$L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-Number $\lambda\left(C_{n} ; d_{1}, d_{2}, \ldots, d_{t}\right)$ of Cycles

GAO Zhen Bin ${ }^{1}$, ZHANG Xiao Dong ${ }^{2}$
(1. College of Science, Harbin Engineering University, Heilongjiang 150001, China; 2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China)
(E-mail: gaozenbin@yahoo.com.cn)

Abstract

An $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling of a graph G is a function f from its vertex set $V(G)$ to the set $\{0,1, \ldots, k\}$ for some positive integer k such that $|f(x)-f(y)| \geq d_{i}$, if the distance between vertices x and y in G is equal to i for $i=1,2, \ldots, t$. The $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-number $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right)$ of G is the smallest integer number k such that G has an $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$ labeling with $\max \{f(x) \mid x \in V(G)\}=k$. In this paper, we obtain the exact values for $\lambda\left(C_{n} ; 2,2,1\right)$ and $\lambda\left(C_{n} ; 3,2,1\right)$, and present lower and upper bounds for $\lambda\left(C_{n} ; 2, \ldots, 2,1, \ldots, 1\right)$

Keywords cycle; labeling; $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling; $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right)$-number.
Document code A
MR(2000) Subject Classification 05C15; 05C78
Chinese Library Classification O157.5

1. Introduction

The channel assignment problem is to assign a channel (nonnegative integer) to each radio transmitter so that interfering transmitters are assigned channels whose separations are not in a set of disallowable separations. Hale ${ }^{[1]}$ formulated this problem into the problems of T-coloring of a graph, which has been extensively studied over the past decades ${ }^{[2-8]}$. Roberts ${ }^{[9]}$ pointed that we could assign channels to some radio transmitters with different places so that close transmitters would get different channels whose difference is at least 2. Griggs and Yeh ${ }^{[10]}$ first studied the problems of $L(2,1)$-labeling. An $L(2,1)$-labeling is a function f from its vertex set $V(G)$ to the set $\{0,1, \ldots, k\}$ for some integer k such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$. For positive integer numbers k, d_{1}, d_{2}, a $k-L\left(d_{1}, d_{2}\right)$-labeling of a graph G is a function $f: V(G) \rightarrow\{0,1, \ldots, k\}$ such that $|f(x)-f(y)| \geq d_{i}$ whenever $x, y \in V(G)$ and $d(x, y)=i(i=1,2) . L\left(d_{1}, d_{2}\right)$-number of the graph is the smallest integer number k such that k - $L\left(d_{1}, d_{2}\right)$-labeling exists.

Up to now, there are a lot of results for the $L\left(d_{1}, d_{2}\right)$-labeling, especially, the $L(2,1)$-labeling. For example, Griggs and Yeh ${ }^{[10]}$ proved that the $L(2,1)$-number of a tree is $\triangle+1$ or $\triangle+2$, and that the upper bound for the $L(2,1)$-number of a graph with the largest degree \triangle is at most $\triangle^{2}+2 \triangle-3$. Further they proposed the following conjecture is \triangle^{2}. In addition, they
Received date: 2007-07-18; Accepted date: 2008-04-16
Foundation item: the National Natural Science Foundation of China (No. 10531070); the National Basic Research Program of China 973 Program (No. 2006AA11Z209) and the Natural Science Foundation of Shanghai City (No. 06ZR14049).
obtain the exact values for the $L(2,1)$-number for some special graphs such as paths, cycles and wheel graphs. Chang and Kuo ${ }^{[11]}$ proved that for a general graph of maximum degree \triangle, an upper bound of $L(2,1)$-number is $\triangle^{2}+\triangle$. For more background and information for the $L\left(d_{1}, d_{2}\right)$-numbers, the readers may refer to an excellent survey ${ }^{[12]}$.

In this survey, Yeh ${ }^{[12]}$ proposed a new notion of $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling of a graph. An $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling of a graph G is a function f from its vertex set $V(G)$ to the set $\{0,1, \ldots, k\}$ for some positive integer k such that $|f(x)-f(y)| \geq d_{i}$, if the distance between vertices x and y in G is equal to i for $i=1,2, \ldots, t$. The $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-number $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right)$ of G is the smallest integer number k such that G has an $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling with $\max \{f(x) \mid x \in$ $V(G)\}=k$. Further, he proposed five problems, one of which was $L\left(d_{1}, d_{1}, \ldots, d_{1}, d_{2}, d_{2}, \ldots, d_{2}\right)$ labeling $\left(d_{1}>d_{2} \geq 1\right)$.

