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Abstract Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces. We

denote by M(D,E,F ) a 3×3 upper triangular operator matrix acting on H1 ⊕ H2 ⊕ H3 of the

form M(D,E,F )=









A D E

0 B F

0 0 C









. For given A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3), the sets

⋃

D,E,F
σp(M(D,E,F )),

⋃

D,E,F
σr(M(D,E,F )),

⋃

D,E,F
σc(M(D,E,F )) and

⋃

D,E,F
σ(M(D,E,F )) are

characterized, where D ∈ B(H2, H1), E ∈ B(H3, H1), F ∈ B(H3, H2) and σ(·), σp(·), σr(·), σc(·)

denote the spectrum, the point spectrum, the residual spectrum and the continuous spectrum,

respectively.
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1. Introduction

Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces, and let B(Hi, Hj)

(i, j = 1, 2, 3) denote the Banach space of all bounded linear operators from Hi to Hj , and ab-

breviate B(Hi, Hi) to B(Hi). If T ∈ B(Hi, Hj), write T ∗ for the conjugate of T , R(T ) for the

range space of T and N(T ) for the null space of T . n(T ) and d(T ) denote, respectively, the

dimension of N(T ) and N(T ∗), i.e., n(T ) = dimN(T ), d(T ) = dimN(T ∗). For T ∈ B(Hi), if

R(T ) is closed and d(T ) < ∞, then T is called a lower (right) semi-Fredholm operator and T ∗

is called an upper (left) semi-Fredholm operator. When A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3)

are given, we denote by M(D,E,F ) a 3×3 upper triangular operator matrix of the form







A D E

0 B F

0 0 C






: H1 ⊕ H2 ⊕ H3 −→ H1 ⊕ H2 ⊕ H3,
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where D ∈ B(H2, H1), E ∈ B(H3, H1) and F ∈ B(H3, H2) are arbitrary. For convenience, when

A ∈ B(H1) and B ∈ B(H2) are given, we denote by MD a 2×2 upper triangular operator matrix
(

A D

0 B

)

∈ B(H1 ⊕ H2), where D ∈ B(H2, H1) is arbitrary.

We denote the complex number by λ, the identity operator by I and complex number field

by C. Let X be a Hilbert space. For T ∈ B(X), the lower Fredholm spectrum of T is defined

as σle(T ) = {λ : T − λI is not a lower semi-Fredholm operator}; the resolvent set ρ(T ) and

the spectrum σ(T ) of T are defined by ρ(T ) = {λ : N(T − λI) = {0}, R(T − λI) = X};

σ(T ) = C\ρ(T ). Furthermore, the spectrum σ(T ) is classified by two different forms. The one

form: the spectrum σ(T ) is classified to the defect spectrum σδ(T ) and the approximate point

spectrum σap(T ), and we define them by the forms

σδ(T ) = {λ : T − λI is not surjective},

σap(T ) = {λ : there exists xn ∈ X, ‖xn‖ = 1 such that ‖(T − λI)xn‖ → 0 (n → ∞)}.

It is not hard to find that λ 6∈ σap(T )(σδ(T )) is equivalent to T −λI is left (right) invertible and

σδ(T ) ∪ σap(T ) = σ(T ). The other form: the spectrum σ(T ) is classified by the point spectrum

σp(T ), the residual spectrum σr(T ) and the continuous spectrum σc(T ), and we define them by

σp(T ) = {λ : T − λI is not injective},

σr(T ) = {λ : T − λI is injective, R(T − λI) 6= X},

σc(T ) = {λ : T − λI is injective, R(T − λI) = X , and R(T − λI) 6= X}.

We know that operator matrix is a matrix with operators as its entries and the partial

operator matrix is a operator matrix, in which some entries are known and others are unknown.

In the process of studying the partial operator matrix

(

A D

? B

)

, Li[1] induced the definition

of the possible spectrum, and called
⋃

X∈B(H1,H2) σ(

(

A D

X B

)

) the possible spectrum of this

partial operator matrix. In this paper, for the partial operator matrix M =







A ? ?

0 B ?

0 0 C






,

⋃

D,E,F σ(M(D,E,F )) is called the possible spectrum of M . Similarly, we also define the possible

point spectrum
⋃

D,E,F σp(M(D,E,F )), the possible residual spectrum
⋃

D,E,F σr(M(D,E,F )) and

the possible continuous spectrum
⋃

D,E,F σc(M(D,E,F )) of M , respectively.

The complementarity problems for the partial operator matrix is very important in operator

theory. Recently, this problem, motivated by interpolation theory and control theory, has been

studied in a variety of directions by a number of authors, and the spectral complementarity prob-

lem is an important direction. The spectral complementarity problem is to study the spectrum

of completion of the partial operator matrix, the spectrum distribution and so on. As is known to

all, if T is a bounded linear operator on a Hilbert space and has a nontrivial invariant subspace,

then T can be decomposed to the form of 2×2 upper triangular operator matrix, so the 2×2 up-

per triangular operator matrix is studied by a number of authors. For example, when A ∈ B(H1)

and B ∈ B(H2) are given, the intersection of spectrum of MD was obtained in [2]. After that,
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many authors studied the intersection of a variety spectra of MD (see [3-7] and the references

therein). Furthermore, the 3×3 operator matrix is studied by numerous authors. Such as, in

[8], the author studied the invertibility of 3×3 operator matrix appearing in the linear-quadratic

optimal control problem in a Hilbert space. In [9], the author gave the necessary and sufficient

condition for M(D,E,F ) to be an upper (lower) semi-Fredholm operator for some D, E, F . On

this basis, in this paper, we characterize the possible spectrum, the possible point spectrum, the

possible residual spectrum and the possible continuous spectrum of M .

