On Extension of 1-Lipschitz Mappings between Two Unit Spheres of $l^p(\Gamma)$ Type Spaces (1

FANG Xi Nian

(Department of Applied Mathematics, Audit University, Jiangsu 210029, China) (E-mail: fxn@nau.edu.cn)

Abstract Let T be a mapping from the unit sphere $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ of two atomic AL^p -spaces. We prove that if T is a 1-Lipschitz mapping such that $-T[S[l^p(\Gamma)]] \subset T[S[l^p(\Gamma)]]$, then T can be linearly isometrically extended to the whole space for p > 2; if T is injective and the inverse mapping T^{-1} is a 1-Lipschitz mapping, then T can be extended to be a linear isometry from $l^p(\Gamma)$ into $l^p(\Delta)$ for 1 .

Keywords 1-Lipschitz mapping; $l^p(\Gamma)$ type space; isometric extension.

Document code A MR(2000) Subject Classification 46A22; 46B20; 46E15 Chinese Library Classification 0177.3

1. Introduction

In [1] the author found "a condition under which an into-isometry T between unit spheres can be linearly isometrically extended" (for atomic AL^p -spaces, $0 , <math>p \neq 2$). Under the same assumption as in [1], [2] presented a short and simple proof for the isometric extension theorem of atomic AL^p -spaces, i.e., $l^p(\Gamma)$ -type space on index set Γ , $l^p(\Gamma) = \{x = (x_{\gamma}) | x : \Gamma \longrightarrow \mathbb{R}, || x ||^p =$ $\sum_{\gamma \in \Gamma} |x_{\gamma}|^p\}$ ($p > 1, p \neq 2$). Ding^[3] discussed the extension problem on Hilbert spaces E and F, who proved that for any 1-Lipschitz mapping T from S(E) into S(F), if $-T[S(E)] \subset T[S(E)]$, then T can be extended to a real linear isometry of the whole space E. In particular, every isometric mapping from S(E) into S(F) can be extended to a real linear isometric mapping from E into F.

In this paper, we study the linear isometric extension of mappings between two unit spheres of atomic AL^p -spaces (1 . We obtain that for any 1-Lipschitz mapping <math>T from the unit sphere $S[l^p(\Gamma)]$ of $l^p(\Gamma)$ into the unit sphere of $l^p(\Delta)$ $(2 , if <math>-T[S[l^p(\Gamma)]] \subset T[S[l^p(\Gamma)]]$, then T can be extended to be a real linear isometry from $l^p(\Gamma)$ into $l^p(\Delta)$; for any mapping T from $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ (1 , if <math>T is injective and the inverse mapping T^{-1} is a 1-Lipschitz mapping, then T can be extended to real linear isometry on the whole $l^p(\Gamma)$. In particular, any isometric mapping from $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ (1 can be extended to be a real $linear isometry from <math>l^p(\Gamma)$ into $l^p(\Delta)$. The main-idea of the proofs in this paper is from the paper

Received date: 2007-05-18; Accepted date: 2008-04-22

Foundation item: the Natural Science Foundation of the Education Department of Jiangsu Province (No. 06KJD110092).

[3] and [5].

2. Some important lemmas

Definition 2.1 Let *E* and *F* be two normed spaces, the set $U \subset E$ and $V \subset F$. A mapping $T: U \longrightarrow V$ is said to be a Lipschitz mapping for the constant k > 0, if $|| T(x) - T(y) || \le k || x - y ||$ for all $x, y \in U$. When k = 1, the Lipshitz mapping is called a 1-Lipshitz mapping.

We first recall the following well-known inequalities.

Lemma 2.1^[4] Suppose that ξ and η be two real numbers. Then

1) $|\xi + \eta|^p + |\xi - \eta|^p \ge 2 (|\xi|^p + |\eta|^p)$ for every real number p satisfying that p > 2,

2) $|\xi + \eta|^p + |\xi - \eta|^p \le 2 (|\xi|^p + |\eta|^p)$ for every real number p satisfying that $1 \le p < 2$.

Moreover, equality of signs in the obove inequalities can only hold if $\xi = 0$ or $\eta = 0$.

