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Abstract Let (M2
m

+4n+k−2, T ) be a smooth closed manifold with a smooth involution T whose

fixed point set is RP (2m) ⊔ P (2m, 2n − 1) (m > 3, n > 0). For 2n ≥ 2m, (M2
m

+4n+k−2, T ) is

bordant to (P (2m, RP (2n)), T0).
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1. Introduction

Let (M, T ) be a smooth closed manifold with a smooth involution T and F = {x
∣

∣ T (x) =

x, x ∈ M} the fixed point set of T on M [1]. RP (m) denotes the m-dimensional real projective

space and P (m, n) the Dold manifold of dimension m+2n obtained from the product Sm×CP (n)

of the m-dimensional sphere and the n-dimensional complex projective space by identifying (x, z)

with (−x, z)[2,3]. When F is RP (odd)⊔P (m, n) or RP (8)⊔P (8, 2n− 1), the existence and the

representative (up to bordism) of (M, T ) have been studied in [4,5] and [6]. The purpose of this

paper is to determine the existence and the representative up to bordism of involutions fixing a

disjoint union RP (2m) ⊔ P (2m, 2n− 1) (m > 3, n > 0), The main result is stated as follows.

Theorem Suppose (M2m+4n+k−2, T ) is a smooth closed manifold of dimension 2m +4n+k−2

with a smooth involution T fixing RP (2m) ⊔ P (2m, 2n − 1) (m > 3, n > 0). For 2n ≥ 2m, then

(M2m+4n+k−2, T ) is bordant to (P (2m, RP (2n)), T0).

The T0 is defined in Lemma 2.5.

The paper is organized as follows. In Section 2, some lemmas are stated. In Section 3, we

discuss the cases in which involutions do not exist. In Section 4, we determine the cases in which

involutions exist and also give representatives up to bordism of those involutions. Throughout

this paper, the manifolds and involutions are smooth and the involutions are nontrivial. The

coefficient group is Z2 (integers mod 2). Let w denote the total Stiefel-Whitney class, wi the i-th
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Stiefel-Whitney class, σi(x) the i-th elementary symmetric function
∑

xj1xj2 · · ·xji
, and λ → F

the normal bundle of F in M .

2. Preliminaries

Let (Mn, T ) be a closed n-dimensional manifold with an involution T . Let Fn−k denote

the union of (n − k)-dimensional components of the fixed point set F of T and λk the normal

bundle of Fn−k in Mn. From [1], we know that the bordism class of the involution (Mn, T ) is

determined by the bordism class of the normal bundle {(Fn−k, λk)}. Kosniowski and Stong[3]

gave a formula for the calculation of the Stiefel-Whitney numbers of Mn in terms of the fixed

point data {(Fn−k, λk)}. That is the following

Lemma 2.1
[3] If f(x1, x2, . . . , xn) is a symmetric polynomial over Z2 in n variables of degree

at most n, then

f(x1, . . . , xn)[Mn] =
∑

k

f(1 + y1, . . . , 1 + yk, z1, . . . , zn−k)
∏

i

(1 + yi)
[Fn−k]

where the expressions are evaluated by replacing the elementary symmetric functions σi(x), σi(y)

and σi(z) by the Stiefel-Whitney class wi(M
n), wi(λ

k) and wi(F
n−k) respectively and taking

the value of the resulting cohomology class on the fundamental homology class of Mn or Fn−k.

Lemma 2.2
[3] If σi(x1, . . . , xk, xk+1, . . . , xk+n) is the i-elementary symmetric polynomial over

Z2 in k + n variables, then

σi(1 + y1, . . . , 1 + yk, z1, . . . , zn) =
∑

p+q≤i

(

k − p

i − p − q

)

σp(y1, . . . , yk)σq(z1, . . . , zn).

Lemma 2.3
[1] Let (M, T ) be a closed manifold with an involution T and F the fixed point set

of T on M , then χ(M) = χ(F ) (mod 2), where χ(·) denotes the Euler characteristic number.