2. Preliminaries

We first review some basic knowledge about linear operator and its spectra theory, and next

prove some Lemmas and Corollaries.

Lemma 1[3] There exists D ∈ B(H2, H1) such that 2 × 2 operator matrix MD is left invertible

if and only if A is left invertible and
{

n(B) ≤ d(A), if R(B) is closed,

d(A) = ∞, if R(B) is not closed.

Lemma 2[10] Let X be a linear space, and let X1 be a linear subspace of X . Then there exists

a linear subspace X2 of X such that X1 ∩ X2 = {0} and X = X1 + X2.

Lemma 3[11] Let X and Y be Banach spaces, T ∈ B(X, Y ), and let F ⊂ Y be a finite

dimensional subspace. If R(T ) + F is closed, then R(T ) is closed too.

Corollary 1 Let X and Y be Banach spaces, T ∈ B(X, Y ). If R(T ) is not closed, then there

exists an infinite dimensional subspace M ⊂ R(T ) such that M ∩ R(T ) = {0} and R(T ) + M =

R(T ).

Proof Since R(T ) and R(T ) are linear spaces and R(T ) ⊂ R(T ), there exists a linear subspace

M of R(T ) such that M ∩R(T ) = {0} and R(T )+ M = R(T ), by Lemma 2. At that time, M is

infinite dimensional. Otherwise, suppose that M is finite dimensional. Since R(T ) + M = R(T )

is closed, R(T ) is closed, by Lemma 3, leading to a contradiction. 2

Lemma 4 Let A ∈ B(H1) and B ∈ B(H2) be given operators, and let R(A) be closed. If there

exists D ∈ B(H2, H1) such that 0 /∈ σp(MD), then n(B) ≤ d(A).

Proof Suppose n(B) > d(A). For any D ∈ B(H2, H1), if N(B)∩N(D) 6= {0}, then MD(0⊕y) =

0 for any nonzero y ∈ N(B) ∩ N(D); if N(B) ∩ N(D) = {0}, then dimDN(B) = dimN(B) =

n(B) > d(A). Since R(A) is closed, DN(B) ∩ R(A) 6= {0}. Take 0 6= z ∈ DN(B) ∩ R(A). Then

there exist nonzero x ∈ H1 and y ∈ N(B) such that Ax = −Dy = z, thus MD(x⊕ y) = 0, which

means that 0 ∈ σp(MD) for every D ∈ B(H2, H1). It is a contradiction. 2

Lemma 5 Let A ∈ B(H1) and B ∈ B(H2) be given operators, and let R(A) be closed and

n(B) = d(A) < ∞. For any D ∈ B(H2, H1), if N(B) ∩ N(D) = {0} and DN(B) ∩ R(A) = {0},
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then D3 = PR(A)⊥DPN(B) as an operator from N(B) into R(A)⊥ is invertible, where PR(A)⊥ is

the orthogonal projection onto R(A)⊥ and PN(B) is the orthogonal projection onto N(B).

Proof Denote n(B) = d(A) = n. It follows from N(B) ∩ N(D) = {0} that dimDN(B) =

n(B) = n < ∞. Let {zi}
n
i=1 be an orthogonal basis of DN(B). Since R(A) is closed, zi has

unique decomposition of the form zi = xi+yi, xi ∈ R(A), yi ∈ R(A)⊥. Take arbitrary {αi}
n
i=1. If

∑n

i=1 αiyi = 0, then
∑n

i=1 αizi ∈ DN(B) ∩ R(A) = {0}, so αi = 0 (i = 1, , 2, . . . , n). Therefore,

there exists a sequence {βi}
n
i=1 such that

∑n

i=1 βiyi = y, for every y ∈ R(A)⊥. However,

y +
∑n

i=1 βixi =
∑n

i=1 βizi ∈ DN(B), i.e., there exists x ∈ N(B) such that Dx =
∑n

i=1 βizi.

Hence D3x = y. Consequently, D3 is surjective. Also by n(B) = d(A) < ∞, D3 is invertible. 2

Lemma 6 Let A ∈ B(H1) and B ∈ B(H2) be given operators, and let A be a left invertible

operator, n(B) ≤ d(A) < ∞. If there exists D ∈ B(H2, H1) such that MD is injective, then

d(MD) =

{

d(B), if d(A) = n(B),

d(A) + d(B) − n(B), if R(B), is closed.

And in the case when R(B) is closed, R(MD) is closed too.

