1/q}) \le C_j P(\max_{1 \le i \le n} \|a_{ni}X_i\| > 3^{-j}\epsilon n^{1/q}) + D_j (P(\|\sum_{i=1}^{n} a_{ni}X_i\| > 3^{-j}\epsilon n^{1/q}))^{2^j},$$

QIU D H

where C_j and D_j are positive depending only on j. We can choose integer j such that $v + (1 - \gamma/q)2^j < 0$. So by (7), in order to prove (8), it is enough to show that

$$\sum_{n=1}^{\infty} n^{\nu-1} h(n) \sum_{i=1}^{n} P(\|a_{ni}X_i\| > 3^{-j} \epsilon n^{1/q}) < \infty.$$
(13)

Define $\epsilon_1 = 3^{-j} \epsilon/2$, by Lemma 3 and the Markov's inequality, similar to the proof of (10), we have

$$\sum_{n=1}^{\infty} n^{v-1} h(n) \sum_{i=1}^{n} P(\|a_{ni}Y_{ni}\| > \epsilon_1 n^{1/q}) \le C \sum_{n=1}^{\infty} n^{(v-1-\alpha/q)} h(n) \sum_{i=1}^{n} E \|a_{ni}Y_{ni}\|^{\alpha}$$
$$\le C \sum_{n=1}^{\infty} n^{(v-\alpha/q)} h(n) E X^{\alpha} I(X > n^{1/\beta}) \le C + C E X^{v\beta} h(X^{\beta}) < \infty.$$
(14)

Choosing $t > \max(\alpha, v\beta)$, by Lemma 3 and the Markov's inequality, similar to the proof of (10), we have

$$\sum_{n=1}^{\infty} n^{v-1} h(n) \sum_{i=1}^{n} P(\|a_{ni}X_{ni}\| > \epsilon_1 n^{1/q}) \le C \sum_{n=1}^{\infty} n^{(v-1-t/q)} h(n) \sum_{i=1}^{n} E \|a_{ni}X_{ni}\|^t$$
$$\le C \sum_{n=1}^{\infty} n^{(v-1-t/q)} h(n) (\sum_{i=1}^{n} |a_{ni}|^t) [EX^t I(X \le n^{1/\beta}) + n^{t/\beta} P(X > n^{1/\beta})]$$
$$\le C \sum_{n=1}^{\infty} n^{(v-1-t/\beta)} h(n) [EX^t I(X \le n^{1/\beta}) + n^{t/\beta} P(X > n^{1/\beta})]$$
$$\le C + CEX^{v\beta} h(X^{\beta}) < \infty.$$
(15)

Therefore by (14)–(15), (13) holds, so (3) holds.

Theorem 2 Assume $1 \le p \le 2, 0 < \alpha, \beta < \infty, 0 < q < p$ and $1/q = 1/\alpha + 1/\beta$. Let Banach space *B* be of type *p*, $\{a_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of constants satisfying (2) and $\{X_n, n \ge 1\}$ be a sequence of independent *B*-valued random elements with $\{X_n, n \ge 1\} \prec X$, $EX^\beta < \infty$. If $\min\{\alpha, \beta\} > 1$, moreover we assume that $EX_n = 0, n \ge 1$. Then

$$\lim_{n \to \infty} n^{-1/q} \max_{1 \le j \le n} \|\sum_{i=1}^{j} a_{ni} X_i\| = 0, \quad a. \ s.$$
(16)

Proof Define $X_{ni} = X_i I(||X_i|| \le i^{1/\beta})$, $Y_{ni} = X_i I(||X_i|| > i^{1/\beta})$, $1 \le i \le n, n \ge 1$. To prove (16), we only need to prove that

$$\lim_{n \to \infty} n^{-1/q} \max_{1 \le j \le n} \|\sum_{i=1}^{j} a_{ni} X_{ni}\| = 0, \quad \text{a. s.},$$
(17)

$$\lim_{n \to \infty} n^{-1/q} \max_{1 \le j \le n} \|\sum_{i=1}^{j} a_{ni} Y_{ni}\| = 0, \quad \text{a. s.}.$$
(18)

Noting that $EX^{\beta} < \infty \iff \sum_{n=1}^{\infty} P(X > n^{1/\beta}) < \infty$, we have $\sum_{n=1}^{\infty} P(\|X_n\| > n^{1/\beta}) < \infty$.

Convergence for weighted sums of sequences of independent B-valued random elements

Hence by the Borel-Cantelli lemma, we can get $P(||X_n|| > n^{1/\beta}, i.o.) = 0$. It follows that

$$n^{-1/q} \max_{1 \le j \le n} \|\sum_{i=1}^{j} a_{ni} Y_{ni}\| \le n^{-1/q} \max_{1 \le i \le n} |a_{ni}| \sum_{i=1}^{n} \|Y_{ni}\| \le A_{\alpha,n} n^{-1/\beta} \sum_{i=1}^{n} \|Y_{ni}\| \to 0 \quad \text{a.s.} \quad (19)$$

Therefore, (18) holds.