In this paper, we present the exact values for $\lambda\left(C_{n} ; 2,2,1\right), \lambda\left(C_{n} ; 3,2,1\right)$ and give lower and upper bounds for $\lambda(G ; 2,2, \ldots, 2,1, \ldots, 1)(t$-fold 2 and t-fold 1$)$.

2. Preliminaries

Denote by C_{n} a cycle with n vertices $v_{1}, v_{2}, \ldots, v_{n}$.
Proposition 1 For a graph G, if $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right)$ and $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}, \delta_{1}, \delta_{2}, \ldots, \delta_{s}\right)$ exist, then $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right) \leq \lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}, \delta_{1}, \delta_{2}, \ldots, \delta_{s}\right)$.

Proof Clearly, it follows from the definition that an $L\left(G ; d_{1}, d_{2}, \ldots, d_{t}, \delta_{1}, \delta_{2}, \ldots, \delta_{s}\right)$-labeling of G is also an $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling. Hence the assertion holds.

Proposition 2 For a graph G, if $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right)$ and $\lambda\left(G ; \delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$ exist, and $d_{i} \leq$ $\delta_{i}(1 \leq i \leq t)$, then $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right) \leq \lambda\left(G ; \delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$.

Proof Since G has an $L\left(\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$-labeling, $|f(x)-f(y)| \geq \delta_{i}$ for $d(x, y)=i(1 \leq i \leq t)$, where $x, y \in V(G)$. By $d_{i} \leq \delta_{i}(1 \leq i \leq t)$, we have $|f(x)-f(y)| \geq d_{i}$. Hence G has an $L\left(d_{1}, d_{2}, \ldots, d_{t}\right)$-labeling and $\lambda\left(G ; d_{1}, d_{2}, \ldots, d_{t}\right) \leq \lambda\left(G ; \delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$.

Proposition 3 Let G be a graph. If the $L\left(\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$-number exists, then there exists a vertex with labeling 0 .

Proof Suppose the $L\left(\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$-number exists. Let the vertex v with the smallest labeling value and $f(v) \neq 0$. Now let $g(u)=f(u)-f(v)$ for all u in G. Then it is easy to see that g is a function such that $L\left(\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$-number exists with $g(v)=0$.

Proposition 4 Let G be a graph with the diameter at least $t+1$. If the $L\left(d_{1}, d_{1}, \ldots, d_{1}, d_{2}, d_{2}, \ldots, d_{2}\right)$ labelling exists $\left(t\right.$-fold d_{1}, and $\left.d_{1}>d_{2} \geq 1\right)$, then $\lambda\left(G ; d_{1}, d_{1}, \ldots, d_{1}, d_{2}, d_{2}, \ldots, d_{2},\right) \geq t d_{1}+1$.

Proof Since the diameter of G is at least $t+1$, there exists a path with vertices $\left(v_{1}, v_{2}, \ldots, v_{t+1}, v_{t+2}, \ldots\right)$, and $f\left(v_{1}\right)=0$. Because G has an $L\left(d_{1}, d_{1}, \ldots, d_{1}, d_{2}, d_{2}, \ldots, d_{2}\right)$-labeling, the labeling values of $v_{i}(2 \leq i \leq t+1)$ are different and $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq d_{1}(1 \leq i \neq j \leq t+1)$. Hence, among the
vertices $v_{i}(2 \leq i \leq t+1)$, there is at least one with a labeling value $\geq t d_{1}$; if the maximum of the labeling values of the vertices is $t d_{1}$, then the labeling values of v_{2}, \ldots, v_{t+1} are $d_{1}, 2 d_{1}, \ldots, t d_{1}$. But the distance between v_{t+2} and $v_{i}(2 \leq i \leq t+1)$ is not more than t and $f\left(v_{t+2}\right) \neq 0$. It is impossible. So

$$
\lambda\left(G ; d_{1}, d_{1}, \ldots, d_{1}, d_{2}, d_{2}, \ldots, d_{2}\right) \geq t d_{1}+1
$$