Proof If n(B) = d(A) < ∞, it follows from the injectivity of MD that DN(B) ∩ R(A) =

N(D) ∩ N(B) = {0}, and by Lemma 5, PR(A)⊥DPN(B) as an operator from N(B) into R(A)⊥

is invertible. Since A is left invertible, MD has the following operator matrix






A1 D1 D2

0 D3 D4

0 0 B1






: H1 ⊕ N(B) ⊕ N(B)⊥ → R(A) ⊕ R(A)⊥ ⊕ H2. (2.1)

Clearly, A1 and D3 are invertible. Hence there exists an invertible operator V ∈ B(H1 ⊕ H2)

such that






A1 D1 D2

0 D3 D4

0 0 B1






V =







A1 0 0

0 D3 0

0 0 B1






.

Therefore d(MD) = d(B1) = d(B).

If R(B) is closed, then B1 in (2.1) is left invertible. Since A1 is invertible, there are invertible

operators U and V in B(H1 ⊕ H2) such that

U







A1 D1 D2

0 D3 D4

0 0 B1






V =







A1 0 0

0 D3 0

0 0 B1






. (2.2)

Because MD is injective, D3 is injective. So dimR(D3) = n(B) < ∞. Therefore R(MD) is closed,

and it is easy to see that d(MD) = d(D3) + d(B1) = d(A) + d(B) − n(B). 2

Lemma 7 Let H be a Hilbert space and A ∈ B(H). Then λ ∈ σc(A) if and only if λ̄ ∈ σc(A
∗).

Lemma 8 Let A ∈ B(H1) and B ∈ B(H2) be given, and let A be left invertible, B be right
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invertible and d(A) = n(B) = ∞. Then there exists D ∈ B(H2, H1) such that 0 ∈ σc(MD).

Proof Suppose that {gi}
∞
i=1 and {fi}

∞
i=1 are orthogonal bases of N(B) and R(A)⊥. We define

an operator J : N(B) −→ R(A)⊥ by J(gi) = 1
i
fi (i = 1, 2, . . .) and take

D =

(

0 0

J 0

)

: N(B) ⊕ N(B)⊥ −→ R(A) ⊕ R(A)⊥.

It is not hard to show that 0 ∈ σc(MD). 2

3. Main results

Theorem 1 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators. Then
⋃

D,E,F

σ(M(D,E,F )) = σ(A) ∪ σ(B) ∪ σ(C),

⋃

D,E,F

σp(M(D,E,F )) = σp(A) ∪ σp(B) ∪ σp(C).

Proof Suppose that there exist D, E, F such that λ ∈ σp(M(D,E,F )). Hence there exists a

nonzero vector x ⊕ y ⊕ z ∈ H1 ⊕ H2 ⊕ H3 such that










(A − λI)x + Dy + Ez = 0,

(B − λI)y + Fz = 0,

(C − λI)z = 0.

Obviously, if z 6= 0, then λ ∈ σp(C); if z = 0, y 6= 0, then λ ∈ σp(B); if y = z = 0, x 6= 0, then

λ ∈ σp(A), it follows that λ ∈ σp(A) ∪ σp(B) ∪ σp(C).

Next, suppose that there exist D, E, F such that λ ∈ σ(M(D,E,F )). To see this, if not, then

λ ∈ ρ(A)∩ρ(B)∩ρ(C). Aλ ∈ B(H1), Bλ ∈ B(H2) and Cλ ∈ B(H3) denote the inverse of A−λI,

B − λI and C − λI, respectively. It is easy to show that






Aλ −AλDBλ −AλECλ + AλDBλFCλ

0 Bλ −BλFCλ

0 0 Cλ






∈ B(H1 ⊕ H2 ⊕ H3)

is the inverse of M(D,E,F ) − λI, which is a contradiction. Therefore λ ∈ σ(A) ∪ σ(B) ∪ σ(C).

Conversely, assume that λ ∈ σ(A) ∪ σ(B) ∪ σ(C) or λ ∈ σp(A) ∪ σp(B) ∪ σp(C). Take

D = E = F = 0, then λ ∈ σ(M(D,E,F )) or λ ∈ σp(M(D,E,F )). This completes the proof. 2

The following two theorems are the main results in this paper.

Theorem 2 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators. Then
⋃

D,E,F

σr(M(D,E,F )) = △1 ∪△2 ∪△3, (3.1)

where

△1 ={λ ∈ σle(A) : λ /∈ σp(A), max{d(A − λI), d(B − λI), d(C − λI)} > 0},

△2 ={λ ∈ σle(B) : λ /∈ σp(A), λ /∈ σle(A), n(B − λI) ≤ d(A − λI),
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n(B − λI) < d(A − λI) + d(B − λI) + d(C − λI)},

△3 ={λ /∈ σp(A) : λ /∈ σle(A), λ /∈ σle(B), n(B − λI) ≤ d(A − λI),

n(B − λI) + n(C − λI) ≤ d(A − λI) + d(B − λI),

n(B − λI) + n(C − λI) < d(A − λI) + d(B − λI) + d(C − λI)}.

