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Abstract The cycle length distribution of a graph G of order n is a sequence (c1(G), . . . , cn(G)),

where ci(G) is the number of cycles of length i in G. In general, the graphs with cycle length

distribution (c1(G), . . . , cn(G)) are not unique. A graph G is determined by its cycle length

distribution if the graph with cycle length distribution (c1(G), . . . , cn(G)) is unique. Let Kn,n+r

be a complete bipartite graph and A ⊆ E(Kn,n+r). In this paper, we obtain: Let s > 1 be

an integer. (1) If r = 2s, n > s(s − 1) + 2|A|, then Kn,n+r − A (A ⊆ E(Kn,n+r), |A| ≤ 3) is

determined by its cycle length distribution; (2) If r = 2s + 1, n > s2 + 2|A|, Kn,n+r − A (A ⊆

E(Kn,n+r), |A| ≤ 3) is determined by its cycle length distribution.
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1. Introduction

Let G be a graph of order n. The cycle length distribution, denoted by CLD, of G is a sequence

(c1(G), c2(G), . . . , cn(G)), where ci(G) is the number of cycles of length i in G. For a simple graph

G, define c1(G) = c2(G) = 0. In general, the graphs G with CLD (c1(G), c2(G), . . . , cn(G)) are

not unique. A graph G is determined by its CLD if the CLD (c1(G), c2(G), . . . , cn(G)) of G

determines uniquely the graph G. Then it is natural to ask what graphs are determined by their

CLDs.

A graph G = (V, E) is called a bipartite graph if its vertex set V (G) can be partitioned into

two parts V1, V2 such that every edge has one end in V1 and one in V2. A bipartite graph G

in which every two vertices from different partition classes are adjacent is called complete. Let

Kn,m denote a complete bipartite graph with |V1| = n and |V2| = m. Without loss of generality,

assume that n ≤ m in this paper.

In [2, 3], Wang and Shi obtained

G = Kn,r − A (A ⊆ E(Kn,r), |A| ≤ 1, n ≤ r ≤ min(n + 6, 2n− 3)),

G = Kn,r − A (A ⊆ E(Kn,r), |A| = 2, n ≤ r ≤ min(n + 6, 2n− 5)),
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G = Kn,r − A (A ⊆ E(Kn,r), |A| ≤ 3, n ≤ r ≤ min(n + 6, 2n− 7))

are determined by their CLDs. In [4], the authors improved the results of Wang and Shi and

obtained: If n ≥ 9 + 2|A|, then the bipartite graphs G = Kn,n+7 − A (A ⊆ E(Kn,n+7), |A| ≤ 3)

are determined by their CLDs.

In this paper, we improve the above results and obtain the following result.

Theorem 1 Let s > 1 be an integer.

(1) If r = 2s, n > s(s− 1) + 2|A|, then Kn,n+r −A (A ⊆ E(Kn,n+r), |A| ≤ 3) is determined

by its CLD.

(2) If r = 2s + 1, n > s2 + 2|A|, then Kn,n+r − A (A ⊆ E(Kn,n+r), |A| ≤ 3) is determined

by its CLD.

2. The proof of Theorem 1

In the following, we always use A to denote a subset of the edge set of Kn,m, i.e., A ⊆
E(Kn,m). Let Xj = {G|G = Kn,m − A, |A| = j}, mj = minG∈Xj

c4(G), Mj = maxG∈Xj
c4(G).

Lemma 1
[3] If n ≥ j ≥ 2, then

mj =

(

n

2

)(

m

2

)

− j

(

n − 1

1

)(

m − 1

1

)

+

(

j

2

)

,

Mj =

(

n

2

)(

m

2

)

− j

(

n − 1

1

)(

m − 1

1

)

+

(

j

2

)

(m − 1).

Lemma 2
[5] If j ≥ 2, n ≥ j(j + 1)/2 + 2, then Mj+1 < mj .

Lemma 3
[2] Let G ∈ Xj . If m ≥ n ≥ j + 2, then, in the CLD of G, c2n(G) 6= 0.

We distinguish three cases to prove Theorem 1 according to the order of |A|.

Lemma 4 Let s > 1 be an integer. If n and r are integers with

n >

{

s(s − 1), r = 2s,

s2, r = 2s + 1,

then G = Kn,n+r is determined by its CLD. Moreover, the CLD of G satisfies

ci(G) =

{

1
2

(

n
p

)(

n+r
p

)

p[(p − 1)!]2, i = 2p, p = 2, . . . , n;

0, otherwise.

