The Equivalence of Two Convergent Sequence of Bounded Sequences in Normed Space

WANG Rui Dong ${ }^{1,2}$
(1. School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
2. Department of Mathematics, Tianjin University of Technology, Tianjin 300191, China)
(E-mail: wangruidong@mail.nankai.edu.cn)

Abstract

Two kinds of convergent sequences on the real vector space \mathbf{m} of all bounded sequences in a real normed space X were discussed in this paper, and we prove that they are equivalent, which improved the results of [1].

Keywords almost convergence; quasi-almost convergence.
Document code A
MR(2000) Subject Classification 46A22; 46B20
Chinese Library Classification O177.2

1. Introduction

On the real vector space \mathbf{m} of all bounded sequences in a real normed space X, in [1] the almost convergence $\left(x_{i}\right) \in \mathbf{m}$ was defined, and it was gotten that $\left(x_{i}\right)$ almost converges to $s \in X$ iff

$$
\left\|\frac{1}{p} \sum_{i=0}^{p-1} x_{k+i}-s\right\| \rightarrow 0 \text { as } p \rightarrow \infty
$$

uniformly in $k=0,1, \ldots$
In [2], the quasi almost convergence $\left(x_{i}\right) \in \mathbf{m}$ was defined, and it was shown that $\left(x_{i}\right)$ quasi almost converges to $s \in X$ iff

$$
\left\|\frac{1}{p} \sum_{i=n p}^{(n+1) p-1} x_{i}-s\right\| \rightarrow 0 \text { as } p \rightarrow \infty
$$

uniformly in $n=0,1, \ldots$.
And [2] gave the following theorem:
Theorem 1 If a sequence $\left(x_{i}\right) \in \mathbf{m}$ almost converges to $s \in X$, then it quasi almost converges to s.

In this paper we show that the converse of the above theorem is also true.

2 Main result

Received date: 2007-03-13; Accepted date: 2007-10-30
Foundation item: the National Natural Science Foundation of China (No. 10871101); the Research Fund for the Doctoral Program of Higher Education (No. 20060055010).

First we give some notations and facts.
Let $\left(x_{i}\right) \in \mathbf{m}$. We denote $a_{n}=\frac{1}{n} \sum_{i=0}^{n-1} x_{i}$. Since $\left(x_{i}\right) \in \mathbf{m}, m=\sup _{i \in \mathbf{Z}}\left\{\left\|x_{i}\right\|\right\}$ is finite. And we can easily see that $\left\|a_{n}\right\| \leq m$, for any $n \in \mathbf{Z}$.

Now we give our main theorem.
Theorem 2 Let $\left\{x_{i}\right\}_{i=0}^{\infty} \in \mathbf{m}$. Then the following aconditions are equivalent.
(I) $\left\|\frac{1}{p} \sum_{i=n p}^{(n+1) p-1} x_{i}-s\right\| \rightarrow 0$ as $p \rightarrow \infty$, uniformly in $n=0,1, \ldots$.
(II) $\left\|\frac{1}{p} \sum_{i=0}^{p-1} x_{k+i}-s\right\| \rightarrow 0$ as $p \rightarrow \infty$, uniformly in $k=0,1, \ldots$

Proof If (II) is true, by Theorem 1, we get (I) is also true.
For the converse, if (II) does not hold, then there exits $\varepsilon_{0}>0$ such that for any $p>0$, there is a $p^{\prime}>p$ and $k^{\prime} \in \mathbf{Z}$, such that $\left\|\frac{1}{p^{\prime}} \sum_{i=0}^{p^{\prime}-1} x_{k^{\prime}+i}-s\right\|>\varepsilon_{0}$.

For the ε_{0} above, by (\mathbf{I}), there are K and $p_{0} \in \mathbf{Z}$ satisfying:
(i) $\left\|\frac{1}{k} \sum_{i=n k}^{(n+1) k-1} x_{i}-s\right\|<\frac{\varepsilon_{0}}{6}$, as $k \geq K$, uniformly in $n=0,1, \ldots$.
(ii) $p_{0}>K, \frac{K}{p_{0}} m<\frac{\varepsilon_{0}}{6}$ and $\frac{K}{p_{0}}\|s\|<\frac{\varepsilon_{0}}{6}$, where $m=\sup _{i \in \mathbf{Z}}\left\{\left\|x_{i}\right\|\right\}$.

Since (II) does not hold, for the p_{0} above, $p_{1}>p_{0}$ and $k_{0} \in \mathbf{Z}$ exist such that $\| \frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} x_{k_{0}+i}-$ $s \|>\varepsilon_{0}$.