Proof Let {g
(1)
i }

n(B)
i=1 , {g

(2)
i }

n(C)
i=1 , {f

(1)
i }

d(A)
i=1 and {f

(2)
i }

d(B)
i=1 be orthogonal bases of N(B), N(C),

R(A)⊥ and R(B)⊥, respectively. If R(A) and R(B) are not closed, then by Corollary 1 there exist

infinite dimensional spaces M ⊂ R(A) and N ⊂ R(B) such that M ∩ R(A) = N ∩ R(B) = {0}.

{hi}
∞
i=1 and {h

(1)
i }∞i=1 denote orthogonal bases of M and N , respectively. For convenience, we

first show three propositions:

Proposition 1 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators, where A is not

a lower semi-Fredholm operator. Then there exist D, E, F such that 0 ∈ σr(M(D,E,F )) if and

only if A is injective and max{d(A), d(B), d(C)} > 0.

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σr(M(D,E,F )). It is clear

that A is injective and 0 ∈ σp((M(D,E,F ))
∗), thus 0 ∈ σp(A

∗) ∪ σp(B
∗) ∪ σp(C

∗) by Theorem 1.

Therefore max{d(A), d(B), d(C)} > 0.

Sufficiency. Because A is not a lower semi-Fredholm operator, R(A) is not closed or d(A) =

∞. If R(A) is not closed, set F = 0,
{

D(g
(1)
i ) = h2i−1, i = 1, 2, . . . , n(B),

D(y) = 0, y ∈ N(B)⊥,

{

E(g
(2)
i ) = h2i, i = 1, 2, . . . , n(C),

E(y) = 0, y ∈ N(C)⊥.

Clearly, M(D,E,F ) is injective. Since max{d(A), d(B), d(C)} > 0, R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3.

Hence 0 ∈ σr(M(D,E,F )).

If d(A) = ∞, put F = 0,
{

D(g
(1)
i ) = f2i+1, i = 1, 2, . . . , n(B),

D(y) = 0, y ∈ N(B)⊥,

{

E(g
(2)
i ) = f2i, i = 1, 2, . . . , n(C),

E(y) = 0, y ∈ N(C)⊥.

Clearly, M(D,E,F ) is injective and R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. The proof is completed. 2

Proposition 2 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given, where A is a lower semi-

Fredholm operator, B is not a lower semi-Fredholm operator. Then there exist D, E, F such

that 0 ∈ σr(M(D,E,F )) if and only if A is injective, d(A) ≥ n(B) and d(A)+d(B)+d(C) > n(B).

Proof Necessity. Assume that there exist D, E, F such that 0 ∈ σr(M(D,E,F )). Since M(D,E,F ) is

injective, A and MD are injective. Because A is a lower semi-Fredholm operator, n(B) ≤ d(A) <
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∞ by Lemma 4. If d(A) > n(B), it is obvious that d(A) + d(B) + d(C) > n(B); if d(A) = n(B),

then d(MD) = d(B), by Lemma 6. On the other hand, R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3, i.e.,

d(MD) + d(C) = d(B) + d(C) > 0, Therefore d(A) + d(B) + d(C) > n(B).

Sufficiency. Because B is not a lower semi-Fredholm operator, R(B) is not closed or d(B) =

∞. If R(B) is not closed, set E = 0 and
{

D(g
(1)
i ) = f

(1)
i , i = 1, 2, . . . , n(B),

D(y) = 0, y ∈ N(B)⊥,
(3.2)

{

F (g
(2)
i ) = h

(1)
i , i = 1, 2, . . . , n(C),

F (y) = 0, y ∈ N(C)⊥.

Clearly, M(D,E,F ) is injective. Because d(A) ≥ n(B) and d(A)+d(B)+d(C) > n(B), R(M(D,E,F )) 6=

H1 ⊕ H2 ⊕ H3. Therefore 0 ∈ σr(M(D,E,F )).

If d(B) = ∞, define D as (3.2), take E = 0 and put
{

F (g
(2)
i ) = f

(2)
i+1, i = 1, 2, . . . , n(C),

F (y) = 0, y ∈ N(C)⊥.

Clearly, M(D,E,F ) is injective and R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. The proof is completed. 2

Proposition 3 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given, and let A and B be lower

semi-Fredholm operators. Then there exist D, E, F such that 0 ∈ σr(M(D,E,F )) if and only if A

is injective, d(A) ≥ n(B), d(A) + d(B) ≥ n(B) + n(C) and d(A) + d(B) + d(C) > n(B) + n(C).

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σr(M(D,E,F )). In the

similar way to the proof of Proposition 2, we can prove that A and MD are injective and

n(B) ≤ d(A) < ∞. Since A and B are lower semi-Fredholm operators, it follows that R(MD)

is closed and d(MD) = d(A) + d(B) − n(B) < ∞, by Lemma 6. From Lemma 4 we obtain that

d(MD) ≥ n(C), i.e., d(A) + d(B) ≥ n(B) + n(C). If d(A) + d(B) > n(B) + n(C), it is obvious

that d(A) + d(B) + d(C) > n(B) + n(C); if d(A) + d(B) = n(B) + n(C), i.e., d(MD) = n(C),

then d(M(D,E,F )) = d(C), by Lemma 6. On the other hand, R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3,

d(C) = d(M(D,E,F )) > 0, hence d(A) + d(B) + d(C) > n(B) + n(C).

