Bipartite Graphs $K_{n, n+r}-A(|A| \leq 3)$ Determined by Their Cycle Length Distributions

LI Ning, HOU Xin Min
(Department of Mathematics, University of Science and Technology of China, Anhui 230026, China)
(E-mail: xmhou@ustc.edu.cn)

Abstract

The cycle length distribution of a graph G of order n is a sequence $\left(c_{1}(G), \ldots, c_{n}(G)\right)$, where $c_{i}(G)$ is the number of cycles of length i in G. In general, the graphs with cycle length distribution $\left(c_{1}(G), \ldots, c_{n}(G)\right)$ are not unique. A graph G is determined by its cycle length distribution if the graph with cycle length distribution $\left(c_{1}(G), \ldots, c_{n}(G)\right)$ is unique. Let $K_{n, n+r}$ be a complete bipartite graph and $A \subseteq E\left(K_{n, n+r}\right)$. In this paper, we obtain: Let $s>1$ be an integer. (1) If $r=2 s, n>s(s-1)+2|A|$, then $K_{n, n+r}-A\left(A \subseteq E\left(K_{n, n+r}\right),|A| \leq 3\right)$ is determined by its cycle length distribution; (2) If $r=2 s+1, n>s^{2}+2|A|, K_{n, n+r}-A(A \subseteq$ $\left.E\left(K_{n, n+r}\right),|A| \leq 3\right)$ is determined by its cycle length distribution.

Keywords cycle length distribution; bipartite graphs.
Document code A
MR(2000) Subject Classification 05C38
Chinese Library Classification O175.5

1. Introduction

Let G be a graph of order n. The cycle length distribution, denoted by CLD, of G is a sequence $\left(c_{1}(G), c_{2}(G), \ldots, c_{n}(G)\right)$, where $c_{i}(G)$ is the number of cycles of length i in G. For a simple graph G, define $c_{1}(G)=c_{2}(G)=0$. In general, the graphs G with CLD $\left(c_{1}(G), c_{2}(G), \ldots, c_{n}(G)\right)$ are not unique. A graph G is determined by its CLD if the CLD $\left(c_{1}(G), c_{2}(G), \ldots, c_{n}(G)\right)$ of G determines uniquely the graph G. Then it is natural to ask what graphs are determined by their CLDs.

A graph $G=(V, E)$ is called a bipartite graph if its vertex set $V(G)$ can be partitioned into two parts V_{1}, V_{2} such that every edge has one end in V_{1} and one in V_{2}. A bipartite graph G in which every two vertices from different partition classes are adjacent is called complete. Let $K_{n, m}$ denote a complete bipartite graph with $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$. Without loss of generality, assume that $n \leq m$ in this paper.

In $[2,3]$, Wang and Shi obtained

$$
\begin{aligned}
& G=K_{n, r}-A\left(A \subseteq E\left(K_{n, r}\right),|A| \leq 1, n \leq r \leq \min (n+6,2 n-3)\right), \\
& G=K_{n, r}-A\left(A \subseteq E\left(K_{n, r}\right),|A|=2, n \leq r \leq \min (n+6,2 n-5)\right),
\end{aligned}
$$

Received date: 2007-06-27; Accepted date: 2008-01-02
Foundation item: the National Natural Science Foundation of China (Nos. 10701068; 10671191).

$$
G=K_{n, r}-A\left(A \subseteq E\left(K_{n, r}\right),|A| \leq 3, n \leq r \leq \min (n+6,2 n-7)\right)
$$

are determined by their CLDs. In [4], the authors improved the results of Wang and Shi and obtained: If $n \geq 9+2|A|$, then the bipartite graphs $G=K_{n, n+7}-A\left(A \subseteq E\left(K_{n, n+7}\right),|A| \leq 3\right)$ are determined by their CLDs.

In this paper, we improve the above results and obtain the following result.
Theorem 1 Let $s>1$ be an integer.
(1) If $r=2 s, n>s(s-1)+2|A|$, then $K_{n, n+r}-A\left(A \subseteq E\left(K_{n, n+r}\right),|A| \leq 3\right)$ is determined by its CLD.
(2) If $r=2 s+1, n>s^{2}+2|A|$, then $K_{n, n+r}-A\left(A \subseteq E\left(K_{n, n+r}\right),|A| \leq 3\right)$ is determined by its CLD.