Corollary 2.1 If $x, y \in l^p(\Gamma)$, then

$$\| x + y \|^{p} + \| x - y \|^{p} \le 2 (\| x \|^{p} + \| y \|^{p}), \quad 1 \le p < 2;$$

$$\| x + y \|^{p} + \| x - y \|^{p} \ge 2 (\| x \|^{p} + \| y \|^{p}), \quad 2$$

Proof Let $x = (x_{\gamma})$ and $y = (y_{\gamma})$. When $1 \le p < 2$, by Lemma 2.1(2), we have

$$\| x + y \|^{p} + \| x - y \|^{p} = \sum_{\gamma} |x_{\gamma} + y_{\gamma}|^{p} + \sum_{\gamma} |x_{\gamma} - y_{\gamma}|^{p}$$
$$= \sum_{\gamma} (|x_{\gamma} + y_{\gamma}|^{p} + |x_{\gamma} - y_{\gamma}|^{p})$$
$$\leq \sum_{\gamma} 2(|x_{\gamma}|^{p} + |y_{\gamma}|^{p})$$
$$= 2(\| x \|^{p} + \| y \|^{p}).$$

When $2 , by Lemma 2.1(1), we have <math>||x + y||^p + ||x - y||^p \ge 2$ ($||x||^p + ||y||^p$).

Corollary 2.2 If $x, y \in l^p(\Gamma)$ $(1 \le p < \infty, p \ne 2)$, then

$$(\operatorname{supp} x) \bigcap (\operatorname{supp} y) = \varnothing \iff \parallel x + y \parallel^p + \parallel x - y \parallel^p = 2 (\parallel x \parallel^p + \parallel y \parallel^p),$$

(here, supp $x = \{\gamma | x(\gamma) \neq 0, \gamma \in \Gamma\}$).

Lemma 2.2 Let T be an injection from S(E) into S(F) (E and F are two normed spaces) such that the inverse mapping T^{-1} is a 1-Lipshitz mapping, i.e., let T satisfy $||x - y|| \le ||Tx - Ty||$ for all $x, y \in S(E)$. If F is strictly convex, then $T(-x) = -T(x), \forall x \in S(E)$.

Proof For any $x \in S(F)$, we have

$$2 = \parallel 2x \parallel = \parallel x - (-x) \parallel \le \parallel T(x) - T(-x) \parallel \le 2.$$

So, ||T(x) - T(-x)|| = 2. Since F is strictly convex, T(-x) = -T(x).

Lemma 2.3 Let T be a mapping from the unit spheres $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ (Γ , Δ are two

On extension of 1-Lipschitz mappings between two unit spheres of $l^{p}(\Gamma)$ type spaces (1 689 $index sets). If <math>||x - y|| \le ||Tx - Ty||$ for all $x, y \in S[l^{p}(\Gamma)]$, then for any $x, y \in S[l^{p}(\Gamma)]$,

$$(\operatorname{supp} x) \bigcap (\operatorname{supp} y) = \varnothing \Longrightarrow (\operatorname{supp} T(x)) \bigcap (\operatorname{supp} T(y)) = \varnothing,$$

where 1 .

Proof By the hypothesis of the T, we have $||x-y|| \le ||T(x) - T(y)||$ for all $x, y \in S[l^p(\Gamma)]$. Since $l^p(\triangle)$ (p > 1) is strictly convex, by Lemma 2.2, T(-y) = -T(y) and so $||x+y|| = ||x-(-y)|| \le ||T(x) - T(-y)|| = ||T(x) + T(y)||$. Therefore, for any $x, y \in S[l^p(\Gamma)]$ with $(\operatorname{supp} x) \cap (\operatorname{supp} y) = \emptyset$, using Corollaries 2.1 and 2.2, we have

$$2(||x||^{p} + ||y||^{p}) = ||x + y||^{p} + ||x - y||^{p} \le ||T(x) + T(y)||^{p} + ||T(x) - T(y)||^{p} \le 2(||T(x)||^{p} + ||T(y)||^{p}) = 2(||x||^{p} + ||y||^{p}).$$

Which implies that $||T(x) + T(y)||^p + ||T(x) - T(y)||^p = 2(||T(x)||^p + ||T(y)||^p).$

So, using Corollary 2.2 again, we have $(\operatorname{supp} T(x)) \bigcap (\operatorname{supp} T(y)) = \emptyset$.

Lemma 2.4^[3] Let T be a 1-Lipschitz mapping from the unit sphere S(E) into S(F) (E and F are two normed spaces). If E is strictly convex and if $-T[S(E)] \subset T[S(E)]$, then T(-x) = -T(x), $\forall x \in S(E)$.