Proof Firstly, we determine the CLD of G = Kn,n+r. Since G = Kn,n+r is a simple bipartite

graph, c1(G) = c2(G) = 0, c2p+1(G) = 0, for p = 1, . . . , n− 1 and ci(G) = 0 for 2n < i ≤ 2n + r.

For any i = 2p (p = 2, . . . , n), Kn,n+r has
(

n
p

)(

n+r
p

)

subgraphs Kp,p of order i, while each Kp,p

has 1
2p[(p − 1)!]2 cycles of length i. Therefore

ci(G) =
1

2

(

n

p

)(

n + r

p

)

p[(p − 1)!]2.

In the following, we will prove that G = Kn,n+r is determined by its CLD by contradiction.
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Clearly, the graphs satisfying the CLD given by the lemma must be bipartite graphs of order

2n + r. Assume that there exists a graph G′ 6= Kn,n+r with the same CLD as G. Then

G′ = Kn,n+r − A, where |A| ≥ 1, or G′ = Kn+k,n+r−k − A, where |A| ≥ 0 and 0 < k ≤ ⌊ r
2⌋.

Case 1 G′ = Kn,n+r − A, |A| ≥ 1. By Lemma l, it is clear that c4(G
′) <

(

n
2

)(

n+r
2

)

= c4(G), a

contradiction.

Case 2 G′ = Kn+k,n+r−k − A, |A| ≥ 0, 0 < k ≤ ⌊ r
2⌋. Let |A| = j. If n + k ≥ j + 2, then

0 ≤ j ≤ k+n−2. By Lemma 3, c2n+2k(G′) 6= 0, which contradicts ci(G) = 0 for all j > 2n. Hence

G′ ∈ {Kn+k,n+r−k−A | |A| = j ≥ n+k−1}. Clearly, c4(G
′) ≤ max|A|=j=n+k−1 c4(Kn+k,n+r−k−

A). By Lemma 1,

c4(G
′) ≤

(

n + k

2

)(

n + r − k

2

)

− (n + k − 1)

(

n + k − 1

1

)(

n + r − k − 1

1

)

+

(

n + k − 1

2

)

(n + r − k − 1)

=

(

n + k

2

)(

n + r − k − 1

2

)

.

If c4(G
′) < c4(G), then we have a desired contradiction. Let

H(k) =

(

n + k

2

)(

n + r − k − 1

2

)

−
(

n

2

)(

n + r

2

)

.

Then, to show that c4(G
′) < c4(G), it suffices to show H(k) < 0. In the following, we will show

that H(k) < 0.

H(k) − H(k − 1) =

(

n + k

2

)(

n + r − k − 1

2

)

−
(

n + k − 1

2

)(

n + r − k

2

)

= (n + k − 1)(n + r − k − 1)(
r

2
− k).

Hence H(k) increases on [1, ⌊ r
2⌋].

If r = 2s, then

H(s) =

(

n + s

2

)(

n + s − 1

2

)

−
(

n

2

)(

n + 2s

2

)

= −1

4
[2(n + s)3 − 2(s2 + 2)(n + s)2 + 2(s2 + 1)(n + s) + s4 − s2].

Let

f(x) = 2x3 − 2(s2 + 2)x2 + 2(s2 + 1)x + s4 − s2.

Now we prove that f(x) > 0 for x > s2. Since

f(s2 + 1) = 2(s2 + 1)3 − 2(s2 + 2)(s2 + 1)2 + 2(s2 + 1)(s2 + 1) + s4 − s2

= s4 − s2 > 0, for ∀s > 1,

to verify that f(x) > 0, it suffices to show that f(x) increases on x > s2. Solving the equation

f ′(x) = 6x2 − 4(s2 + 2)x + 2(s2 + 1) = 0
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gives the solutions

x1,2 =
s2 + 2 ±

√
s4 + s2 + 1

3
.

Clearly, x1, x2 ∈ (0, s2). Hence f ′(x) > 0 if x > s2, that is, f(x) is an increasing function on

x > s2. Therefore, f(n + s) > 0 for n > s(s − 1), that is, H(s) < 0. Since H(k) is an increasing

function on 1 ≤ k ≤ s, H(k) < 0.