2. The proof of Theorem 1

In the following, we always use A to denote a subset of the edge set of $K_{n, m}$, i.e., $A \subseteq$ $E\left(K_{n, m}\right)$. Let $X_{j}=\left\{G\left|G=K_{n, m}-A,|A|=j\right\}, m_{j}=\min _{G \in X_{j}} c_{4}(G), M_{j}=\max _{G \in X_{j}} c_{4}(G)\right.$.

Lemma $1^{[3]}$ If $n \geq j \geq 2$, then

$$
\begin{aligned}
& m_{j}=\binom{n}{2}\binom{m}{2}-j\binom{n-1}{1}\binom{m-1}{1}+\binom{j}{2} \\
& M_{j}=\binom{n}{2}\binom{m}{2}-j\binom{n-1}{1}\binom{m-1}{1}+\binom{j}{2}(m-1)
\end{aligned}
$$

Lemma $2^{[5]}$ If $j \geq 2, n \geq j(j+1) / 2+2$, then $M_{j+1}<m_{j}$.
Lemma $3^{[2]}$ Let $G \in X_{j}$. If $m \geq n \geq j+2$, then, in the CLD of $G, c_{2 n}(G) \neq 0$.
We distinguish three cases to prove Theorem 1 according to the order of $|A|$.
Lemma 4 Let $s>1$ be an integer. If n and r are integers with

$$
n> \begin{cases}s(s-1), & r=2 s \\ s^{2}, & r=2 s+1\end{cases}
$$

then $G=K_{n, n+r}$ is determined by its CLD. Moreover, the CLD of G satisfies

$$
c_{i}(G)= \begin{cases}\frac{1}{2}\binom{n}{p}\binom{n+r}{p} p[(p-1)!]^{2}, & i=2 p, p=2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

Proof Firstly, we determine the CLD of $G=K_{n, n+r}$. Since $G=K_{n, n+r}$ is a simple bipartite graph, $c_{1}(G)=c_{2}(G)=0, c_{2 p+1}(G)=0$, for $p=1, \ldots, n-1$ and $c_{i}(G)=0$ for $2 n<i \leq 2 n+r$. For any $i=2 p(p=2, \ldots, n), K_{n, n+r}$ has $\binom{n}{p}\binom{n+r}{p}$ subgraphs $K_{p, p}$ of order i, while each $K_{p, p}$ has $\frac{1}{2} p[(p-1)!]^{2}$ cycles of length i. Therefore

$$
c_{i}(G)=\frac{1}{2}\binom{n}{p}\binom{n+r}{p} p[(p-1)!]^{2}
$$

In the following, we will prove that $G=K_{n, n+r}$ is determined by its CLD by contradiction.

Clearly, the graphs satisfying the CLD given by the lemma must be bipartite graphs of order $2 n+r$. Assume that there exists a graph $G^{\prime} \neq K_{n, n+r}$ with the same CLD as G. Then $G^{\prime}=K_{n, n+r}-A$, where $|A| \geq 1$, or $G^{\prime}=K_{n+k, n+r-k}-A$, where $|A| \geq 0$ and $0<k \leq\left\lfloor\frac{r}{2}\right\rfloor$.

Case $1 G^{\prime}=K_{n, n+r}-A,|A| \geq 1$. By Lemma l, it is clear that $c_{4}\left(G^{\prime}\right)<\binom{n}{2}\binom{n+r}{2}=c_{4}(G)$, a contradiction.