Sufficiency. We define D as (3.2). If d(B) ≥ n(C), set E = 0,
{

F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . , n(C),

F (y) = 0, y ∈ N(C)⊥.

If d(B) < n(C), since A and B are lower semi-Fredholm, d(A) and d(B) are finite. Also by

d(A) + d(B) ≥ n(B) + n(C), we obtain d(A) − n(B) ≥ n(C) − d(B). Therefore set
{

E(g
(2)
i+d(B)) = f

(1)
i+n(B), i = 1, 2, . . . , n(C) − d(B),

E(y) = 0, y⊥{g
(2)
i }

n(C)
i=1+d(B),

{

F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . , d(B),

F (y) = 0, y⊥{g
(2)
i }

d(B)
i=1 .
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Clearly, M(D,E,F ) is injective. Because d(A) + d(B) ≥ n(B) + n(C) and d(A) + d(B) + d(C) >

n(B) + n(C), R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. The proof is completed. 2

Now we prove Theorem 2.

The right side of (3.1) includes the left side. Suppose that there exist D, E, F such that

λ ∈ σr(M(D,E,F )). If A−λI is not a lower semi-Fredholm operator, then λ ∈ △1 by Proposition

1; if A−λI is a lower semi-Fredholm operator and B−λI is not a lower semi-Fredholm operator,

then, by Proposition 2, λ ∈ △2; if A − λI and B − λI are lower semi-Fredholm operators, then

λ ∈ △3 by Proposition 3.

The left side of (3.1) includes the right side. If λ ∈ △1 ∪△2 ∪△3, then there exist D, E, F

such that λ ∈ σr(M(D,E,F )) by the Propositions above. This ends the proof. 2

Therorem 3 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given. Then

⋃

D,E,F

σc(M(D,E,F )) = △4 ∪△5 ∪△6 ∪△7. (3.3)

where

△4 = {λ /∈ σp(A) : R(A − λI) and R(C − λI) are not closed, R(C − λI) = H3},

△5 = {λ /∈ σp(A) ∩ σδ(C) : d(B − λI) ≤ n(C − λI), R(A − λI), R(B − λI) are not closed}

∪ {λ /∈ σp(A) ∩ σδ(C) : d(B − λI) ≤ n(C − λI), R(A − λI) is not closed, R(B − λI)

is closed, n(B − λI) + n(C − λI) ≥ d(A − λI) + d(B − λI)},

△6 = {λ /∈ σap(A) : R(B − λI), R(C − λI) are not closed,

R(C − λI) = H3, d(A − λI) ≥ n(B − λI)}

∪ {λ /∈ σap(A) : R(B − λI) is closed, R(C − λI) is not closed, d(A− λI) ≥ n(B − λI),

R(C − λI) = H3, n(B − λI) + n(C − λI) ≤ d(A − λI) + d(B − λI)},

△7 = {λ /∈ σap(A) ∩ σδ(C) : R(B − λI) is not closed,

d(A − λI) ≥ n(B − λI), n(C − λI) ≥ d(B − λI)}

∪ {λ /∈ σap(A) ∩ σδ(C) : R(B − λI) is closed,

d(A − λI) ≥ n(B − λI), n(C − λI) ≥ d(B − λI),

max{d(A − λI), d(B − λI)} = max{n(C − λI), n(B − λI)} = ∞}.

Proof Let {g
(1)
i }

n(B)
i=1 , {g

(2)
i }

n(C)
i=1 , {f

(1)
i }

d(A)
i=1 and {f

(2)
i }

d(B)
i=1 be orthogonal bases of N(B), N(C),

R(A)⊥ and R(B)⊥. Before proving Theorem 3, we first give four propositions:

Proposition 4 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators, and let R(A)

and R(C) be not closed. Then there exist D, E, F such that 0 ∈ σc(M(D,E,F )) if and only if A

is injective and R(C) = H3.

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). Thus M(D,E,F )

is injective and R(M(D,E,F )) = H1 ⊕ H2 ⊕ H3, hence A is injective and R(C) = H3.

Sufficiency. Since R(A) and R(C) are not closed, there exist infinite dimensional spaces

M ⊂ R(A) and N ⊂ R(C∗) = N(C)⊥ such that R(A) ∩ M = R(C∗) ∩ N = {0} by Corollary 1.

Let {h
(1)
i }∞i=1 and {h

(2)
i }∞i=1 denote orthogonal bases of M and N . Next, we split the proof into
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several cases.

Case 1 If n(B) > d(A) and n(C) > d(B), put










D(g
(1)
i ) = f

(1)
i , i = 1, 2, . . . , d(A),

D(g
(1)
i+d(A)) = h

(1)
2i−1, i = 1, 2, . . . , n(B) − d(A),

D(y) = 0, y ∈ N(B)⊥,

(3.4)

{

E(g
(2)
i+d(B)) = h

(1)
2i , i = 1, 2, . . . , n(C) − d(B),

E(y) = 0, y⊥{g
(1)
i }

n(C)
i=d(B)+1,

(3.5)

{

F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . , d(B),

F (y) = 0, y⊥{g
(2)
i }

d(B)
i=1 .

