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Abstract In this paper, we introduce an iterative scheme with error by the viscosity approxi-

mation method for finding a common element of the set of solutions of an equilibrium problem

and the set of fixed points of a nonexpansive mapping in a Hilbert space. A strong convergence

theorem is given, which generalizes all the results obtained by S.Takahashi and W.Takahashi in

2007. In addition, some of the methods applied in this paper improve those of S.Takahashi and

W.Takahashi.
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1. Introduction and preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a nonempty

closed convex subset of H , and N = {1, 2, 3, . . .} be the set of natural numbers. Assume, F is

a bifunction of C × C into R, where R is the set of real numbers. The equilibrium problem for

F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(F ). Given a mapping T : C → H, let F (x, y) =

〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP(F ) if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e.,

z is a solution of the variational inequality. Numerous problems in Physics, optimization, and

economics reduce to find a solution of (1.1). Some methods have been proposed to solve the

equilibrium problem. Very recently, S.Takahashi and W.Takahashi[1] studied an iterative scheme

of finding the best approximation to the initial data when EP(F ) is nonempty. In addition, there

are several papers studying the same problem, such as [2], [3], [10] and so on.

Definition 1.1 A mapping S of C into H is called nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.
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Let Fix(S) be the set of fixed points of the mapping S. If C ⊂ H is bounded, closed and convex

and S is a nonexpansive mapping of C into itself, then Fix(S) is nonempty[4].

Definition 1.2 A mapping PC is called the metric projection of H onto C, if for any x ∈ H ,

there exists a unique nearest point in C, denoted by PC(x), such that

‖x − PC(x)‖ ≤ ‖x − y‖, ∀ y ∈ C.

We know that PC is nonexpansive. Further, for x ∈ H and z ∈ C,

z = PCx ⇔ 〈x − z, z − y〉 ≥ 0, ∀ y ∈ C.

We also know that for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y |

holds for every y ∈ H with x 6= y, see [4,5] for more detail. Here we denote weak convergence by

⇀.

To solve the equilibrium problem for a bifunction F : C × C → R, let us assume that F

satisfies the following conditions

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
0≤ t→0

F (tz + (1 − t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [6].

Lemma 1.1[6] Let C be a nonempty closed convex subset of H and let F be a bifunction of

C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C.

Lemma 1.2[2] Assume that F : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H, define a

mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C}

for all x ∈ H . Then, the following holds:

(1) Tr is single-valued,

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx − Try‖
2 ≤ 〈Trx − Try, x − y〉,

(3) F (Tr) = EP(F ),

(4) EP(F ) is closed and convex.

In 2007, S.Takahashi and W.Takahashi [1] proved the following strong convergence theorem:

Theorem A[1] Let C be a nonempty closed convex subset of H . Let F be a bifunction from
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C × C to R satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H such that

Fix(S)∩EP(F ) 6= ∅. Let f be a contraction of H into itself and let {xn} and {un} be sequences

generated by x1 ∈ H and
{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun,

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0,

∞
∑

n=1

|rn+1 − rn| < ∞.

Then, {xn} and {un} converge strongly to z ∈ Fix(S) ∩ EP(F ), where z = PFix(S)∩EP(F )f(z).

In this paper, we introduce the new iterative process with error, which is as follows
{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnf(xn) + (1 − αn − γn)Sun + γnvn,
(1.2)

where {αn}, {γn} are two real sequences in [0,1] with αn + γn ≤ 1, {rn} ⊂ (0,∞), both {xn}

and {un} are sequences generated by x1 ∈ H and the iteration (1.2), vn is a bounded sequence

in H .

In this paper, we will give a strong convergence theorem of the iteration (1.2). Thereby, we

also need the following lemma, which can be proved similarly as the proof of [7, P.171] or [8,

Lemma 1] or [9].

Lemma 1.3[9] Let {an} ⊂ [0,∞), {bn} ⊂ [0,∞), {cn} ⊂ [0,∞) be sequences of real numbers

such that

an+1 ≤ (1 − hn)an + bn + cn, ∀n ≥ n0,

where hn ⊂ [0, 1] is a nonnegative real sequence with
∑∞

n=1 hn = ∞, bn = o(hn) and
∑∞

n=1 cn <

∞. Then limn→∞ an = 0.