Case $2 G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0,0<k \leq\left\lfloor\frac{r}{2}\right\rfloor$. Let $|A|=j$. If $n+k \geq j+2$, then $0 \leq j \leq k+n-2$. By Lemma $3, c_{2 n+2 k}\left(G^{\prime}\right) \neq 0$, which contradicts $c_{i}(G)=0$ for all $j>2 n$. Hence $G^{\prime} \in\left\{K_{n+k, n+r-k}-A| | A \mid=j \geq n+k-1\right\}$. Clearly, $c_{4}\left(G^{\prime}\right) \leq \max _{|A|=j=n+k-1} c_{4}\left(K_{n+k, n+r-k}-\right.$ A). By Lemma 1,

$$
\begin{aligned}
c_{4}\left(G^{\prime}\right) \leq & \binom{n+k}{2}\binom{n+r-k}{2}-(n+k-1)\binom{n+k-1}{1}\binom{n+r-k-1}{1}+ \\
& \binom{n+k-1}{2}(n+r-k-1) \\
= & \binom{n+k}{2}\binom{n+r-k-1}{2} .
\end{aligned}
$$

If $c_{4}\left(G^{\prime}\right)<c_{4}(G)$, then we have a desired contradiction. Let

$$
H(k)=\binom{n+k}{2}\binom{n+r-k-1}{2}-\binom{n}{2}\binom{n+r}{2}
$$

Then, to show that $c_{4}\left(G^{\prime}\right)<c_{4}(G)$, it suffices to show $H(k)<0$. In the following, we will show that $H(k)<0$.

$$
\begin{aligned}
H(k)-H(k-1) & =\binom{n+k}{2}\binom{n+r-k-1}{2}-\binom{n+k-1}{2}\binom{n+r-k}{2} \\
& =(n+k-1)(n+r-k-1)\left(\frac{r}{2}-k\right) .
\end{aligned}
$$

Hence $H(k)$ increases on $\left[1,\left\lfloor\frac{r}{2}\right\rfloor\right]$.
If $r=2 s$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s-1}{2}-\binom{n}{2}\binom{n+2 s}{2} \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+2\right)(n+s)^{2}+2\left(s^{2}+1\right)(n+s)+s^{4}-s^{2}\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+2\right) x^{2}+2\left(s^{2}+1\right) x+s^{4}-s^{2} .
$$

Now we prove that $f(x)>0$ for $x>s^{2}$. Since

$$
\begin{aligned}
f\left(s^{2}+1\right) & =2\left(s^{2}+1\right)^{3}-2\left(s^{2}+2\right)\left(s^{2}+1\right)^{2}+2\left(s^{2}+1\right)\left(s^{2}+1\right)+s^{4}-s^{2} \\
& =s^{4}-s^{2}>0, \text { for } \forall s>1
\end{aligned}
$$

to verify that $f(x)>0$, it suffices to show that $f(x)$ increases on $x>s^{2}$. Solving the equation

$$
f^{\prime}(x)=6 x^{2}-4\left(s^{2}+2\right) x+2\left(s^{2}+1\right)=0
$$

gives the solutions

$$
x_{1,2}=\frac{s^{2}+2 \pm \sqrt{s^{4}+s^{2}+1}}{3} .
$$

Clearly, $x_{1}, x_{2} \in\left(0, s^{2}\right)$. Hence $f^{\prime}(x)>0$ if $x>s^{2}$, that is, $f(x)$ is an increasing function on $x>s^{2}$. Therefore, $f(n+s)>0$ for $n>s(s-1)$, that is, $H(s)<0$. Since $H(k)$ is an increasing function on $1 \leq k \leq s, H(k)<0$.

If $r=2 s+1$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s}{2}-\binom{n}{2}\binom{n+2 s+1}{2} \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+s+1\right)(n+s)^{2}+s^{2}(s+1)^{2}\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+s+1\right) x^{2}+s^{2}(s+1)^{2} .
$$