Let RP (m) denote m-dimensional real projective space and a ∈ H1(RP (m); Z2) the gener-

ator. The mod 2 cohomology of RP (m) is given by [7]

H∗(RP (m); Z2) = Z2[a]/(am+1 = 0)

the total Stiefel-Whitney class of RP (m) is given by w(RP (m)) = (1 + a)m+1.

Let µ → RP (m) be a vector bundle. Then the total Stiefel-Whitney class of µ has form

w(µ) = (1 + a)h, where h is a nonnegative integer.

Let P (m, n) denote Dold manifold. The mod 2 cohomology of P (m, n) is given by [2]

H∗(P (m, n); Z2) = Z2[c, d]/(cm+1 = dn+1 = 0)

where c ∈ H1(P (m, n); Z2) and d ∈ H2(P (m, n); Z2) are generators. The total Stiefel-Whitney

class of P (m, n) is given by w(P (m, n)) = (1 + c)m(1 + c + d)n+1.

Let ν → P (m, n) be a vector bundle. According to the work of Stong[8], we may write the

total Stiefel-Whitney class of ν in the form

w(ν) = (1 + c)s(1 + c + d)tw(ρ)ε
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where ε = 0 or 1 and w(ρ) = 1 + terms of dimension at least 4 is an exotic class (ε = 0 except

for m = 2, 4, 5, or 6).

Lemma 2.4
[1] Let (Mn, T ) be a closed manifold with an involution T whose fixed point

set is RP (2r). Then n = 4r and (Mn, T ) is bordant to (RP (2r) × RP (2r), twist), where

twist : (x, y) → (y, x).

For our purpose, let

P (m, RP (n)) =
Sm × RP (n) × RP (n)

−1 × twist

as in [4].

Lemma 2.5 There exists an involution T0 on P (m, RP (n)) whose fixed data is ξ1 → RP (m)⊔

ξ2 → P (m, n − 1), where w(ξ1) = (1 + a)n and w(ξ2) = 1 + c + d.

Proof Set T1 : RP (n) −→ RP (n) by

T1([x0, x1, . . . , xn]) = [−x0, x1, . . . , xn],

which fixes RP (0) with normal bundle nι and RP (n − 1) with normal bundle ι, where ι is the

nontrivial line bundle.

Then we may obtain the involution T0 on P (m, RP (n)) induced by 1 × T1 × T1. From [5,

p1294], whose fixed data is RP (m) with normal bundle ξ2n
1 = nι

⊕

nR and P (m, n − 1) with

normal bundle ξ2
2 = η, where ι is the nontrivial line bundle over RP (m), η a 2-plane bundle over

P (m, n − 1) and R the trivial bundle.

Notice that w(ι) = (1 + a) and w(η) = 1 + c + d, thus we have w(ξ1) = (1 + a)n and

w(ξ2) = 1 + c + d. The Lemma holds.

3. Nonexistence of the involution

Throughout the following sections, we always suppose that (M2m+4n+k−2, T ) is a closed

(2m +4n+k−2)-dimensional manifold with an involution T whose fixed point set F = RP (2m)⊔

P (2m, 2n−1) (m > 3, n > 0). Let λ → F = λ1 → RP (2m)⊔λ2 → P (2m, 2n−1) be the normal

bundle of F in M2m+4n+k−2. First, one has w(RP (2m)) = (1+a)2
m+1 and w(λ1) = (1+a)h where

h is a nonnegative integer and a ∈ H1(RP (2m); Z2) generator. Let c ∈ H1(P (2m, 2n − 1); Z2)

and d ∈ H2(P (2m, 2n− 1); Z2) be generators. It follows that w(P (2m, 2n− 1)) = (1 + c)2
m

(1 +

c + d)2n and for m > 3 w(λ2) = (1 + c)s(1 + c + d)t where s and t are nonnegative integers. By

[1], we have characteristic numbers a2m

[RP (2m)] = 1 and c2m

d2n−1[P (2m, 2n − 1)] = 1.

Next we will express h, s and t in the 2-adic expansion and determine the cases in which the

involution does not exist.