2. Main results

Now we give the main results of this paper.

Theorem 2.1 Let C be a nonempty closed convex subset of H. Let F be a bifunction from

C × C to R satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H such that

Fix(S) ∩ EP(F ) 6= ∅. Let f be a contraction of H into itself with the contractive constant

α ∈ (0, 1), and let {xn} and {un} be sequences generated by x1 ∈ H and the iteration (1.2).

{vn} is a bounded sequence in H , {αn}, {γn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn+1 − αn| < ∞,
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lim inf
n→∞

rn > 0,

∞
∑

n=1

|rn+1 − rn| < ∞,

∞
∑

n=1

γn < ∞.

Then, {xn} and {un} converge strongly to z ∈ Fix(S) ∩ EP(F ), where z = PFix(S)∩EP(F )f(z).

Proof For any given v ∈ Fix(S) ∩ EP(F ), by the assumptions of Theorem 2.1 we know that

there exists a corresponding constant M > 0 such that

‖x1‖ + ‖f(v)‖ + ‖v‖ + ‖vn‖ ≤ M, ∀n ∈ N. (2.1)

Let Q = PFix(S)∩EP(F ). Then Qf is a contraction of H into itself. Since H is complete, there

exists a unique element z = Qf(z).

It is obvious that ‖x1 − v‖ ≤ M ≤ M

1−α
. Assuming that ‖xn − v‖ ≤ M

1−α
, we will prove that

‖xn+1 − v‖ ≤ M

1−α
. i.e., {xn} is bounded.

Indeed, by (1.2),(2.1) and Lemma 1.2, we have

‖xn+1 − v‖ = ‖αnf(xn) + (1 − αn − γn)Sun + γnvn − v‖

≤ αn‖f(xn) − v‖ + (1 − αn − γn)‖Sun − v‖ + γn‖vn − v‖

≤ αn(α‖xn − v‖ + ‖f(v) − v‖) + (1 − αn − γn)‖un − v‖ + γnM

≤ ααn‖xn − v‖ + αn‖f(v) − v‖ + (1 − αn − γn)‖Trn
xn − v‖ + γnM

≤ ααn‖xn − v‖ + αnM + (1 − αn − γn)‖xn − v‖ + γnM

≤ (1 − (αn + γn)(1 − α))‖xn − v‖ + (αn + γn)M ≤
M

1 − α
.

This implies that {xn} is bounded. i.e., we have

‖xn − v‖ ≤
M

1 − α
, ∀n ∈ N. (2.2)

By (2.2) we know that {xn} is bounded, which implies that {un}, {Sun} and {f(xn)} all are

bounded. i.e., for any given v ∈ Fix(S) ∩ EP(F ), there exists a corresponding constant M0 > 0

such that

M + ‖z‖+ ‖xn‖ + ‖un‖ + ‖vn‖ + ‖f(xn)‖ + ‖Sun‖ ≤ M0, n ∈ N. (2.3)

Next, we want to prove

lim
n→∞

‖xn+1 − xn‖ = 0. (2.4)

Indeed, by (1.2) and (2.3) we have

‖xn+1 − xn‖

= ‖αnf(xn) − αnf(xn−1) + αnf(xn−1) − αn−1f(xn−1) + (1 − αn − γn)Sun

− (1 − αn − γn)Sun−1 + (1 − αn − γn)Sun−1 − (1 − αn−1 − γn−1)Sun−1+

γnvn − γnvn−1 + γnvn−1 − γn−1vn−1‖

≤ αn‖f(xn) − f(xn−1)‖ + |αn − αn−1| · ‖f(xn−1)‖ + (1 − αn − γn)‖Sun − Sun−1‖+

|(1 − αn − γn) − (1 − αn−1 − γn−1)| · ‖Sun−1‖+

γn‖vn − vn−1‖ + |γn − γn−1| · ‖vn−1‖
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≤ αnα‖xn − xn−1‖ + |αn − αn−1|M0 + (1 − αn − γn)‖un − un−1‖+