We prove that $f(x)>0$ for $x>s^{2}+s$. Since

$$
\begin{aligned}
f\left(s^{2}+s+1\right) & =2\left(s^{2}+s+1\right)^{3}-2\left(s^{2}+s+1\right)\left(s^{2}+s+1\right)^{2}+s^{2}(s+1)^{2} \\
& =s^{2}(s+1)^{2}>0, \text { for } \forall s>1,
\end{aligned}
$$

to verify that $f(x)>0$, it suffices to show that $f(x)$ increases on $x>s^{2}+s$. Solving the equation

$$
f^{\prime}(x)=6 x^{2}-4\left(s^{2}+s+1\right) x=0
$$

gives the solutions

$$
x_{1}=0, x_{2}=\frac{2\left(s^{2}+s+1\right)}{3}<s^{2}+s
$$

Hence $f^{\prime}(x)>0$ for $x>s^{2}+s$, that is, $f(x)$ increases on $x>s^{2}+s$. Therefore, $f(n+s)>0$ for $n>s^{2}$, that is, $H(s)<0$. Since $H(k)$ is an increasing function on $1 \leq k \leq s$, we have $H(k)<0$.

Lemma 5 Let $s>1$ be an integer. If n and r are integers with

$$
n> \begin{cases}s(s-1)+2, & r=2 s \\ s^{2}+2, & r=2 s+1\end{cases}
$$

then $G=K_{n, n+r}-A(|A|=1)$ is determined by its CLD. Moreover, the CLD of G satisfies

$$
c_{i}(G)= \begin{cases}\frac{1}{2}\binom{n}{p}\binom{n+r}{p} p[(p-1)!]^{2}-\binom{n-1}{p-1}\binom{n+r-1}{p-1}[(p-1)!]^{2}, & i=2 p, p=2, \cdots, n \\ 0, & \text { otherwise }\end{cases}
$$

Proof Firstly, we determine the CLD of $G=K_{n, n+r}-A$. Let $A=\{e\}$ and denote $G=$ $K_{n, r}-A=K_{n, r}-e$. Since G is a simple bipartite graph, $c_{1}=c_{2}=0, c_{2 p+1}=0$ for $p=1, \ldots, n-1$ and $c_{i}=0$ for $\forall i>2 n$. For $i=2 p, p=2, \ldots, n$, By Lemma 4,

$$
c_{i}\left(K_{n, n+r}\right)=\frac{1}{2}\binom{n}{p}\binom{n+r}{p} p[(p-1)!]^{2} .
$$

Since $K_{n, n+r}$ has

$$
\binom{n-1}{p-1}\binom{n+r-1}{p-1}
$$

subgraphs $K_{p, p}$ of order i which contain the edge e as an edge, while each $K_{p, p}$ has $[(p-1)!]^{2}$ cycles of length i which contain the edge $e, K_{n, n+r}$ has

$$
\binom{n-1}{p-1}\binom{n+r-1}{p-1}[(p-1)!]^{2}
$$

cycles of length i which contain the edge e. Hence $K_{n, n+r}-e$ has

$$
c_{i}(G)=\frac{1}{2}\binom{n}{p}\binom{n+r}{p} p[(p-1)!]^{2}-\binom{n-1}{p-1}\binom{n+r-1}{p-1}[(p-1)!]^{2}
$$

cycles of length i.
In the following, we prove that G is determined by its CLD by contradiction. Suppose that $G^{\prime} \neq K_{n, r}-e$ is a graph with $\operatorname{CLD}\left(c_{1}(G), \ldots, c_{2 n+r}(G)\right)$, then G^{\prime} must be a bipartite graph of order $2 n+r$. By Lemma $4, G^{\prime} \neq K_{n, n+r}$. Hence $G^{\prime}=K_{n, n+r}-A,|A| \geq 2$ or $G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0$, and $k \leq\left\lfloor\frac{r}{2}\right\rfloor$.
Case $1 G^{\prime}=K_{n, n+r}-A,|A| \geq 2$. By Lemma 1, $c_{4}\left(G^{\prime}\right) \leq\binom{ n}{2}\binom{n+r}{2}-2\binom{n-1}{1}\binom{n+r-1}{1}+(n+r-1)$. But $c_{4}(G)=\binom{n}{2}\binom{n+r}{2}-\binom{n-1}{1}\binom{n+r-1}{1}>c_{4}\left(G^{\prime}\right)$, a contradiction.