(3.6)

Case 2 If n(B) > d(A) and n(C) < d(B), define D as (3.4), set E = 0 and










F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . , n(C),

F (h
(2)
2i ) = f

(2)
n(C)+i

, i = 1, 2, . . . , d(B) − n(C),

F (y) = 0, y ∈ N(C)⊥ and y⊥{h
(2)
2i }

d(B)−n(C)
i=1 .

(3.7)

Case 3 If n(B) < d(A) and n(C) > d(B), define F as (3.6) and set
{

D(g
(1)
i ) = f

(1)
i , i = 1, 2, . . . , n(B),

D(y) = 0, y ∈ N(B)⊥,
(3.8)















E(g
(2)
i+d(B)) = h

(1)
i , i = 1, 2, . . . , n(C) − d(B),

E(h
(2)
i ) = f

(1)
n(B)+i

, i = 1, 2, . . . , d(A) − n(B),

E(y) = 0, y⊥{g
(2)
i }

n(C)
i=d(B)+1 and y⊥{h

(2)
i }

d(A)−n(B)
i=1 .

Clearly, M(D,E,F ) and (M(D,E,F ))
∗ are injective. Since R(C) is not closed, R(M(D,E,F )) 6=

H1 ⊕ H2 ⊕ H3. Therefore 0 ∈ σc(M(D,E,F )).

Case 4 If n(B) = d(A) and n(C) = d(B), define D, F as (3.8), (3.6) and take E = 0; if

n(B) = d(A) and n(C) > d(B), define D, E and F as (3.8), (3.5) and (3.6); If n(B) = d(A) and

n(C) < d(B), define D, F as (3.8), (3.7), and take E = 0. In the similar way to the above, we

obtain 0 ∈ σc(M(D,E,F )).

Case 5 If n(B) < d(A) and n(C) < d(B) or n(B) 6= d(A) and n(C) = d(B), in the similar way

to Cases 1 and 4, we can show that there exist D∗, E∗, F ∗ such that 0 ∈ σc((M(D,E,F ))
∗). It

follows from Lemma 7 that 0 ∈ σc(M(D,E,F )). The proof is completed. 2

Proposition 5 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators, and let R(A)

be closed, R(B) and R(C) be not closed. Then there exist D, E, F such that 0 ∈ σc(M(D,E,F ))

if and only if A is injective, R(C) = H3 and d(A) ≥ n(B).

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). From the proof

of Proposition 4, A is injective and R(C) = H3. It follows from the injectivity of M(D,E,F ) that

MD is injective, and from the closeness of R(A) and Lemma 4, we can prove that d(A) ≥ n(B).
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Sufficiency. Since R(B) and R(C) are not closed, there exist infinite dimensional spaces

M ⊂ R(B) and N ⊂ R(C∗) = N(C)⊥ such that R(B) ∩ M = R(C∗) ∩ N = {0} by Corollary 1.

{h
(1)
i }∞i=1 and {h

(2)
i }∞i=1 denote orthogonal bases of M and N . If d(A) = n(B) and d(B) ≥ n(C),

from the proof of Proposition 4, we get that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). If

d(A) > n(B) and d(B) < n(C), define D as (3.8) and set
{

E(h
(2)
2i−1) = f

(1)
n(B)+i

, i = 1, 2, . . . , d(A) − n(B),

E(y) = 0, y⊥{h
(2)
2i−1}

d(A)−n(B)
i=1 ,

(3.9)











F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . , d(B),

F (g
(2)
i+d(B)) = h

(1)
i , i = 1, 2, . . . , n(C) − d(B)),

F (y) = 0, y ∈ N(C)⊥.

(3.10)

If d(A) > n(B) and d(B) > n(C), define D, E and F as (3.8), (3.9) and (3.7); if d(A) > n(B)

and d(B) = n(C), define D, E and F as (3.8), (3.9) and (3.6); if d(A) = n(B) and d(B) < n(C),

define D, F as (3.8), (3.10) and take E = 0. Clearly, M(D,E,F ) and (M(D,E,F ))
∗ are injective.

Since R(C) is not closed, R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. The proof is completed. 2

Proposition 6 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given operators, and let R(A)

and R(B) be closed, R(C) be not closed. Then there exist D, E, F such that 0 ∈ σc(M(D,E,F ))

if and only if A is injective, R(C) = H3, d(A) ≥ n(B) and d(A) + d(B) ≥ n(B) + n(C).

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). It follows from

the proof of Proposition 5 that A is injective, R(C) = H3 and d(A) ≥ n(B). Now we will show

that d(A) + d(B) ≥ n(B) + n(C). Without loss of generality, we suppose that d(A) < ∞ and

d(B) < ∞. By Lemma 6, R(MD) is closed and d(MD) = d(A) + d(B) − n(B). Again, from

Lemma 4 we obtain that d(MD) ≥ n(C), i.e., d(A) + d(B) ≥ n(C) + n(B).