3. Results

Theorem 1 For $C_{n}(n \geq 3)$, there are $\lambda\left(C_{n} ; 2,2,1\right)= \begin{cases}4, & n=3 ; \\ 8, & n=5,9,13,17 ; \\ 7, & n=6,10 ; \\ 6, & \text { other } n .\end{cases}$
Proof We first show that $\lambda\left(C_{n} ; 2,2,1\right) \geq 6(n \geq 4)$. By Proposition $4, \lambda\left(C_{n} ; 2,2,1\right) \geq 5(n \geq 4)$. If $\lambda\left(C_{n} ; 2,2,1\right)=5(n \geq 4)$, by Proposition 3, we can set $f\left(v_{1}\right)=0$, thus $f\left(v_{2}\right) \geq 2$; if $2 \leq f\left(v_{2}\right) \leq 4$, with $f\left(v_{3}\right) \geq 2$ and $\left|f\left(v_{2}\right)-f\left(v_{3}\right)\right| \geq 2$, then $f\left(v_{3}\right) \in\{2,4,5\}$. Hence if $n=4$, then there are no labeling values for v_{4}; if $n=5$, then there are no labeling values for v_{4}; if $n \geq 6$ with $\left|f\left(v_{2}\right)-f\left(v_{4}\right)\right| \geq 2,\left|f\left(v_{3}\right)-f\left(v_{4}\right)\right| \geq 2$, then there is only one labeling: $f\left(v_{2}\right)=$ $3, f\left(v_{3}\right)=5, f\left(v_{4}\right)=1$, but, there is no labeling value for v_{5}. If $f\left(v_{2}\right)=5$, then $f\left(v_{3}\right) \in\{2,3\}$, but $f\left(v_{4}\right) \geq 1$. So we have only one labeling, that is, $f\left(v_{2}\right)=5, f\left(v_{3}\right)=3, f\left(v_{4}\right)=1$. In this case, there is no labeling value for v_{5} either. Therefore $\lambda\left(C_{n} ; 2,2,1\right) \geq 6(n \geq 4)$.

Now we can obtain the results by constructing labeling. If $n=3$, set $f: v_{1} v_{2} v_{3} \rightarrow 024$; if $n=5$, set $f: v_{1} v_{2} \cdots v_{5} \rightarrow 02468$; if $n=9$, set $f: v_{1} v_{2} \cdots v_{9} \rightarrow 024681357$; if $n=13,17$, the first 9 vertices are valued as $n=9$, the left vertices are valued as 0246,02460246 ; if $n=6$, set $f: v_{1} v_{2} \cdots v_{6} \rightarrow 037146$; if $n=10$, the first 6 vertices are valued as $n=6$, the left vertices are valued as 0246 .

Finally, we show that $\lambda\left(C_{n} ; 2,2,1\right)=6$ for the remaining case. We now construct the following labeling.

If $n \equiv 0(\bmod 4)$, set $f: v_{1} \cdots v_{4} \rightarrow 0246, f\left(v_{i}\right)=f\left(v_{i+4}\right)$.
If $n \equiv 1(\bmod 4)$ and $n>17$, set $f: v_{1} \cdots v_{7} \rightarrow 0246135, f\left(v_{i}\right)=f\left(v_{i+7}\right)$, where $i=$ $1,2, \ldots, 14$; for the left vertices, the labeling is as $n \equiv 0(\bmod 4)$.

If $n \equiv 2(\bmod 4)$ and $n>10$, set $f: v_{1} \cdots v_{7} \rightarrow 0246135, f\left(v_{i}\right)=f\left(v_{i+7}\right)$, where $i=$ $1,2, \ldots, 7$; for the left vertices, the labeling is as $n \equiv 0(\bmod 4)$.

If $n \equiv 3(\bmod 4)$, set $f: v_{1} \cdots v_{7} \rightarrow 0246135$, for the left vertices, the labeling is as $n \equiv$ $0(\bmod 4)$.

By simple calculations, it is easy to see that labeling of the above is $L(2,2,1)$-labeling of cycle C_{n}.

Theorem 2 For $C_{n}(n \geq 3)$, there are (1) $\lambda\left(C_{n} ; 3,2,1\right)= \begin{cases}6, & n=3 ; \\ 9, & n=7 .\end{cases}$
(2) $\lambda\left(C_{n} ; 3,2,1\right)= \begin{cases}8, & n>3(n \neq 7), \text { and is odd; } \\ 7, & n \geq 4, \text { and is even. }\end{cases}$

Proof By Proposition 1 and some calculations, it is easy to see that $\lambda\left(C_{n} ; 3,2,1\right)=6,7,8,7,9$, corresponding to $n=3,4, \ldots, 7$, respectively.