For convenience, let 2n = 2n1 + · · · + 2nj , n1 > · · · > nj ≥ 1. Since (1 + a)2
m+1

= 1,

(1+c)2
m+1

= 1 and (1+c+d)2
n1+1

= (1+c)2
n1+1

, we may ignore 2m+1A in the 2-adic expansion

of h, 2m+1B in the 2-adic expansion of s and 2n1+1C in the 2-adic expansion of t. Hence we

suppose 0 ≤ h < 2m+1, 0 ≤ s < 2m+1, 0 ≤ t < 2n1+1. If 2n = 2u, we also suppose 0 ≤ t < 2n.
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If (M2m+4n+k−2, T ) exists, by Lemma 2.3, we have

χ(M2m+4n+k−2) = χ(RP (2m)) + χ(P (2m, 2n − 1)) = 1.

Since the Euler characteristic number of any odd-dimensional manifold is always zero, it imme-

diately follows that k must be even.

Lemma 3.1 If k = 0, there does not exist any required involution (M2m+4n+k−2, T ).

Proof If there exists an involution (M2m+4n+k−2, T ) with fixed point set RP (2m)⊔P (2m, 2n−

1), since k = 0, then λ2 → P (2m, 2n − 1) is 0-bundle. So we could obtain an involution

(N2m+4n−2, T ′) with fixed point set RP (2m). By Lemma 2.4 it follows that 2m +4n−2 = 2m+1,

i.e., 2m−1 = 2n − 1. Since m > 3, this is impossible. The Lemma holds.

Hence, in the following discussions, we may assume that k > 0.

Lemma 3.2 If t is even, then the required involution (M2m+4n+k−2, T ) does not exist except

for m, n and k such that 2m − 4n − k + 2 = 0.

Proof Noticing that t is even, w(P (2m, 2n − 1)) = (1 + c)2
m

(1 + c + d)2n and w(λ2) = (1 +

c)s(1+c+d)t, we know that the all characteristic numbers of λ2 → P (2m, 2n−1) are zero, hence

the bordism class [λ2 → P (2m, 2n − 1)] = 0. From [1, Theorem 25.2] and [3, §11, Proposition],

the bordism class of (M2m+4n+k−2, T ) is determined by the normal bundle λ1 → RP (2m) and

λ1 → RP (2m) is fixed data of an involution. By Lemma 2.4, 2m + 4n + k − 2 = 2m+1, i.e.,

2m − 4n − k + 2 = 0. The Lemma holds.

Lemma 3.3 There does not exist any required involution (M2m+4n+k−2, T ) for which t, s are

all odd and h is even.

Proof From Lemma 2.2 direct computations show

σ1(1 + y, z)(λ1 → RP (2m)) = a, σ1(1 + y, z)(λ2 → P (2m, 2n − 1)) = 0.

Where σ1(1+y, z)(λ1 → RP (2m)) are evaluated by replacing the elementary symmetric functions

σ1(y) and σ1(z) by the Stiefel-Whitney class w1(λ1) and w1(RP (2m)), respectively, the same as

σ1(1 + y, z)(λ2 → P (2m, 2n − 1)). Taking the symmetric polynomial f(x) = σ2m

1 (x) where

degf(x) = 2m < 2m + 2(2n − 1) + k, by Lemma 2.1, we have

0 = f(x)[M2m+4n+k−2]

=
σ2m

1 (1 + y, z)

w(λ1)
[RP (2m)] +

σ2m

1 (1 + y, z)

w(λ2)
[P (2m, 2n − 1)]

=
a2m

(1 + a)h
[RP (2m)] +

0

(1 + c)s(1 + c + d)t
[P (2m, 2n − 1)]

= a2m

[RP (2m)] + 0 = 1.

This is a contradiction and so (M2m+4n+k−2, T ) does not exist. The Lemma holds.

In the following proofs, “Taking f(x) leads to a contradiction” denotes “If there exists the

required involution, we take the symmetric polynomial f(x). By Lemma 2.1 an analogous proof
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to Lemma 3.3 leads to a contradiction”. This will be not pointed out again.

Lemma 3.4 There does not exist any required involution (M2m+4n+k−2, T ) for which t, h are

odd and s is even.