Sufficiency. Since R(C) is not closed, by Corollary 1 there exists an infinite dimensional

subspace N ⊂ R(C∗) = N(C)⊥ such that R(C∗) ∩ N = {0}. Let {h
(2)
i }∞i=1 be an orthogonal

basis of N . If d(A) > n(B) and d(B) ≥ n(C) or d(A) = n(B) and d(B) ≥ n(C), from the proof of

Proposition 5 we can show that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). If d(A) > n(B)

and d(B) < n(C), define D and F as (3.8) and (3.6). Since d(A) + d(B) ≥ n(C) + n(B), i.e.,

d(A) − n(B) ≥ n(C) − d(B), in the case when d(A) − n(B) = n(C) − d(B), we set
{

E(g
(2)
d(B)+i

) = f
(1)
n(B)+i

, i = 1, 2, . . . , n(C) − d(B),

E(y) = 0, y⊥{g
(2)
i }

n(C)
i=d(B)+1.

In the case when d(A) − n(B) > n(C) − d(B), denote k = d(A) + d(B) − n(B) − n(C) and set














E(g
(2)
d(B)+i

) = f
(1)
n(B)+i

, i = 1, 2, . . . , n(C) − d(B),

E(h
(2)
i ) = f

(1)
d(A)−k+i

, i = 1, 2, . . . , k,

E(y) = 0, y⊥{h
(2)
i }k

i=1 and y⊥{g
(2)
i }

n(C)
i=d(B)+1.

Clearly, M(D,E,F ) and (M(D,E,F ))
∗ are injective. Since R(C) is not closed, it follows that

R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. Therefore 0 ∈ σc(M(D,E,F )). The proof is completed. 2
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Proposition 7 Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3) be given, and let A be left invertible

and C be right invertible. Then there exist D, E, F such that 0 ∈ σc(M(D,E,F )) if and only if











d(B) ≤ n(C), d(A) ≥ n(B), if R(B) is not closed,

d(B) ≤ n(C), d(A) ≥ n(B),

max{d(A), d(B)} = max{n(C), n(B)} = ∞,
if R(B) is closed.

Proof Necessity. Suppose that there exist D, E, F such that 0 ∈ σc(M(D,E,F )), thus MD is

injective. Since A is left invertible, d(A) ≥ n(B) by Lemma 4. Again, from 0 ∈ σc(M(D,E,F ))

we get that 0 ∈ σc((M(D,E,F ))
∗). In the similar way we can prove that d(C∗) ≥ n(B∗), i.e.,

n(C) ≥ d(B).

If R(B) is closed, then max{d(A), d(B)} = max{n(C), n(B)} = ∞. To see this, if not,

suppose that max{d(A), d(B)} < ∞ or max{n(C), n(B)} < ∞. If max{d(A), d(B)} < ∞, then

R(MD) is closed and d(MD) = d(A) + d(B)− n(B) < ∞ by Lemma 6. It follows from Lemma 4

that n(C) ≤ d(MD) < ∞. Since C is right invertible and MD is left invertible, R(M(D,E,F )) is

closed, by Lemma 6. Therefore 0 6∈ σc(M(D,E,F )); if max{n(B), n(C)} < ∞, in the similar way

to the proof above, we can show that 0 6∈ σc(M(D,E,F )). It is a contradiction.

Sufficiency. First assume that R(B) is not closed. By Corollary 1 there exist infinite di-

mensional spaces M ⊂ R(B) and N ⊂ R(B∗) such that R(B) ∩ M = R(B∗) ∩ N = {0}. Let

{h
(1)
i }∞i=1 and {h

(2)
i }∞i=1 be orthogonal bases of M and N . When d(A) = n(C) = ∞, there

exists D such that MD is left invertible by Lemma 1. Since R(B) is not closed, d(MD) =

dimH1 ⊕ H2/R(MD) ≥ dimH2/R(B) = ∞ (where H1 ⊕ H2/R(MD) and H2/R(B) denote quo-

tient spaces), also by Lemma 8 there exist E, F such that 0 ∈ σc(M(D,E,F )). Without loss of

generality, assume that d(A) < ∞ or n(C) < ∞.

If d(A) = n(B) and d(B) ≤ n(C), in the similar way to the proof of Propositions 4 and

5, we can prove that there exist D, E, F such that 0 ∈ σc(M(D,E,F )). If d(A) > n(B) and

d(B) < n(C), define F as (3.10) and set E = 0,










D(g
(1)
i ) = f

(1)
i , i = 1, 2, . . . , n(B),

D(h
(2)
i ) = f

(1)
n(B)+i

, i = 1, 2, . . . , d(A) − n(B),

D(y) = 0, y ∈ N(B)⊥ and y⊥{h
(2)
i }

d(A)−n(B)
i=1 .