Now we assume that $n>7$. If $\lambda\left(C_{n} ; 3,2,1\right)=6, f\left(v_{1}\right)=0$; if $f\left(v_{2}\right)=3$, then $f\left(v_{3}\right)=6$, $f\left(v_{4}\right)=1, f\left(v_{5}\right)=4$, but there is also no labeling value for v_{6}; if $f\left(v_{2}\right)=4$, there is no labeling value for v_{3}; if $f\left(v_{2}\right)=5$ or 6 , then $f\left(v_{3}\right)=2$ or 3 , there is no labeling value for v_{4}. Hence $\lambda\left(C_{n} ; 3,2,1\right) \geq 7$.

If $n \geq 8$, and is even, set f :
$v_{1} \cdots v_{4} \rightarrow 0725, f\left(v_{i}\right)=f\left(v_{i+4}\right)(i \geq 1)$, if $n \equiv 0(\bmod 4)$;
$v_{1} \cdots v_{6} \rightarrow 036147, f\left(v_{i}\right)=f\left(v_{i+6}\right)(i \geq 1)$, if $n \equiv 0(\bmod 6)$;
$v_{1} \cdots v_{6} \rightarrow 036147, f\left(v_{i}\right)=f\left(v_{i+6}\right)(1 \leq i \leq n-8), v_{n-1} v_{n} \rightarrow 25$, if $n \equiv 2(\bmod 6)$;
$v_{1} \cdots v_{6} \rightarrow 036147, f\left(v_{i}\right)=f\left(v_{i+6}\right)(1 \leq i \leq n-10), v_{n-3} \cdots v_{n} \rightarrow 0527$, if $n \equiv 4(\bmod 6)$, and $n \neq 4 k$. Hence $\lambda\left(C_{n} ; 3,2,1\right)=7$.

If $n \geq 9$, and is odd, we show that $\lambda\left(C_{n} ; 3,2,1\right)=8$. In fact, if $\lambda\left(C_{n} ; 3,2,1\right)=7$, for the labelings that can be recirculated on C_{n} are: $0725 ; 036147 ; 03614725$, the number in each set is even, and each labeling can be removed. So if we label the vertices of C_{n} by use of these sets, we cannot label the remaining odd vertices of C_{n} by use of the numbers in $\{0,1, \ldots, 7\}$. Thus, we obtain $\lambda\left(C_{n} ; 3,2,1\right)>7$ when $n \geq 9$, and is odd.

If $n \equiv 3(\bmod 4)$, set $f: v_{1} \cdots v_{7} \rightarrow 0741836, v_{8} \cdots v_{11} \rightarrow 0825, f\left(v_{i}\right)=f\left(v_{i+4}\right)(i \geq 8)$; If $n \equiv 1(\bmod 4)$, set $f: v_{1} \cdots v_{5} \rightarrow 04826, v_{8} \cdots v_{11} \rightarrow 0826, f\left(v_{i}\right)=f\left(v_{i+4}\right)(i \geq 6)$. Therefore $\lambda\left(C_{n} ; 3,2,1\right)=8$.

Theorem 3 For $C_{n}(n \geq 3)$, there are $\lambda\left(C_{n} ; 2, \ldots, 2,1, \ldots, 1\right) \leq 4 t(t$-fold 2 and 1$)$.
Proof From the proofs of Theorems 1 and 2, we see that the key step in labeling a cycle is how to construct the labeling of $C_{n}(3 \leq n \leq 4 t)$. We will do this.

If $3 \leq n \leq 2 t+1$, set $f(V) \rightarrow 024 \cdots(2 n-2)$.
In case of $2 t+2 \leq n \leq 4 t$:
(1) If n is odd, set

$$
f(V) \rightarrow 0(4 t)(4 t-2) \cdots\left(4 t-2\left[\frac{n}{2}\right]+2\right) 1(4 t-1)(4 t-3) \cdots\left(4 t-2\left[\frac{n}{2}\right]+3\right)
$$

(2) If n is even, set

$$
f(V) \rightarrow 0(4 t)(4 t-2) \cdots\left(4 t-2\left[\frac{n}{2}\right]+4\right) 1(4 t-1)(4 t-3) \cdots\left(4 t-2\left[\frac{n}{2}\right]+3\right)
$$

If $n=4 t+1$, set

$$
f(V) \rightarrow 0(4 t)(4 t-2) \cdots(2 t+2)(2 t-1)(2 t-3) \cdots 31(4 t-1)(4 t-3) \cdots 9(2 t+1) 24 \cdots(2 t)
$$

If $n>4 t+1$, and $n \neq k(2 t+1), k=2,3, \ldots$, we separate the vertices of C_{n} into two parts. The number of the vertices in one part is a multiple of $2 t+1$, which are circularly labeled by $0(4 t)(4 t-2) \cdots 2$. The number of the vertices in other part is between $2 t+2$ and $4 t+1$, which are labeled in the same way as the above case of $2 t+2 \leq n \leq 4 t+1$. So $L(2, \ldots, 2,1, \ldots, 1)$-labeling exists.

