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Abstract Two kinds of convergent sequences on the real vector space m of all bounded sequences

in a real normed space X were discussed in this paper, and we prove that they are equivalent,

which improved the results of [1].
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1. Introduction

On the real vector space m of all bounded sequences in a real normed space X , in [1] the

almost convergence (xi) ∈ m was defined, and it was gotten that (xi) almost converges to s ∈ X

iff

‖
1

p

p−1∑

i=0

xk+i − s‖ → 0 as p → ∞

uniformly in k = 0, 1, . . . .

In [2], the quasi almost convergence (xi) ∈ m was defined, and it was shown that (xi) quasi

almost converges to s ∈ X iff

‖
1

p

(n+1)p−1∑

i=np

xi − s‖ → 0 as p → ∞

uniformly in n = 0, 1, . . . .

And [2] gave the following theorem:

Theorem 1 If a sequence (xi) ∈ m almost converges to s ∈ X , then it quasi almost converges

to s.

In this paper we show that the converse of the above theorem is also true.

2 Main result
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First we give some notations and facts.

Let (xi) ∈ m. We denote an = 1
n

∑n−1
i=0 xi. Since (xi) ∈ m, m = supi∈Z

{‖xi‖} is finite. And

we can easily see that ‖an‖ ≤ m, for any n ∈ Z.

Now we give our main theorem.

Theorem 2 Let {xi}
∞

i=0 ∈ m. Then the following aconditions are equivalent.

(I) ‖ 1
p

(n+1)p−1∑
i=np

xi − s‖ → 0 as p → ∞, uniformly in n = 0, 1, . . . .

(II) ‖ 1
p

p−1∑
i=0

xk+i − s‖ → 0 as p → ∞, uniformly in k = 0, 1, . . . .

Proof If (II) is true, by Theorem 1, we get (I) is also true.

For the converse, if (II) does not hold, then there exits ε0 > 0 such that for any p > 0, there

is a p′ > p and k′ ∈ Z, such that ‖ 1
p′

∑p′
−1

i=0 xk′+i − s‖ > ε0.

For the ε0 above, by (I), there are K and p0 ∈ Z satisfying:

(i) ‖ 1
k

∑(n+1)k−1
i=nk xi − s‖ < ε0

6 , as k ≥ K, uniformly in n = 0, 1, . . . .

(ii) p0 > K, K
p0

m < ε0

6 and K
p0

‖s‖ < ε0

6 , where m = supi∈Z
{‖xi‖}.

Since (II) does not hold, for the p0 above, p1 > p0 and k0 ∈ Z exist such that ‖ 1
p1

∑p1−1
i=0 xk0+i−

s‖ > ε0.

1) If k0 ≤ K, then

‖
1

p1

p1−1∑

i=0

xk0+i − s‖ ≤ ‖
1

p1 + k0

p1+k0−1∑

i=0

xi − s‖ + ‖
1

p1 + k0

p1+k0−1∑

i=0

xi −
1

p1

p1−1∑

i=0

xk0+i‖

≤
ε0

6
+ ‖ap1+k0

−
(p1 + k0)ap1+k0

− k0ak0

p1
‖

≤
ε0

6
+ ‖

k0

p1
ap1+k0

‖ + ‖
k0

p1
ak0

‖

≤
ε0

2
< ε0.

2) If k0 > K, then there are two cases:

(a) If k0 ≤ p1, then

‖
1

p1

p1−1∑

i=0

xk0+i − s‖ = ‖
(p1 + k0)ap1+k0

− k0ak0

p1
− s‖

≤ ‖ak0+p1
− s‖ +

k0

p1
‖ak0+p1

− s‖ +
k0

p1
‖ak0

− s‖

≤
ε0

6
+

ε0

6
+

ε0

6
< ε0.

(b) If k0 > p1, since p1 > p0 > K, there exist n0, n1 ∈ N and k1, k2 ∈ Z, k1, k2 < K such

that n0K + k1 = k0 and n1K − k2 = p1 + k1.

Let a = 1
k1

∑k0−1
i=n0K xi, b = 1

k2

∑k0+p1+k2−1
i=k0+p1

xi and ai = 1
K

∑(n0+i−1)K−1
j=(n0+i−1)K xj , where i =
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1, . . . , n1. Then

‖
1

p1

p1−1∑

i=0

xk0+i − s‖ = ‖
K(a1 + · · · + an1

) − k1a − k2b

p1
− s‖

≤

n1∑

i=1

K‖ai − s‖

p1
+ ‖

n1K − p1

p1
s‖ + ‖

k1a

p1
‖ + ‖

k2b

p1
‖

≤ 2
ε0

6
+ 2

ε0

6
+

ε0

6
+

ε0

6
= ε0,

contradicting the assumption that we made before. 2

Similarly with the proof above, we can get a theorem for multi sequences on the real vector

space T of all bounded multi sequences in a real normed space X .

Theorem 3 Let {xi,j}
∞

i,j=0 ∈ T. Then the following conditions are equivalent.

(I) ‖ 1
pq

∑(n+1)p−1
i=np

∑(m+1)q−1
i=mq xi,j − s‖ → 0 as p, q → ∞, uniformly in n, m = 0, 1, . . . .

(II) ‖ 1
pq

∑p−1
i=0

∑q−1
j=0 xk+i,l+j − s‖ → 0 as p, q → ∞, uniformly in k, l = 0, 1, . . . .
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