(3.11)

If d(A) > n(B) and d(B) = n(C), define D, F as (3.11), (3.6) and take E = 0. Clearly, M(D,E,F )

and (M(D,E,F ))
∗ are injective. If d(A) < ∞, since R(B) is not closed, therefore MD is not

left invertible, by Lemma 1. Hence R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. Otherwise, suppose that

R(M(D,E,F )) = H1 ⊕H2 ⊕H3. Then it follows from the injectivity of M(D,E,F ) that M(D,E,F ) is

invertible. It is in contradiction to the fact that MD is not left invertible; Similarly, if n(C) < ∞,

we can show that R(M(D,E,F )) 6= H1 ⊕ H2 ⊕ H3. Therefore 0 ∈ σc(M(D,E,F )).

Next assume that R(B) is closed, so max{d(A), d(B)} = max{n(C), n(B)} = ∞. If d(A) =

n(B) and d(B) = n(C), then d(A) = n(B) = d(B) = n(C) = ∞. Set
{

F (g
(2)
i ) = f

(2)
i , i = 1, 2, . . . ,

F (y) = 0, y ∈ N(C)⊥.
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It is easy to show that

(

B F

0 C

)

is right invertible. Since A is left invertible and d(A) =

n(B) = ∞, by Lemma 8 there exist D, E such that 0∈σc(M(D,E,F )).

If d(A) > n(B) and d(B) < n(C), then d(A) = n(C) = ∞. Define D as (3.8). Clearly, MD

is injective. On the other hand, by the left invertibility of A and the definition of D, we know

that MD has the following decomposition






A1 0 0

0 D3 0

0 0 B1






: H1 ⊕ N(B) ⊕ N(B)⊥ → R(A) ⊕ R(A)⊥ ⊕ H2.

It follows from n(B) < ∞ that dimR(D3) < ∞, thus R(MD) is closed and so MD is left invertible.

Furthermore, since n(B) < ∞, d(MD) = ∞. From Lemma 8 we get that there exist E, F such

that 0 ∈ σc(M(D,E,F )).

If d(A) > n(B) and d(B) = n(C), then d(B) = d(A) = n(C) = ∞. We define D as (3.8). In

the similar way to the proof above, we can prove that MD is left invertible and d(MD) = ∞. By

Lemma 8 there exist E, F such that 0 ∈ σc(M(D,E,F )); if d(A) = n(B) and d(B) < n(C), in the

similar way to the case when d(A) > n(B) and d(B) = n(C), we can show that there exist D∗,

E∗, F ∗ such that 0 ∈ σc((M(D,E,F ))
∗), i.e., 0 ∈ σc(M(D,E,F )). The proof is completed. 2

With four propositions above, we now prove Theorem 3.

The right side in (3.3) includes the left side. Suppose that there exist D, E, F such that

λ ∈ σc(M(D,E,F )). Clearly, λ 6∈ σp(A) and R(C − λI) = H3. If R(A − λI) and R(C − λI) are

not closed, then λ ∈ △4 by Proposition 4; if R(A − λI) and R(C − λI) are closed, then λ ∈ △7

by Proposition 7. if R(A − λI) is closed, R(C − λI) is not closed, then λ ∈ △6 by Propositions

5 and 6; if R(A − λI) is not closed, R(C − λI) is closed, from Lemma 7, Propositions 5, 6 and

the conjugation of M(D,E,F ) and (M(D,E,F ))
∗, we get that λ ∈ △5.

The left side of (3.3) includes the right side. If λ ∈ △4 ∪ △5 ∪ △6 ∪ △7. from Propositions

4–7, Lemma 7 and the conjugation of M(D,E,F ) and (M(D,E,F ))
∗, we know that there exist D,

E, F such that λ ∈ σc(M(D,E,F )). This completes the proof. 2

Finally, we give an example to illustrate the correctness of our results.

Example Let H1 = H2 = H3 = ℓ2. In ℓ2, let ei (i = 1, 2, · · · ) denote the element with 1 in the

i-th place and zeros elsewhere. For every x = (x1, x2, . . .) ∈ ℓ2, define A ∈ B(ℓ2), B ∈ B(ℓ2) and

C ∈ B(ℓ2) by

Ax = (x1, x2 − x1, x3 − x2, x4 − x3, . . .),

Bx = (0, x1, x2, x3, x4, x5, . . .),

Cx = (x2, x3, x4, x5, x6, x7, . . .).

It is not hard to show that A and B are injective, R(C) = R(A) = ℓ2 6= R(A) and d(B) =

n(C) = 1, so 0 ∈ △1 ∩ △5. By Theorems 2 and 3, there exist D1, E1, F1, D2, E2 and F2 such

that 0 ∈ σr(M(D1,E1,F1)) ∩ σc(M(D2,E2,F2)). For this, take D1 = F1 = D2 = E2 = 0 and set

F2x = E1x = (x1, 0, 0, 0, 0, . . .), for each x = (x1, x2, . . .) ∈ ℓ2. Then 0 ∈ σr(M(D1,E1,F1)) and
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0 ∈ σc(M(D2,E2,F2)).

Remark For C defined above, it is obvious that 0 ∈ σp(C) ⊂ σ(C). From Theorem 1, there

exist D, E, F such that 0 ∈ σp(M(D,E,F )) ⊂ σ(M(D,E,F )). The fact means that the intersection of

the possible point spectrum, the possible residual spectrum and the possible continuous spectrum

of the partial operator matrix M is not empty.
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