Case $2 G^{\prime}=K_{n+k, n+r-k}-A,|A|=j \geq 0, k \leq\left\lfloor\frac{r}{2}\right\rfloor$. With a similar discussion to the Case 2 of Lemma 4, we have

$$
c_{4}\left(G^{\prime}\right) \leq \max _{|A|=j=n+k-1} C_{4}\left(K_{n+k, n+r-k}-A\right)
$$

and

$$
c_{4}\left(G^{\prime}\right) \leq\binom{ n+k}{2}\binom{n+r-k-1}{2}
$$

Let

$$
H(k)=\binom{n+k}{2}\binom{n+r-k-1}{2}-\binom{n}{2}\binom{n+r}{2}+\binom{n-1}{1}\binom{n+r-1}{1}
$$

If $H(k)<0$, then $c_{4}\left(G^{\prime}\right)<c_{4}(G)$, we have a desired contradiction.
Clearly, the function $H(k)$ defined here differs only a constant from the function $H(k)$ defined in the proof of Lemma 4 , hence we have $H(k)$ increases on $k \in\left[1,\left\lfloor\frac{r}{2}\right\rfloor\right]$.

If $r=2 s$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s-1}{2}-\binom{n}{2}\binom{n+2 s}{2}+\binom{n-1}{1}\binom{n+2 s-1}{1} \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+4\right)(n+s)^{2}+2\left(s^{2}+5\right)(n+s)+s^{4}+3 s^{2}-4\right]
\end{aligned}
$$

Hence if $H(s)<0$, we have $H(k)<0$. Let $f(x)=2 x^{3}-2\left(s^{2}+4\right) x^{2}+2\left(s^{2}+5\right) x+s^{4}+3 s^{2}-4$. Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+4\right) x+2\left(s^{2}+5\right)=0$ gives the solutions $x_{1,2}=$ $\frac{s^{2}+4 \pm \sqrt{s^{4}+5 s^{2}+1}}{3}<s^{2}+2$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+2$, and $f(x)$ increases on $x>s^{2}+2$. Since $f\left(s^{2}+3\right)=s^{4}+7 s^{2}+8>0, f(x)>0$ if $x>s^{2}+2$. Therefore $f(n+s)>0$ if $n>s(s-1)+2$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

If $r=2 s+1$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s}{2}-\binom{n}{2}\binom{n+2 s+1}{2}+\binom{n-1}{1}\binom{n+2 s}{1} \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+s+3\right)(n+s)^{2}+4(n+s)+\left(s^{2}+s\right)\left(s^{2}+s+4\right)\right]
\end{aligned}
$$

Hence if $H(s)<0$, we have $H(k)<0$. Let $f(x)=2 x^{3}-2\left(s^{2}+s+3\right) x^{2}+4 x+\left(s^{2}+s\right)\left(s^{2}+\right.$ $s+4)$. Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+s+3\right) x+4=0$ gives the solutions $x_{1,2}=$ $\frac{s^{2}+s+5 \pm \sqrt{\left(s^{2}+s+3\right)^{2}-3}}{3}<s^{2}+s+2$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+s+2$, that is, $f(x)$ increases on $x>s^{2}+s+2$. Since $f\left(s^{2}+s+3\right)=4\left(s^{2}+s+3\right)+\left(s^{2}+s\right)\left(s^{2}+s+4\right)>0, f(x)>0$ if $x>s^{2}+s+2$. Therefore $f(n+s)>0$ if $n>s^{2}+2$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

Lemma 6 Let $s>1$ be an integer. n and r are integers with

$$
n>\left\{\begin{array}{ll}
s(s-1)+4, & r=2 s \\
s^{2}+4, & r=2 s+1
\end{array} .\right.
$$

Then $G=K_{n, n+r}-A(|A|=2)$ is determined by its $C L D$.
Proof Since $|A|=2$, the subgraphs induced by A in $K_{n, n+r}$ have three configurations (as shown in Figure 1), denoted by H_{1}, H_{2}, H_{3}, respectively.