If r = 2s + 1, then

H(s) =

(

n + s

2

)(

n + s

2

)

−
(

n

2

)(

n + 2s + 1

2

)

= −1

4
[2(n + s)3 − 2(s2 + s + 1)(n + s)2 + s2(s + 1)2].

Let

f(x) = 2x3 − 2(s2 + s + 1)x2 + s2(s + 1)2.

We prove that f(x) > 0 for x > s2 + s. Since

f(s2 + s + 1) = 2(s2 + s + 1)3 − 2(s2 + s + 1)(s2 + s + 1)2 + s2(s + 1)2

= s2(s + 1)2 > 0, for ∀s > 1,

to verify that f(x) > 0, it suffices to show that f(x) increases on x > s2 +s. Solving the equation

f ′(x) = 6x2 − 4(s2 + s + 1)x = 0

gives the solutions

x1 = 0, x2 =
2(s2 + s + 1)

3
< s2 + s.

Hence f ′(x) > 0 for x > s2 + s, that is, f(x) increases on x > s2 + s. Therefore, f(n + s) > 0 for

n > s2, that is, H(s) < 0. Since H(k) is an increasing function on 1 ≤ k ≤ s, we have H(k) < 0.

2

Lemma 5 Let s > 1 be an integer. If n and r are integers with

n >

{

s(s − 1) + 2, r = 2s

s2 + 2, r = 2s + 1
,

then G = Kn,n+r − A (|A| = 1) is determined by its CLD. Moreover, the CLD of G satisfies

ci(G) =

{

1
2

(

n
p

)(

n+r
p

)

p[(p − 1)!]2 −
(

n−1
p−1

)(

n+r−1
p−1

)

[(p − 1)!]2, i = 2p, p = 2, · · · , n;

0, otherwise.

Proof Firstly, we determine the CLD of G = Kn,n+r − A. Let A = {e} and denote G =

Kn,r−A = Kn,r−e. Since G is a simple bipartite graph, c1 = c2 = 0, c2p+1 = 0 for p = 1, . . . , n−1

and ci = 0 for ∀i > 2n. For i = 2p, p = 2, . . . , n, By Lemma 4,

ci(Kn,n+r) =
1

2

(

n

p

)(

n + r

p

)

p[(p − 1)!]2.

Since Kn,n+r has
(

n − 1

p − 1

)(

n + r − 1

p − 1

)
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subgraphs Kp,p of order i which contain the edge e as an edge, while each Kp,p has [(p − 1)!]2

cycles of length i which contain the edge e, Kn,n+r has
(

n − 1

p − 1

)(

n + r − 1

p − 1

)

[(p − 1)!]2

cycles of length i which contain the edge e. Hence Kn,n+r − e has

ci(G) =
1

2

(

n

p

)(

n + r

p

)

p[(p − 1)!]2 −
(

n − 1

p − 1

)(

n + r − 1

p − 1

)

[(p − 1)!]2

cycles of length i.

In the following, we prove that G is determined by its CLD by contradiction. Suppose

that G′ 6= Kn,r − e is a graph with CLD (c1(G), . . . , c2n+r(G)), then G′ must be a bipartite

graph of order 2n + r. By Lemma 4, G′ 6= Kn,n+r. Hence G′ = Kn,n+r − A, |A| ≥ 2 or

G′ = Kn+k,n+r−k − A, |A| ≥ 0, and k ≤ ⌊ r
2⌋.

Case 1 G′ = Kn,n+r−A, |A| ≥ 2. By Lemma 1, c4(G
′) ≤

(

n
2

)(

n+r
2

)

−2
(

n−1
1

)(

n+r−1
1

)

+(n+r−1).

But c4(G) =
(

n
2

)(

n+r
2

)

−
(

n−1
1

)(

n+r−1
1

)

> c4(G
′), a contradiction.

Case 2 G′ = Kn+k,n+r−k − A, |A| = j ≥ 0, k ≤ ⌊ r
2⌋. With a similar discussion to the Case 2

of Lemma 4, we have

c4(G
′) ≤ max

|A|=j=n+k−1
C4(Kn+k,n+r−k − A)

and

c4(G
′) ≤

(

n + k

2

)(

n + r − k − 1

2

)

.

Let

H(k) =

(

n + k

2

)(

n + r − k − 1

2

)

−
(

n

2

)(

n + r

2

)

+

(

n − 1

1

)(

n + r − 1

1

)

.

If H(k) < 0, then c4(G
′) < c4(G), we have a desired contradiction.