Lemma 2.5 Let T be a 1-Lipschitz mapping from the unit sphere $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ (2 < $p < \infty$). If $-T[S[l^p(\Gamma)]] \subset T[S[l^p(\Gamma)]]$, then, for any $x, y \in S[l^p(\Gamma)]$,

 $(\operatorname{supp} x) \bigcap (\operatorname{supp} y) = \varnothing \Longrightarrow (\operatorname{supp} T(x)) \bigcap (\operatorname{supp} T(y)) = \varnothing.$

Proof For any $x, y \in S[l^p(\Gamma)]$, we have $||T(x) - T(y)|| \le ||x - y||$, by Lemma 2.4, $||T(x) + T(y)|| = ||T(x) - T(-y)|| \le ||x - (-y)|| = ||x + y||$ (notice that $l^p(\Gamma)$ (p > 1) is strictly convex). Hence, if $(\operatorname{supp} x) \bigcap (\operatorname{supp} y) = \emptyset$, by Corollaries 2.1 and 2.2,

$$2(|| T(x) ||^{p} + || T(y) ||^{p}) \le || T(x) + T(y) ||^{p} + || T(x) - T(y) ||^{p} \le ||x + y||^{p} + ||x - y||^{p}$$

= 2(|| x ||^{p} + || y ||^{p}) = 2(|| T(x) ||^{p} + || T(y) ||^{p}),

which implies that

$$|| T(x) + T(y) ||^{p} + || T(x) - T(y) ||^{p} = 2(|| T(x) ||^{p} + || T(y) ||^{p})$$

So, using Corollary 2.2 again, we obtain $(\operatorname{supp} T(x)) \cap (\operatorname{supp} T(y)) = \emptyset$.

3. The main results

Now we derive the isometric extension theorem for the 1-Lipschitz mapping between two unit spheres of atomic AL^p -spaces (1 .

Theorem 3.1 Let T be a mapping from the unit spheres $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ $(1 . If <math>||x - y|| \le ||Tx - Ty||$ for all $x, y \in S[l^p(\Gamma)]$, then we have

$$T(x) = \sum_{\gamma \in \Gamma} \xi_{\gamma} T(e_{\gamma}), \quad \forall x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)].$$

Furthermore, the map

$$V(x) = \sum_{\gamma \in \Gamma} \lambda_{\gamma} T(e_{\gamma}), \quad \forall x = \sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma),$$

is a real linear isometric extension of T (here, $e_{\gamma} = \{\xi_{\gamma'} | \xi_{\gamma} = 1, \xi_{\gamma'} = 0, \gamma' \neq \gamma, \gamma' \in \Gamma\}$).

Proof For any $x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)]$, when $\xi_{\gamma_1} \neq 0$, we have

$$\| x + \frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|} e_{\gamma_{1}} \|^{p} = \| \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} + \frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|} e_{\gamma_{1}} \|^{p}$$

$$= \| \sum_{\gamma \neq \gamma_{1}} \xi_{\gamma} e_{\gamma} + (\xi_{\gamma_{1}} + \frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|}) e_{\gamma_{1}} \|^{p} = \sum_{\gamma \neq \gamma_{1}} |\xi_{\gamma}|^{p} + |\xi_{\gamma_{1}} + \frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|}|^{p}$$

$$= 1 - |\xi_{\gamma_{1}}|^{p} + (1 + |\xi_{\gamma_{1}}|)^{p}.$$

$$(1)$$

By Lemmas 2.2 and 2.3, $T(-e_{\gamma}) = -T(e_{\gamma}), \forall \gamma \in \Gamma, (\operatorname{supp} T(e_{\gamma})) \bigcap (\operatorname{supp} T(e_{\gamma'})) = \emptyset, \gamma \neq \gamma', \gamma, \gamma' \in \Gamma.$ Hence, we can put

$$T(x) = \sum_{\gamma \in \Gamma} T(x)|_{\operatorname{supp} T(e_{\gamma})} + y \text{ (here } y = T(x)|_{\Delta \setminus \bigcup_{\gamma \in \Gamma} \operatorname{supp} T(e_{\gamma})}).$$
(2)

Thus, we have

$$\| T(x) + T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) \|^p = 1 - \| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} \|^p + \| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} + T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) \|^p$$

$$\leq 1 - \| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} \|^p + (\| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} \| + \| T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) \|)^p$$

$$= 1 - \| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} \|^p + (1 + \| T(x)|_{\operatorname{supp} T(e_{\gamma_1})} \|)^p.$$

$$(3)$$

Noticing the assumption of T and Lemma 2.2, we obtain

$$-|\xi_{\gamma_1}|^p + (1+|\xi_{\gamma_1}|)^p \le 1 - ||T(x)|_{\operatorname{supp} T(e_{\gamma_1})}||^p + (1+||T(x)|_{\operatorname{supp} T(e_{\gamma_1})}||)^p$$
(4)

i.e.,

$$(1 + |\xi_{\gamma_1}|)^p - |\xi_{\gamma_1}|^p \le (1 + || T(x) |_{\operatorname{supp} T(e_{\gamma_1})} ||)^p - || T(x) |_{\operatorname{supp} T(e_{\gamma_1})} ||^p .$$
(5)