1) If $k_{0} \leq K$, then

$$
\begin{aligned}
\left\|\frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} x_{k_{0}+i}-s\right\| & \leq\left\|\frac{1}{p_{1}+k_{0}} \sum_{i=0}^{p_{1}+k_{0}-1} x_{i}-s\right\|+\left\|\frac{1}{p_{1}+k_{0}} \sum_{i=0}^{p_{1}+k_{0}-1} x_{i}-\frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} x_{k_{0}+i}\right\| \\
& \leq \frac{\varepsilon_{0}}{6}+\left\|a_{p_{1}+k_{0}}-\frac{\left(p_{1}+k_{0}\right) a_{p_{1}+k_{0}}-k_{0} a_{k_{0}}}{p_{1}}\right\| \\
& \leq \frac{\varepsilon_{0}}{6}+\left\|\frac{k_{0}}{p_{1}} a_{p_{1}+k_{0}}\right\|+\left\|\frac{k_{0}}{p_{1}} a_{k_{0}}\right\| \\
& \leq \frac{\varepsilon_{0}}{2}<\varepsilon_{0} .
\end{aligned}
$$

2) If $k_{0}>K$, then there are two cases:
(a) If $k_{0} \leq p_{1}$, then

$$
\begin{aligned}
\left\|\frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} x_{k_{0}+i}-s\right\| & =\left\|\frac{\left(p_{1}+k_{0}\right) a_{p_{1}+k_{0}}-k_{0} a_{k_{0}}}{p_{1}}-s\right\| \\
& \leq\left\|a_{k_{0}+p_{1}}-s\right\|+\frac{k_{0}}{p_{1}}\left\|a_{k_{0}+p_{1}}-s\right\|+\frac{k_{0}}{p_{1}}\left\|a_{k_{0}}-s\right\| \\
& \leq \frac{\varepsilon_{0}}{6}+\frac{\varepsilon_{0}}{6}+\frac{\varepsilon_{0}}{6}<\varepsilon_{0}
\end{aligned}
$$

(b) If $k_{0}>p_{1}$, since $p_{1}>p_{0}>K$, there exist $n_{0}, n_{1} \in \mathbf{N}$ and $k_{1}, k_{2} \in \mathbf{Z}, k_{1}, k_{2}<K$ such that $n_{0} K+k_{1}=k_{0}$ and $n_{1} K-k_{2}=p_{1}+k_{1}$.

Let $a=\frac{1}{k_{1}} \sum_{i=n_{0} K}^{k_{0}-1} x_{i}, b=\frac{1}{k_{2}} \sum_{i=k_{0}+p_{1}}^{k_{0}+p_{1}+k_{2}-1} x_{i}$ and $a_{i}=\frac{1}{K} \sum_{j=\left(n_{0}+i-1\right) K}^{\left(n_{0}+i-1\right) K-1} x_{j}$, where $i=$
$1, \ldots, n_{1}$. Then

$$
\begin{aligned}
\left\|\frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} x_{k_{0}+i}-s\right\| & =\left\|\frac{K\left(a_{1}+\cdots+a_{n_{1}}\right)-k_{1} a-k_{2} b}{p_{1}}-s\right\| \\
& \leq \sum_{i=1}^{n_{1}} \frac{K\left\|a_{i}-s\right\|}{p_{1}}+\left\|\frac{n_{1} K-p_{1}}{p_{1}} s\right\|+\left\|\frac{k_{1} a}{p_{1}}\right\|+\left\|\frac{k_{2} b}{p_{1}}\right\| \\
& \leq 2 \frac{\varepsilon_{0}}{6}+2 \frac{\varepsilon_{0}}{6}+\frac{\varepsilon_{0}}{6}+\frac{\varepsilon_{0}}{6}=\varepsilon_{0}
\end{aligned}
$$

contradicting the assumption that we made before.
Similarly with the proof above, we can get a theorem for multi sequences on the real vector space \mathbf{T} of all bounded multi sequences in a real normed space X.

Theorem 3 Let $\left\{x_{i, j}\right\}_{i, j=0}^{\infty} \in \mathbf{T}$. Then the following conditions are equivalent.
(I) $\left\|\frac{1}{p q} \sum_{i=n p}^{(n+1) p-1} \sum_{i=m q}^{(m+1) q-1} x_{i, j}-s\right\| \rightarrow 0$ as $p, q \rightarrow \infty$, uniformly in $n, m=0,1, \ldots$
(II) $\left\|\frac{1}{p q} \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} x_{k+i, l+j}-s\right\| \rightarrow 0$ as $p, q \rightarrow \infty$, uniformly in $k, l=0,1, \ldots$.

Acknowledgments The author would like to thank Professor Ding Guanggui for his encouragement and advice.

References

[1] HAJDUKOVIĆ D. Almost convergence of vector sequences [J]. Mat. Vesnik, 1975, 12(27): 245-249.
[2] HAJDUKOVIĆ D. Quasi-almost convergence in a normed space [J]. Math. Morav., 2002, 6: 65-70.
[3] BACHMAN G, NARICI L. Functional Analysis [M]. Academic Press, New York-London, 1966.