Clearly, the function H(k) defined here differs only a constant from the function H(k) defined

in the proof of Lemma 4, hence we have H(k) increases on k ∈ [1, ⌊ r
2⌋].

If r = 2s, then

H(s) =

(

n + s

2

)(

n + s − 1

2

)

−
(

n

2

)(

n + 2s

2

)

+

(

n − 1

1

)(

n + 2s − 1

1

)

= −1

4
[2(n + s)3 − 2(s2 + 4)(n + s)2 + 2(s2 + 5)(n + s) + s4 + 3s2 − 4].

Hence if H(s) < 0, we have H(k) < 0. Let f(x) = 2x3 − 2(s2 + 4)x2 + 2(s2 + 5)x + s4 + 3s2 − 4.

Solving the equation f ′(x) = 6x2 − 4(s2 + 4)x + 2(s2 + 5) = 0 gives the solutions x1,2 =
s2+4±

√
s4+5s2+1
3 < s2 + 2. Hence f ′(x) > 0 if x > s2 + 2, and f(x) increases on x > s2 + 2. Since

f(s2 + 3) = s4 + 7s2 + 8 > 0, f(x) > 0 if x > s2 + 2. Therefore f(n + s) > 0 if n > s(s− 1) + 2.

The result follows from H(s) = − 1
4f(n + s).
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If r = 2s + 1, then

H(s) =

(

n + s

2

)(

n + s

2

)

−
(

n

2

)(

n + 2s + 1

2

)

+

(

n − 1

1

)(

n + 2s

1

)

= −1

4
[2(n + s)3 − 2(s2 + s + 3)(n + s)2 + 4(n + s) + (s2 + s)(s2 + s + 4)].

Hence if H(s) < 0, we have H(k) < 0. Let f(x) = 2x3 − 2(s2 + s + 3)x2 + 4x + (s2 + s)(s2 +

s + 4). Solving the equation f ′(x) = 6x2 − 4(s2 + s + 3)x + 4 = 0 gives the solutions x1,2 =
s2+s+5±

√
(s2+s+3)2−3

3 < s2 + s + 2. Hence f ′(x) > 0 if x > s2 + s + 2, that is, f(x) increases

on x > s2 + s + 2. Since f(s2 + s + 3) = 4(s2 + s + 3) + (s2 + s)(s2 + s + 4) > 0, f(x) > 0 if

x > s2 + s+2. Therefore f(n+ s) > 0 if n > s2 +2. The result follows from H(s) = − 1
4f(n+ s).

2

Lemma 6 Let s > 1 be an integer. n and r are integers with

n >

{

s(s − 1) + 4, r = 2s

s2 + 4, r = 2s + 1
.

Then G = Kn,n+r − A (|A| = 2) is determined by its CLD.

Proof Since |A| = 2, the subgraphs induced by A in Kn,n+r have three configurations (as shown

in Figure 1), denoted by H1, H2, H3, respectively.

H1
q q

q q

�
�

�
�

�
�

A
A
A
A
A
AH2

q

q q A
A

A
A

A
A

�
�
�
�
�
�

H3
q

q q

Figure 1 Three configurations induced by A

Let Gi = Kn,n+r − E(Hi), i = 1, 2, 3. We prove that each Gi is determined by its CLD.

Firstly, we prove that G1, G2, G3 have different CLDs. It is easy to compute that

c4(G1) =

(

n

2

)(

n + r

2

)

− 2

(

n − 1

1

)(

n + r − 1

1

)

+ 1,

c4(G2) =

(

n

2

)(

n + r

2

)

− 2

(

n − 1

1

)(

n + r − 1

1

)

+ n − 1,

c4(G3) =

(

n

2

)(

n + r

2

)

− 2

(

n − 1

1

)(

n + r − 1

1

)

+ n + r − 1.

Hence c4(G1) < c4(G2) < c4(G3), G1, G2, G3 have different CLDs. Next we prove that G = Gi

is determined by its CLD. Suppose to the contrary that G′ 6= Gi, i = 1, 2, 3 is a graph with

the same CLD as G. Then G′ is a bipartite graph of order 2n + r. By Lemmas 4 and 5,

G′ 6= Kn,n+r−A (|A| = 0, 1). Hence G′ = Kn,n+r−A, |A| ≥ 3 or G′ = Kn+k,n+r−k −A, |A| ≥ 0,

and k ≤ ⌊ r
2⌋.