(|αn − αn−1| + γn + γn−1)M0 + 2γnM0 + (γn + γn−1)M0. (2.5)

In view of (1.2) and un = Trn
xn, we can get

F (un, un+1) +
1

rn

〈un+1 − un, un − xn〉 ≥ 0. (2.6)

Similarly, we can also have

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0. (2.7)

By (A2), (2.6) and (2.7), we have

〈un+1 − un,
un − xn

rn

−
un+1 − xn+1

rn+1
〉 ≥ 0,

i.e.,

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1
(un+1 − xn+1)〉 ≥ 0,

i.e.,

‖un+1 − un‖
2 ≤ 〈un+1 − un, xn+1 − xn + (1 −

rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖ · {‖xn+1 − xn‖ +
|rn+1 − rn|

rn+1
‖un+1 − xn+1‖}. (2.8)

By the assumption on rn we can assume that there exists a real number b with 0 < b < rn for

all n ∈ N. Then by (2.3) and (2.8), we have

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ +
1

b
|rn+1 − rn|M0. (2.9)

Hence, by (2.5) and (2.9) we have

‖xn+1 − xn‖ ≤(1 − αn + αnα − γn)‖xn − xn−1‖ + |αn − αn−1|M0+

(1 − αn − γn)
M0

b
|rn+1 − rn| + (|αn − αn−1| + γn + γn−1)M0+

2γnM0 + (γn + γn−1)M0,

i.e.,

‖xn+1 − xn‖ ≤(1 − (1 − α)αn)‖xn − xn−1‖ + |αn − αn−1|M0 +
M0

b
|rn+1 − rn|+

(|αn − αn−1| + γn + γn−1)M0 + 2γnM0 + (γn + γn−1)M0. (2.10)

Let hn = (1 − α)αn, bn = 0 and

cn = |αn −αn−1|M0 +
M0

b
|rn+1 − rn|+ (|αn −αn−1|+ γn + γn−1)M0 + 2γnM0 + (γn + γn−1)M0.

Then by (2.10), the assumptions of Theorem 2.1 and Lemma 1.3 we know that (2.4) holds, which

together with (2.9) imply that

lim
n→∞

‖un+1 − un‖ = 0. (2.11)

By (1.2), (2.3) and (2.11), we have

‖xn − Sun‖ ≤ ‖xn − Sun−1‖ + ‖Sun−1 − Sun‖



540 RAO R F and ZHANG S S

≤ αn−1‖f(xn−1) − Sun−1‖ + γn−1‖vn−1 − Sun−1‖ + ‖un−1 − un‖

≤ αn−1M0 + γn−1M0 + ‖un−1 − un‖ → 0. (2.12)

For v ∈ Fix(S)
⋂

EP(F ), we have

‖un − v‖2 = ‖Trn
xn − Trn

v‖2 ≤ 〈Trn
xn − Trn

v, xn − v〉 = 〈un − v, xn − v〉

=
1

2
(〈un − v, xn − un + un − v〉 + 〈un − xn + xn − v, xn − v〉)

=
1

2
(‖un − v‖2 + ‖xn − v‖2 − ‖xn − un‖

2),

i.e.,

‖un − v‖2 ≤ ‖xn − v‖2 − ‖xn − un‖
2. (2.13)

Therefore, by (1.2), (2.3), (2.13) and the convexity of ‖ · ‖2, we have

‖xn+1 − v‖2 ≤ αn‖f(xn) − v‖2 + (1 − αn − γn)‖Sun − v‖2 + γn‖vn − v‖2

≤ αn‖f(xn) − v‖2 + (1 − αn)‖un − v‖2 + γnM2
0

≤ αn(‖f(xn)‖ + ‖v‖)2 + (1 − αn)(‖xn − v‖2 − ‖xn − un‖
2) + γnM2

0

≤ αnM2
0 + ‖xn − v‖2 − (1 − αn)‖xn − un‖

2 + γnM2
0 ,

i.e.,

(1 − αn)‖xn − un‖
2 ≤ (αn + γn)M2

0 + ‖xn − v‖2 − ‖xn+1 − v‖2,

≤ (αn + γn)M2
0 + ‖xn − xn+1‖(‖xn − v‖ + ‖xn+1 − v‖),

which together with (2.4) imply

lim
n→∞

‖xn − un‖
2 = 0 = lim

n→∞
‖xn − un‖. (2.14)