Putting $\gamma = \min\{\alpha, \beta, p\}$, as in Theorem 1, we have

$$P(\|\sum_{i=1}^{n} a_{ni} X_{ni}\| \ge \epsilon 3^{-j} n^{1/q}) \le C n^{(1-\gamma/q)}.$$
(20)

Therefore, we can get

$$n^{-1/q} \sum_{i=1}^{n} a_{ni} X_i \xrightarrow{p} 0$$

To prove (17), by the Ottaviani inequality^[10], the symmetrization inequality^[10] and the Borel-Cantelli lemma, it is enough to show that

$$\sum_{n=1}^{\infty} P(\|\sum_{i=1}^{n} a_{ni} X_{ni}^{s}\| > \epsilon n^{1/q}) < \infty, \quad \forall \epsilon > 0,$$
(21)

where $\{X_{ni}^s, 1 \leq i \leq n, n \geq 1\}$ is a symmetrized version of $\{X_{ni}, 1 \leq i \leq n, n \geq 1\}$. So we assume $\{X_{ni}, 1 \leq i \leq n, n \geq 1\}$ is symmetric B-valued random elements. By Lemma 2, we have

$$P(\|\sum_{i=1}^{n} a_{ni} X_{ni}\| > \epsilon n^{1/q})$$

$$\leq C_{j} P(\max_{1 \leq i \leq n} \|a_{ni} X_{ni}\| > \epsilon 3^{-j} n^{1/q}) + D_{j} (P(\|\sum_{i=1}^{n} a_{ni} X_{ni}\| \ge \epsilon 3^{-j} n^{1/q}))^{2^{j}}.$$
(22)

We can choose integer j such that $2^{j}(\gamma/q-1) > 1$. So by (20) and (22), in order to prove (21), it is enough to show that

$$\sum_{n=1}^{\infty} P(\max_{1 \le i \le n} \|a_{ni} X_{ni}\| > \epsilon 3^{-j} n^{1/q}) < \infty.$$
(23)

In fact, choosing $t > \max(\alpha, \beta)$, by the Markov's inequality, the C_r -inequality and (5), we can get

$$\sum_{n=1}^{\infty} P(\max_{1 \le i \le n} \|a_{ni}X_{ni}\| > \epsilon 3^{-j}n^{1/q}) \le \sum_{n=1}^{\infty} \sum_{i=1}^{n} P(\|a_{ni}X_{ni}\| > \epsilon 3^{-j}n^{1/q})$$
$$\le C \sum_{n=1}^{\infty} n^{-t/q} \sum_{i=1}^{n} |a_{ni}|^{t} E\|X_{i}\|^{t} I(\|X_{i}\| \le n^{1/\beta})$$
$$\le C \sum_{n=1}^{\infty} n^{-t/q} \sum_{i=1}^{n} |a_{ni}|^{t} [EX^{t} I(X \le n^{1/\beta}) + n^{t/\beta} P(X \ge n^{1/\beta})]$$
$$\le C + CEX^{\beta} < \infty.$$

So (23) holds, therefore (16) holds.

Remark Noting that the real space R is of type 2, we see that Theorems 1 and 2 improve

and extend the corresponding results of Bai and $\text{Cheng}^{[1]}$ and $\text{Cuzick}^{[2]}$ to *B*-valued random elements, and remove the identical distribution condition. The method of proof differs from Bai and Cheng's^[1] and it is simpler than Bai and Cheng's^[1].

References

- BAI Zhidong, CHENG P E. Marcinkiewicz strong laws for linear statistics [J]. Statist. Probab. Lett., 2000, 46(2): 105–112.
- [2] CUZICK J E. A strong law for weighted sums of i.i.d. random variables [J]. J. Theoret. Probab., 1995, 8(3): 625-641
- [3] ROSALSKY A, SREEHARI M. On the limiting behavior of randomly weighted partial sums [J]. Statist. Probab. Lett., 1998, 40(4): 403–410.
- [4] CHUNG H T, LI D, ROSALSKY A. et al, On the rate of complete convergence for weighted sums of Banach space valued random elements [J]. Theory Probab. Appl., 2002, 47(3): 455–468.
- [5] SUNG S H. Strong laws for weighted sums of i.i.d. random variables [J]. Statist. Probab. Lett., 2001, 52(4): 413-419.
- [6] SHAO Qiman. A moment inequality and its applications [J]. Acta Math. Sinica, 1988, 31(6): 736–747. (in Chinese)
- [7] JAIN N C. Tail probabilities for sums of independent Banach space valued random variables [J]. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1975, 33(3): 155–166.
- [8] SU Chun, TONG Tiejun. Almost sure convergence of the general Jamison weighted sum of B-valued random variables [J]. Acta Math. Sin. (Engl. Ser.), 2004, 20(1): 181–192.
- BAI Zhidong, SU Chun. The complete convergence for partial sums of i.i.d. random variables [J]. Sci. Sinica Ser. A, 1985, 28(12): 1261–1277.
- [10] WU Zhiquan, WANG Xiangchen. Probability in Banach Space [M]. Changchun: Jilin University Press, 1990. (in Chinese)