Theorem 4 For $C_{n}(n \geq 3)$, there are $\lambda\left(C_{n} ; 2,1, \ldots, 1\right)= \begin{cases}4, & n=3,4 ; \\ 2 t+2, & \text { other } n(t-\text { fold } 1) \text {. }\end{cases}$
Proof If $n \leq 2 t+3$, the diameter of the cycle is [$\frac{n}{2}$], so the labeling values of vertices are different from each other and $\lambda\left(C_{n} ; 2,1, \ldots, 1\right)$ must be more than $n-1$. Next we will show that except for $n=3,4, \lambda\left(C_{n} ; 2,1, \ldots, 1\right)=n-1 \leq 2 t+2$.
(1) $n=3$, set $f(V) \rightarrow 024 ; n=4$, set $f(V) \rightarrow 0314$.
(2) If $4 \leq n \leq 2 t+3$, we will do the labeling by the following rule: if n is even, set $f(V) \rightarrow 024 \cdots(n-2) 13 \cdots(n-1)$; if n is odd, set $f(V) \rightarrow 024 \cdots(n-1) 13 \cdots(n-2)$. So, for C_{n}, it is obvious that $L(2,1, \ldots, 1)$-labeling exists.

If $n=k(2 t+4) k=1,2, \ldots$, set

$$
f(V) \rightarrow 024 \cdots(2 t+2) 024 \cdots(2 t+2) 024 \cdots(2 t+2)
$$

If $n>2 t+3(n \neq k(2 t+4), k=1,2, \ldots)$, we separate the vertices of C_{n} into two parts, the number of the vertices in one part is a multiple of $t+2$, and the number of the vertices in the other part is between $t+3$, and $2 t+3$. For the first part, if $t+1$ is even, the vertices are circularly labeled by $024 \cdots(t+1) 13 \cdots t$; if $t+1$ is odd, the vertices are circularly labeled by $024 \cdots t 13 \cdots(t+1)$. For the other part, the vertices are labeled in the same way as the above. It can be proven that for any n and any cycle, by the above labeling $L(2,1, \ldots, 1)$-labeling exists.

Corollary For $C_{n}(n \geq 3)$, there are $2 t+2 \leq \lambda\left(C_{n} ; 2, \ldots, 2,1\right) \leq 4 t(t$-fold 2$)$.
Proof By Propositions 1 and 2, the assertion holds.

References

[1] HALE W K. Frequency assignment [J]. Theory and Applications. Proc IEEE, 1980, 68: 1497-1514.
[2] COZZENS M B, ROBERTS F S. T-Colorings of graphs and the channel assignment problem [C]. Congr. Numer., 1982, 35: 191-208.
[3] COZZENS M B, WANG D I. The general channel assignment problem [C]. Congr. Numer., 1984, 41: 115-129.
[4] BATTITI R, BERTOSSI A A, BONUCCELLI M A. Assigning codes in wireless networks: bounds and scaling properties, wireless networks [J]. 1999, 5: 195-209.
[5] BERTOSSI A A, PINOTTI M C. Mappings for conflict-free access of paths in bidimensional arrays, circular lists, and complete tree [J]. J. Parallel and Distributed Computing, 2002, 62: 1314-1333.
[6] CHLAMTAC I, PINTER S S. Distributed nodes organizations algorithm for channel access in a multihop dynamic radio network [J]. IEEE Transactions on Computers, 1987, 36: 728-737.
[7] MCCORMICK S T. Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem [J]. Math. Programming, 1983, 26(2): 153-171.
[8] Vanden H J, LEESE R A, SHEPHERD M A. Graph labeling and radio channel assignment [J]. J. Graph Theory, 1998, 29(4): 263-283.
[9] ROBERTS F S. T-colorings of graphs: recent results and open problems [J]. Discrete Math., 1991, 93(2-3): 229-245.
[10] GRIGGS J R, YEH R K. Labelling graphs with a condition at distance 2 [J]. SIAM J. Discrete Math., 1992, 5(4): 586-595.
[11] CHANG G J, KUO D. The $L(2,1)$-labeling problem on graphs [J]. SIAM J. Discrete Math., 1996, $9(2)$: 309-316.
[12] YEH R K. A survey on labeling graphs with a condition at distance two [J]. Discrete Math., 2006, 306(12): 1217-1231.