Figure 1 Three configurations induced by A
Let $G_{i}=K_{n, n+r}-E\left(H_{i}\right), i=1,2,3$. We prove that each G_{i} is determined by its CLD. Firstly, we prove that G_{1}, G_{2}, G_{3} have different CLDs. It is easy to compute that

$$
\begin{aligned}
& c_{4}\left(G_{1}\right)=\binom{n}{2}\binom{n+r}{2}-2\binom{n-1}{1}\binom{n+r-1}{1}+1, \\
& c_{4}\left(G_{2}\right)=\binom{n}{2}\binom{n+r}{2}-2\binom{n-1}{1}\binom{n+r-1}{1}+n-1, \\
& c_{4}\left(G_{3}\right)=\binom{n}{2}\binom{n+r}{2}-2\binom{n-1}{1}\binom{n+r-1}{1}+n+r-1 .
\end{aligned}
$$

Hence $c_{4}\left(G_{1}\right)<c_{4}\left(G_{2}\right)<c_{4}\left(G_{3}\right), G_{1}, G_{2}, G_{3}$ have different CLDs. Next we prove that $G=G_{i}$ is determined by its CLD. Suppose to the contrary that $G^{\prime} \neq G_{i}, i=1,2,3$ is a graph with the same CLD as G. Then G^{\prime} is a bipartite graph of order $2 n+r$. By Lemmas 4 and 5 , $G^{\prime} \neq K_{n, n+r}-A(|A|=0,1)$. Hence $G^{\prime}=K_{n, n+r}-A,|A| \geq 3$ or $G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0$, and $k \leq\left\lfloor\frac{r}{2}\right\rfloor$.

Case $1 G^{\prime}=K_{n, n+r}-A,|A| \geq 3$. By Lemma 2, $c_{4}\left(G^{\prime}\right) \leq M_{3}<m_{2} \leq c_{4}(G)$, a contradiction.

Case $2 G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0$, and $k \leq\left\lfloor\frac{r}{2}\right\rfloor$. With a similar discussion to the Case 2 in the proof of Lemma 4, we have

$$
c_{4}\left(G^{\prime}\right) \leq \max _{|A|=j=n+k-1} C_{4}\left(K_{n+k, n+r-k}-A\right)
$$

and

$$
c_{4}\left(G^{\prime}\right) \leq\binom{ n+k}{2}\binom{n+r-k-1}{2}
$$

Since $c_{4}\left(G_{1}\right)<c_{4}\left(G_{2}\right)<c_{4}\left(G_{3}\right)$, to prove that $G=G_{i}$ is determined by its CLD, it suffices to prove that $c_{4}\left(G^{\prime}\right)<c_{4}\left(G_{1}\right)$. Let

$$
H(k)=\binom{n+k}{2}\binom{n+r-k-1}{2}-\binom{n}{2}\binom{n+r}{2}+2\binom{n-1}{1}\binom{n+r-1}{1}-1 .
$$

Then it suffices to prove that $H(k)<0$. Similarly to the proof of Lemma 4, we have $H(k)$ increases on $k \in\left[1,\left\lfloor\frac{r}{2}\right\rfloor\right]$. Hence it suffices to prove that $H\left(\left\lfloor\frac{r}{2}\right\rfloor\right)<0$.

If $r=2 s$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s-1}{2}-\binom{n}{2}\binom{n+2 s}{2}+2\binom{n-1}{1}\binom{n+2 s-1}{1}-1 \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+6\right)(n+s)^{2}+2\left(s^{2}+9\right)(n+s)+s^{4}+7 s^{2}-4\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+6\right) x^{2}+2\left(s^{2}+9\right) x+s^{4}+7 s^{2}-4 .
$$

Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+6\right) x+2\left(s^{2}+9\right)=0$, we have $x_{1,2}=\frac{\left(s^{2}+6\right) \pm \sqrt{s^{4}+9 s^{2}+9}}{3}<$ $s^{2}+4$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+4$, that is, $f(x)$ increases on $x>s^{2}+4$. Since $f\left(s^{2}+5\right)=$ $s^{4}+15 s^{2}+36>0, f(n+s)>0$ if $n>s(s-1)+4$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