Proof From Lemma 2.2, direct computations show

σ1(1 + y, z)(λ1 → RP (2m)) = 0, σ1(1 + y, z)(λ2 → P (2m, 2n − 1)) = c;

σ2(1 + y, z)(λ1 → RP (2m)) =

(

2(2n − 1) + k

2

)

+ a + a2 +

(

h

2

)

a2,

σ2(1 + y, z)(λ2 → P (2m, 2n − 1)) =

(

k

2

)

+ c +

(

s + t

2

)

c2 + d +

(

n

1

)

c2.

Taking f(x) = σ2m

1 (x)[σ2(x)+
(

k
2

)

+σ1(x)+
(

s+t
2

)

σ2
1(x)+

(

n
1

)

σ2
1(x)]2n−1 leads to a contradiction.

Lemma 3.5 If t is odd and h, s are even, then (M2m+4n+k−2, T ) does not exist except for the

following cases w(λ1) = (1 + a)2i, w(λ2) = 1 + c + d, n ≡ i(mod 2m), k = 2.

Proof From Lemma 2.2, direct computations show

σ1(1 + y, z)(λ1 → RP (2m)) = a, σ1(1 + y, z)(λ2 → P (2m, 2n− 1)) = c;

σ2(1 + y, z)(λ1 → RP (2m)) =

(

2(2n − 1) + k

2

)

+

(

h

2

)

a2,

σ2(1 + y, z)(λ2 → P (2m, 2n − 1)) =

(

k

2

)

+ c +

(

s + t

2

)

c2 + d +

(

n

1

)

c2.

If k ≥ 4, taking f(x) = σ2m

1 (x)[σ2(x) +
(

k

2

)

]2n leads to a contradiction.

If k = 2, then λ2 → P (2m, 2n− 1) is a 2-bundle and s + 2t ≤ 2. Since s is even and t is odd,

then s = 0, t = 1.

When n is odd, if
(

h

2

)

= 0, then h = 4l where l is a nonnegative integer. Taking f(x) =

σ2m−2
1 (x)[σ2(x)+σ2

1(x)] leads to a contradiction. If
(

h
2

)

= 1, then h = 4l +2. If a2j(j > 0) is the

term with the highest degree of a in (1+a)2n

(1+a)h , taking f(x) = σ2m−2j
1 (x)[σ2(x)+σ1(x)+σ2

1(x)+1]2n

leads to a contradiction. Thus it follows that 2n = 2m+1u + 4l + 2 where u is a nonnegative

integer, l = 0, 1, 2, . . . , 2m−1 − 1.

Hence, when n is odd, (M2m+4n+k−2, T ) may exist for h = 4l + 2, n ≡ 2l + 1(mod 2m), s =

0, t = 1, k = 2.

When n is even, if
(

h
2

)

= 1, then h = 4l + 2, taking f(x) = σ2m−2
1 (x)σ2(x) leads to a

contradiction. If
(

h
2

)

= 0, then h = 4l. If a2j(j > 0) is the term with the highest degree of a in
(1+a)2n

(1+a)h , taking f(x) = σ2m−2j
1 (x)[σ2(x) + σ1(x) + 1]2n leads to a contradiction. Thus it follows

that 2n = 2m+1u + 4l where u is a nonnegative integer, l = 0, 1, 2, . . . , 2m−1 − 1.

Hence, when n is even, (M2m+4n+k−2, T ) may exist for h = 4l, n ≡ 2l(mod2m), s = 0, t =

1, k = 2.

From the above arguments, (M2m+4n+k−2, T ) may exist for w(λ1) = (1 + a)2i, w(λ2) =

1 + c + d, n ≡ i(mod 2m), k = 2. The Lemma holds.



Involutions fixing RP (2m) ⊔ P (2m, 2n − 1) 549

Lemma 3.6 If t, s and h are all odd, then (M2m+4n+k−2, T ) does not exist for 2n ≥ 2m.

Proof From Lemma 2.2, direct computations show

σ1(1 + y, z)(λ1 → RP (2m)) = 0, σ1(1 + y, z)(λ2 → P (2m, 2n− 1)) = 0;

σ2(1 + y, z)(λ1 → RP (2m)) =

(

2(2n − 1) + k

2

)

+ a + a2 +

(

h

2

)

a2,

σ2(1 + y, z)(λ2 → P (2m, 2n − 1)) =

(

k

2

)

+

(

s + t

2

)

c2 + d +

(

n

1

)

c2;

σ3(1 + y, z)(λ1 → RP (2m)) = a + a2, σ3(1 + y, z)(λ2 → P (2m, 2n − 1)) = cd.