Case 1 G′ = Kn,n+r − A, |A| ≥ 3. By Lemma 2, c4(G
′) ≤ M3 < m2 ≤ c4(G), a contradiction.
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Case 2 G′ = Kn+k,n+r−k − A, |A| ≥ 0, and k ≤ ⌊ r
2⌋. With a similar discussion to the Case 2

in the proof of Lemma 4, we have

c4(G
′) ≤ max

|A|=j=n+k−1
C4(Kn+k,n+r−k − A)

and

c4(G
′) ≤

(

n + k

2

)(

n + r − k − 1

2

)

.

Since c4(G1) < c4(G2) < c4(G3), to prove that G = Gi is determined by its CLD, it suffices to

prove that c4(G
′) < c4(G1). Let

H(k) =

(

n + k

2

)(

n + r − k − 1

2

)

−
(

n

2

)(

n + r

2

)

+ 2

(

n − 1

1

)(

n + r − 1

1

)

− 1.

Then it suffices to prove that H(k) < 0. Similarly to the proof of Lemma 4, we have H(k)

increases on k ∈ [1, ⌊ r
2⌋]. Hence it suffices to prove that H(⌊ r

2⌋) < 0.

If r = 2s, then

H(s) =

(

n + s

2

)(

n + s − 1

2

)

−
(

n

2

)(

n + 2s

2

)

+ 2

(

n − 1

1

)(

n + 2s − 1

1

)

− 1

= −1

4
[2(n + s)3 − 2(s2 + 6)(n + s)2 + 2(s2 + 9)(n + s) + s4 + 7s2 − 4].

Let

f(x) = 2x3 − 2(s2 + 6)x2 + 2(s2 + 9)x + s4 + 7s2 − 4.

Solving the equation f ′(x) = 6x2−4(s2 +6)x+2(s2 +9) = 0, we have x1,2 = (s2+6)±
√

s4+9s2+9
3 <

s2 + 4. Hence f ′(x) > 0 if x > s2 + 4, that is, f(x) increases on x > s2 + 4. Since f(s2 + 5) =

s4 + 15s2 + 36 > 0, f(n + s) > 0 if n > s(s− 1)+ 4. The result follows from H(s) = − 1
4f(n+ s).

If r = 2s + 1, then

H(s) =

(

n + s

2

)(

n + s

2

)

−
(

n

2

)(

n + 2s + 1

2

)

+ 2

(

n − 1

1

)(

n + 2s

1

)

− 1

= −1

4
[2(n + s)3 − 2(s2 + s + 5)(n + s)2 + 8(n + s) + (s2 + s)(s2 + s + 8) + 4].

Let

f(x) = 2x3 − 2(s2 + s + 5)x2 + 8x + (s2 + s)(s2 + s + 8) + 4.

Solving the equation f ′(x) = 6x2 − 4(s2 + s + 5)x + 8 = 0 gives the solutions x1,2 = ((s2 + s +

5)±
√

(s2 + s + 5)2 − 12)/3 < s2 +s+4. Hence f ′(x) > 0 if x > s2 +s+4, that is, f(x) increases

on x > s2 + s + 4. Since f(s2 + s + 5) = 8(s2 + s + 5) + (s2 + s)(s2 + s + 8)+ 4 > 0, f(n + s) > 0

if n > s2 + 4. The result follows from H(s) = − 1
4f(n + s). 2

Lemma 7 Let s > 1 be an integer. n and r are integers with

n >

{

s(s − 1) + 6, r = 2s;

s2 + 6, r = 2s + 1.

Then G = Kn,n+r − A (|A| = 3) is determined by its CLD.
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Proof Since |A| = 3, the subgraphs induced by A in Kn,n+r have six configurations (as shown

in Figure 2), denoted by H1, H2, H3, H4, H5, H6, respectively.

H1

q

q

q

q

q

q

�
�

�
�

�
��

B
B
B
B
B
BB

H2

q

qq

qq B
B

B
B

B
BB

�
�
�
�
�
��

H3

q

q

q

qq

�
�

�
�

�
��

H4
q

q

q

q

�
�

�
�

�
��

T
T
T
T
T
TTH5

q

qq q T
T

T
T

T
TT

�
�
�
�
�
��

H6
q

q qq

Figure 2 Six configurations induced by A

Let Gi = Kn,n+r − E(Hi), i = 1, 2, 3, 4, 5, 6. We prove that each Gi is determined by its

CLD. It is easy to compute that

c4(G1) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ 3,

c4(G2) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ (n − 1) + 2,

c4(G3) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ (n + r − 1) + 2,

c4(G4) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ (2n + r − 1) − 1,

c4(G5) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ 3(n − 1),

c4(G6) =

(

n

2

)(

n + r

2

)

− 3

(

n − 1

1

)(

n + r − 1

1

)

+ 3(n + r − 1).