By (2.12) and (2.14), we have

‖Sun − un‖ ≤ ‖Sun − xn‖ + ‖xn − un‖ → 0. (2.15)

Next, we want to prove that

lim sup
n→∞

〈f(z) − z, xn − z〉 ≤ 0, (2.16)

where z = PFix(S)∩EP(F )f(z), i.e., we want to prove that there exists a subsequence {uni
} ⊂ {un}

such that

lim sup
n→∞

〈f(z) − z, xn − z〉 = lim
i→∞

〈f(z) − z, xni
− z〉 ≤ 0. (2.17)

Since {uni
} is bounded, there exists a subsequence {unij

} ⊂ {uni
}, which converges weakly to

w. Without loss of generality, we can assume that uni
⇀ w. Then by (2.15), we know that

Suni
⇀ w. We will show that w ∈ EP(F ). Considering that un = Trn

xn, we have

F (un, y) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C.

Then by (A2), we know
1

rn

〈y − un, un − xn〉 ≥ F (y, un),
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which implies that

〈y − uni
,
uni

− xni

rni

〉 ≥ F (y, uni
).

Since
uni

−xni

rni

→ 0 and uni
⇀ w, from (A4), similarly as in [1], we also have

0 ≥ F (y, w), ∀ y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we have yt ∈ C

and hence F (yt, w) ≤ 0. So, from (A1) and (A4), we have

0 = F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, w) ≤ tF (yt, y),

i.e., 0 ≤ F (yt, y), which together with (A3) imply

0 ≤ F (w, y), ∀ y ∈ C,

i.e., we have w ∈ EP(F ).

Next, we predict w ∈ Fix(S).

We assume that w 6∈ Fix(S). Since uni
⇀ w and w 6= Sw, from Opial’s theorem[5] and (2.15),

we have

lim inf
i→∞

‖uni
−w‖ < lim inf

i→∞
‖uni

−Sw‖ ≤ lim inf
i→∞

{‖uni
−Suni

‖+‖Suni
−Sw‖} ≤ lim inf

i→∞
‖uni

−w‖.

This is a contradiction.

Of course, we can also prove w ∈ Fix(S) immediately by uni
⇀ w, (2.15) and the Demi-Closed

Theory (e.g., [12, Lemma 1.1] or [11]).

Thereby, w ∈ Fix(S) ∩ EP(F ).

Since z = PFix(S)∩EP(F )f(z), we have

lim sup
n→∞

〈f(z) − z, xn − z〉 = lim
i→∞

〈f(z) − z, xni
− z〉 = 〈f(z) − z, w − z〉 ≤ 0,

which verifies (2.16) and (2.17).

Finally, we will complete the proof by way of the method, different from that of [1].

By (1.2), (2.3) and (2.13), we have

‖xn+1 − z‖2

≤ (1 − αn − γn)2‖Sun − z‖2 + 2αn〈f(xn) − z, xn+1 − z〉 + 2γn〈vn − z, xn+1 − z〉

≤ (1 − αn)2‖un − z‖2 + 2αn〈f(xn) − f(z) + f(z) − z, xn+1 − z〉 + 2γn‖vn − z‖ · ‖xn+1 − z‖

≤ (1 − αn)2‖xn − z‖2 + ααn(‖xn − z‖2 + ‖xn+1 − z‖2)+

2αn〈f(z) − z, xn+1 − z〉 + 2γnM2
0 . (2.18)

We know, there exists n0 ∈ N such that 1 − ααn ≥ 1
2 if n ≥ n0. Then by (2.18), we have