If $r=2 s+1$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s}{2}-\binom{n}{2}\binom{n+2 s+1}{2}+2\binom{n-1}{1}\binom{n+2 s}{1}-1 \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+s+5\right)(n+s)^{2}+8(n+s)+\left(s^{2}+s\right)\left(s^{2}+s+8\right)+4\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+s+5\right) x^{2}+8 x+\left(s^{2}+s\right)\left(s^{2}+s+8\right)+4
$$

Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+s+5\right) x+8=0$ gives the solutions $x_{1,2}=\left(\left(s^{2}+s+\right.\right.$ 5) $\left.\pm \sqrt{\left(s^{2}+s+5\right)^{2}-12}\right) / 3<s^{2}+s+4$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+s+4$, that is, $f(x)$ increases on $x>s^{2}+s+4$. Since $f\left(s^{2}+s+5\right)=8\left(s^{2}+s+5\right)+\left(s^{2}+s\right)\left(s^{2}+s+8\right)+4>0, f(n+s)>0$ if $n>s^{2}+4$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

Lemma 7 Let $s>1$ be an integer. n and r are integers with

$$
n> \begin{cases}s(s-1)+6, & r=2 s \\ s^{2}+6, & r=2 s+1\end{cases}
$$

Then $G=K_{n, n+r}-A(|A|=3)$ is determined by its $C L D$.

Proof Since $|A|=3$, the subgraphs induced by A in $K_{n, n+r}$ have six configurations (as shown in Figure 2), denoted by $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}$, respectively.

Figure 2 Six configurations induced by A
Let $G_{i}=K_{n, n+r}-E\left(H_{i}\right), i=1,2,3,4,5,6$. We prove that each G_{i} is determined by its CLD. It is easy to compute that

$$
\begin{aligned}
& c_{4}\left(G_{1}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+3, \\
& c_{4}\left(G_{2}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+(n-1)+2, \\
& c_{4}\left(G_{3}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+(n+r-1)+2, \\
& c_{4}\left(G_{4}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+(2 n+r-1)-1, \\
& c_{4}\left(G_{5}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+3(n-1), \\
& c_{4}\left(G_{6}\right)=\binom{n}{2}\binom{n+r}{2}-3\binom{n-1}{1}\binom{n+r-1}{1}+3(n+r-1) .
\end{aligned}
$$

Clearly, $c_{4}\left(G_{1}\right)<c_{4}\left(G_{2}\right)<c_{4}\left(G_{3}\right)<c_{4}\left(G_{4}\right)<c_{4}\left(G_{5}\right)<c_{4}\left(G_{6}\right)$. Hence $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}$ have different CLDs. Suppose that $G^{\prime} \neq G_{i}, i=1,2,3,4,5,6$ is a graph with the same CLD as G. Then G^{\prime} must be a bipartite graph of order $2 n+r$. By Lemmas 4,5 and $6, G^{\prime} \neq$ $K_{n, n+r}-A(|A|=0,1,2)$. Hence $G^{\prime}=K_{n, n+r}-A,|A| \geq 4$ or $G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0$, and $k \leq\left\lfloor\frac{r}{2}\right\rfloor$.

Case $1 G^{\prime}=K_{n, n+r}-A,|A| \geq 4$. By Lemma 2, $c_{4}\left(G^{\prime}\right) \leq M_{4}<m_{3} \leq c_{4}(G)$, a contradiction.
Case $2 G^{\prime}=K_{n+k, n+r-k}-A,|A| \geq 0$, and $k \leq\left\lfloor\frac{r}{2}\right\rfloor$. Similarly to the Case 2 in the proof of Lemma 4, we have

$$
c_{4}\left(G^{\prime}\right) \leq \max _{|A|=j=n+k-1} C_{4}\left(K_{n+k, n+r-k}-A\right)
$$

and

$$
c_{4}\left(G^{\prime}\right) \leq\binom{ n+k}{2}\binom{n+r-k-1}{2}
$$

Since $c_{4}\left(G_{1}\right)<c_{4}\left(G_{2}\right)<\cdots<c_{4}\left(G_{6}\right)$, to prove that $G=G_{i}$ is determined by its CLD, it suffices to show that $c_{4}\left(G^{\prime}\right)<c_{4}\left(G_{1}\right)$. Let

$$
H(k)=\binom{n+k}{2}\binom{n+r-k-1}{2}-\binom{n}{2}\binom{n+r}{2}+3\binom{n-1}{1}\binom{n+r-1}{1}-3 .
$$

Hence it suffices to show $H(k)<0$. Similarly to Lemma 4, we have $H(k)$ increases on $k \in\left[1,\left\lfloor\frac{r}{2}\right\rfloor\right]$. Hence it suffices to show $H\left(\left\lfloor\frac{r}{2}\right\rfloor\right)<0$.