Clearly, c4(G1) < c4(G2) < c4(G3) < c4(G4) < c4(G5) < c4(G6). Hence G1, G2, G3, G4, G5, G6

have different CLDs. Suppose that G′ 6= Gi, i = 1, 2, 3, 4, 5, 6 is a graph with the same CLD

as G. Then G′ must be a bipartite graph of order 2n + r. By Lemmas 4, 5 and 6, G′ 6=
Kn,n+r − A (|A| = 0, 1, 2). Hence G′ = Kn,n+r − A, |A| ≥ 4 or G′ = Kn+k,n+r−k − A, |A| ≥ 0,

and k ≤ ⌊ r
2⌋.

Case 1 G′ = Kn,n+r − A, |A| ≥ 4. By Lemma 2, c4(G
′) ≤ M4 < m3 ≤ c4(G), a contradiction.

Case 2 G′ = Kn+k,n+r−k − A, |A| ≥ 0, and k ≤ ⌊ r
2⌋. Similarly to the Case 2 in the proof of

Lemma 4, we have

c4(G
′) ≤ max

|A|=j=n+k−1
C4(Kn+k,n+r−k − A)
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and

c4(G
′) ≤

(

n + k

2

)(

n + r − k − 1

2

)

.

Since c4(G1) < c4(G2) < · · · < c4(G6), to prove that G = Gi is determined by its CLD, it suffices

to show that c4(G
′) < c4(G1). Let

H(k) =

(

n + k

2

)(

n + r − k − 1

2

)

−
(

n

2

)(

n + r

2

)

+ 3

(

n − 1

1

)(

n + r − 1

1

)

− 3.

Hence it suffices to show H(k) < 0. Similarly to Lemma 4, we have H(k) increases on k ∈ [1, ⌊ r
2⌋].

Hence it suffices to show H(⌊ r
2⌋) < 0.

If r = 2s, then

H(s) =

(

n + s

2

)(

n + s − 1

2

)

−
(

n

2

)(

n + 2s

2

)

+ 3

(

n − 1

1

)(

n + 2s − 1

1

)

− 3

= −1

4
[2(n + s)3 − 2(s2 + 8)(n + s)2 + 2(s2 + 13)(n + s) + s4 + 11s2].

Let

f(x) = 2x3 − 2(s2 + 8)x2 + 2(s2 + 13)x + s4 + 11s2.

Solving the equation f ′(x) = 6x2−4(s2+8)x+2(s2+13) = 0, we have x1,2 = (s2+8)±
√

s4+13s2+25
3 <

s2 + 6. Hence f ′(x) > 0 if x > s2 + 6, that is, f(x) increases on x > s2 + 6. Since

f(s2 + 7) = s4 + 23s2 + 84 > 0, f(n + s) > 0 if n > s(s − 1) + 6. The result follows from

H(s) = − 1
4f(n + s).

If r = 2s + 1, then

H(s) =

(

n + s

2

)(

n + s

2

)

−
(

n

2

)(

n + 2s + 1

2

)

+ 3

(

n − 1

1

)(

n + 2s

1

)

− 3

= −1

4
[2(n + s)3 − 2(s2 + s + 7)(n + s)2 + 12(n + s) + (s2 + s)(s2 + s + 12) + 12].

Let

f(x) = 2x3 − 2(s2 + s + 7)x2 + 12x + (s2 + s)(s2 + s + 12) + 12.

Solving the equation f ′(x) = 6x2−4(s2+s+7)x+12 = 0, we have x1,2 =
(s2+s+7)±

√
(s2+s+7)2−18

3 <

s2 + s + 6. Hence f ′(x) > 0 if x > s2 + s + 6, that is, f(x) increases on x > s2 + s + 6. Since

f(s2 + s + 7) = 12(s2 + s + 7) + (s2 + s)(s2 + s + 12) + 12 > 0, f(n + s) > 0 if n > s2 + 6. The

result follows from H(s) = − 1
4f(n + s). 2

Theorem 1 follows directly from Lemmas 4, 5, 6 and 7.
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