‖xn+1 − z‖2

≤
(1 − αn)2 + ααn

1 − ααn

‖xn − z‖2 +
2αn

1 − ααn

〈f(z) − z, xn+1 − z〉 +
2γnM2

0

1 − ααn

≤ (1 −
2(1 − α)αn

1 − ααn

)‖xn − z‖2 +
α2

n‖xn − z‖2

1 − ααn

+ 4αn〈f(z) − z, xn+1 − z〉 + 4γnM2
0
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≤ (1 −
2(1 − α)αn

1 − ααn

)‖xn − z‖2 + 2α2
nM2

0 + 4αnηn + 4γnM2
0 , ∀n ≥ n0, (2.19)

where ηn = max{〈f(z)− z, xn+1 − z〉, 0}. We claim

lim
n→∞

ηn = 0. (2.20)

Indeed, by (2.16) we know, for any ε > 0, there exists a natural number n1 > n0 such that

〈f(z) − z, xn+1 − z〉 < ε if n ≥ n1, i.e., 0 ≤ ηn < ε, ∀n ≥ n1. By the arbitrariness of ε we know

that (2.20) holds.

Let hn = 2(1−α)αn

1−ααn
. Then

∑∞

n=n0
hn ≥ 2(1 − α)

∑∞

n=n0
αn = ∞. Let bn = 2α2

nM2
0 + 4αnηn

and let cn = 4γnM2
0 . Then by Lemma 1.3, we know

lim
n→∞

‖xn − z‖2 = 0,

which implies the completeness of the proof of Theorem 2.1. 2

Corollary 2.2 Let C be a nonempty closed convex subset of H . Let S be a nonexpansive

mapping of C into H such that Fix(S) 6= ∅. Let f be a contraction of H into itself and let {xn}

and {un} be a sequence generated by x1 ∈ H and

xn+1 = αnf(xn) + (1 − αn − γn)SPCxn + γnvn, (2.21)

where {vn} is a bounded sequence in H , {αn}, {γn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞
∞
∑

n=1

|αn+1 − αn| < ∞,

∞
∑

n=1

γn < ∞.

Then, {xn} converges strongly to z ∈ Fix(S), where z = PFix(S)f(z).

Proof Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 2.1. Then we have

un = PCxn. So, from Theorem 2.1, the sequence {xn} generated by x1 ∈ H and (2.21) for all

n ∈ N converges strongly to z ∈ Fix(S), where z = PFix(S)f(z).

Corollary 2.3 Let C be a nonempty closed convex subset of H. Let F be a bifunction from

C × C to R satisfying (A1)–(A4) such that EP(F ) 6= ∅. Let f be a contraction of H into itself

and let {xn} and {un} be sequences generated by x1 ∈ H and
{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnf(xn) + (1 − αn − γn)un + γnvn, n ≥ 0

where {vn} is a bounded sequence in H , {αn}, {γn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0,

∞
∑

n=1

|rn+1 − rn| < ∞,

∞
∑

n=1

γn < ∞.

Then, {xn} and {un} converge strongly to z ∈ EP(F ), where z = PEP(F )f(z).

Proof Put Sx = x for all x ∈ C and rn = 1 in Theorem 2.1. Then, from Theorem 2.1 the
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sequences {xn} and {un} converge strongly to z ∈ EP(F ), where z = PEP(F )f(z).

Remark (1) Theorem A (i.e.,[1, Theorem 3.2]) is Theorem 2.1 in the case of γn ≡ 0. Moreover,

some of the methods used in the proof of Theorem 2.1 improve that of [1, Theorem 3.2].

(2) In the case of γn ≡ 0, Corollary 2.2 and Corollary 2.3 become [1, Corollary 3.3] and [1,

Corollary 3.4], respectively. Hence, the main results of this paper generalize all of results of [1].

(3) In the case of γn ≡ 0, we obtain Wittmann’s theorem [10] in the case when f(y) = x1 ∈ C

for all y ∈ H and S is a nonexpansive mapping of C into itself in Corollary 2.2. We also obtain

Combettes and Hirstoaga’s theorem[2] in the case when f(y) = x1 ∈ H for all y ∈ H in Corollary

2.3.
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