If $r=2 s$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s-1}{2}-\binom{n}{2}\binom{n+2 s}{2}+3\binom{n-1}{1}\binom{n+2 s-1}{1}-3 \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+8\right)(n+s)^{2}+2\left(s^{2}+13\right)(n+s)+s^{4}+11 s^{2}\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+8\right) x^{2}+2\left(s^{2}+13\right) x+s^{4}+11 s^{2}
$$

Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+8\right) x+2\left(s^{2}+13\right)=0$, we have $x_{1,2}=\frac{\left(s^{2}+8\right) \pm \sqrt{s^{4}+13 s^{2}+25}}{3}<$ $s^{2}+6$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+6$, that is, $f(x)$ increases on $x>s^{2}+6$. Since $f\left(s^{2}+7\right)=s^{4}+23 s^{2}+84>0, f(n+s)>0$ if $n>s(s-1)+6$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

If $r=2 s+1$, then

$$
\begin{aligned}
H(s) & =\binom{n+s}{2}\binom{n+s}{2}-\binom{n}{2}\binom{n+2 s+1}{2}+3\binom{n-1}{1}\binom{n+2 s}{1}-3 \\
& =-\frac{1}{4}\left[2(n+s)^{3}-2\left(s^{2}+s+7\right)(n+s)^{2}+12(n+s)+\left(s^{2}+s\right)\left(s^{2}+s+12\right)+12\right]
\end{aligned}
$$

Let

$$
f(x)=2 x^{3}-2\left(s^{2}+s+7\right) x^{2}+12 x+\left(s^{2}+s\right)\left(s^{2}+s+12\right)+12
$$

Solving the equation $f^{\prime}(x)=6 x^{2}-4\left(s^{2}+s+7\right) x+12=0$, we have $x_{1,2}=\frac{\left(s^{2}+s+7\right) \pm \sqrt{\left(s^{2}+s+7\right)^{2}-18}}{3}<$ $s^{2}+s+6$. Hence $f^{\prime}(x)>0$ if $x>s^{2}+s+6$, that is, $f(x)$ increases on $x>s^{2}+s+6$. Since $f\left(s^{2}+s+7\right)=12\left(s^{2}+s+7\right)+\left(s^{2}+s\right)\left(s^{2}+s+12\right)+12>0, f(n+s)>0$ if $n>s^{2}+6$. The result follows from $H(s)=-\frac{1}{4} f(n+s)$.

Theorem 1 follows directly from Lemmas 4, 5, 6 and 7.

References

[1] BONDY J A, MURTY U S R. Graph Theory with Application [M]. New York, 1976.
[2] WANG Min, WANG Minglei, SHI Yongbing. Bipartite graphs determined by their cycle length distributions [J]. Adv. Math. (China), 2005, 34(2): 167-172. (in Chinese)
[3] WANG Min, SHI Yongbing. Uniqueness of cycle length distribution of the bipartite graph $K_{n, r}-A(|A| \leq 3)$ [J]. J. Math. Res. Exposition, 2006, 26(1): 149-155. (in Chinese)
[4] ZHU Jianming, YU Wenhua, SHA Dan. Uniqueness of cycle length distribution of certain bipartite graphs $K_{n, n+7}-A(|A| \leq 3)[J]$. J. Math. Res. Exposition, 2008, 28(4): 813-822.
[5] LU Zongyuan. The cycle length distribution of some classes of bipartite graphs [J]. J. Shanghai Normal Univ. Nat. Sci., 1992, 21(4): 24-28.