When 2n ≥ 2m, since s, t are odd, then k ≥ 4, taking f(x) = σ2m

3 (x)[σ2(x)+
(

k
2

)

]2n−2m

leads

to a contradiction.

4. Existence of the involution and the representative

Theorem 4.1 If (M2m+4n+k−2, T ) is a closed manifold with an involution T fixing F =

RP (2m) ⊔ P (2m, 2n − 1)(m > 3, n > 0). Let λ → F = λ1 → RP (2m) ⊔ λ2 → P (2m, 2n − 1) be

the normal bundle of F in M , w(λ2) = (1+c)s(1+c+d)t, where t is even. For m, n, k such that

2m−4n−k+2 = 0, then (M2m+4n+k−2, T ) exists and is bordant to (RP (2m)×RP (2m), twist).

Proof Since t is even, from the proof of Lemma 3.2, we see that bordism class [λ2 → P (2m, 2n−

1)] = 0. From [1, Theorem 25.2], the bordism class of (M2m+4n+k−2, T ) is determined by the

normal bundle λ1 → RP (2m).

Since [λ2 → P (2m, 2n − 1)] = 0, from [3, §11, Proposition], there exist an involution

(M2m+4n+k−2
1 , T1) with fixed data λ2 → P (2m, 2n − 1) and an involution (M2m+4n+k−2

2 , T2)

with fixed data λ1 → RP (2m).

Setting N2m+4n+k−2 = M1 ⊔ M2, we define an involution T ′ on N such that T ′|M1
= T1

and T ′|M2
= T2. By [1, Theorem 25.2], (M2m+4n+k−2, T ) is bordant to (N, T ′) and (N, T ′)

is bordant to (M2, T2). From Lemma 2.4, (M2, T2) is bordant to (RP (2m) × RP (2m), twist).

Thus (M2m+4n+k−2, T ) is bordant to (RP (2m) × RP (2m), twist). The Theorem holds.

Theorem 4.2 If (M2m+4n+k−2, T ) is a closed manifold with an involution T fixing F =

RP (2m) ⊔ P (2m, 2n − 1)(m > 3, n > 0). Let λ → F = λ1 → RP (2m) ⊔ λ2 → P (2m, 2n − 1) be

the normal bundle of F in M , w(λ1) = (1+a)h, w(λ2) = (1+ c)s(1+ c+d)t, where t is odd. For

h ≡ s(mod 2), 2n ≥ 2m, then (M2m+4n+k−2, T ) exists and is bordant to (P (2m, RP (2n)), T0).

Proof By Lemmas 2.5, 3.1 and 3.3–3.6, there exists an involution (P (2m, RP (2n)), T0), the

fixed data of T0 is ξ1 → RP (2m) ⊔ ξ2 → P (2m, 2n − 1), where

w(ξ1) = (1 + a)2i, w(ξ2) = 1 + c + d, n ≡ i(mod 2m).

From [1, Theorem 25.2], it follows that (M2m+4n+k−2, T ) is bordant to (P (2m, RP (2n)), T0).

The Theorem holds.
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Note For t ≡ 1 (mod 2), h ≡ s ≡ 0 (mod 2), we can prove that (M2m+4n+k−2, T ) exists and is

bordant to (P (2m, RP (2n)), T0).

From Theorems 4.1 and 4.2, we obtain the main result in this paper

Theorem 4.3 If (M2m+4n+k−2, T ) is a closed manifold with an involution T fixing

RP (2m) ⊔ P (2m, 2n − 1) (m > 3, n > 0).

Then for 2n ≥ 2m, (M2m+4n+k−2, T ) is bordant to (P (2m, RP (2n)), T0).
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[4] LÜ Zhi. Involutions fixing RP odd
⊔ P (h, i) (I) [J]. Trans. Amer. Math. Soc., 2002, 354(11): 4539–4570.
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