Recall that the function $f(t) = (1+t)^p - t^p$ is strictly increasing in \mathbb{R}^+ when p > 1. Therefore, by (5), we get

$$|\xi_{\gamma_1}| \leq ||T(x)|_{\operatorname{supp} T(e_{\gamma_1})}||, \quad \forall \gamma_1 \in \operatorname{supp} x.$$

Moreover, it follows from

1

$$\sum_{\gamma \in \Gamma} |\xi_{\gamma}|^{p} = ||x||^{p} = ||T(x)||^{p} = ||\sum_{\gamma \in \Gamma} T(x)|_{\operatorname{supp} T(e_{\gamma})} + y||^{p}$$
$$= \sum_{\gamma \in \Gamma} ||T(x)|_{\operatorname{supp} T(e_{\gamma})}||^{p} + ||y||^{p}$$

that y = 0 and

$$|\xi_{\gamma}| = ||T(x)|_{\operatorname{supp} T(e_{\gamma})}||, \quad \forall \gamma \in \Gamma.$$
(6)

Hence, (4) is an equality. By (1), (3) and (4), (3) is also an equality. The equality (3) implies that

$$|| T(x) |_{\operatorname{supp} T(e_{\gamma_1})} + T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) || = || T(x) |_{\operatorname{supp} T(e_{\gamma_1})} || + || T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) ||.$$

690

On extension of 1-Lipschitz mappings between two unit spheres of $l^p(\Gamma)$ type spaces (1 691 $Since <math>l^p(\Delta)$ (p > 1) is strictly convex,

$$T(x)\mid_{\operatorname{supp} T(e_{\gamma_1})} = |\xi_{\gamma_1}| T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|}e_{\gamma_1}) = \xi_{\gamma_1}T(e_{\gamma_1}), \quad \forall \gamma_1 \in \operatorname{supp} x.$$

$$(7)$$

From (2), (6) and (7), we find

$$T(x) = \sum_{\gamma \in \Gamma} \xi_{\gamma} T(e_{\gamma}), \quad \forall x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)]$$

Thus we immediately obtain that the real linear isometric extension of T as follows:

$$V(x) = \sum_{\gamma \in \Gamma} \lambda_{\gamma} T(e_{\gamma}), \, \forall x = \sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma).$$

Theorem 3.2 Let T be a mapping from the unit spheres S(E) into S(F) (E and F are two Hilbert spaces). If $||x - y|| \le ||Tx - Ty||$ for all $x, y \in S(E)$, then T can be extended to a real linear isometry from E into F.

Proof Since E and F are Hilbert spaces, by the "parallelogram law", we have

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

and $|| T(x) + T(y) ||^2 + || T(x) - T(y) ||^2 = 2(|| T(x) ||^2 + || T(y) ||^2)$, for any $x, y \in S(E)$. By the assumption of T and Lemma 2.2, we have $|| x - y || \le || T(x) - T(y) ||$ and $|| x + y || \le || T(x) + T(y) ||$. So,

$$2(||x||^{2} + ||y||^{2}) = ||x+y||^{2} + ||x-y||^{2} \le ||T(x) + T(y)||^{2} + ||T(x) - T(y)||^{2}$$
$$= 2(||T(x)||^{2} + ||T(y)||^{2}) = 2(||x||^{2} + ||y||^{2}),$$

which means that $||x - y|| = ||T(x) - T(y)||, \forall x, y \in S(E)$, i.e., T is an isometry from S(E) into S(F). Thus, by [3], T can be extended to a real linear isometry from E into F.

Theorem 3.3 Let T be a 1-Lipschitz mapping from the unit sphere $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ (2 < $p < \infty$). If $-T[S(l^p(\Gamma))] \subset T[S(l^p(\Gamma))]$, then we have $T(x) = \sum_{\gamma \in \Gamma} \xi_{\gamma} T(e_{\gamma}), \forall x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)]$. Furthermore, the map $V(x) = \sum_{\gamma \in \Gamma} \lambda_{\gamma} T(e_{\gamma}), \forall x = \sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^p(\Gamma)$ is a real linear isometric extension of T.

Proof For each $x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)]$, from the above assumption and Lemmas 2.4 and 2.5, we can put

$$T(x) = \sum_{\gamma \in \Gamma} T(x)|_{\operatorname{supp} T(e_{\gamma})} + y \left(y = T(x)|_{\Delta \setminus \bigcup_{\gamma \in \Gamma} \operatorname{supp} T(e_{\gamma})} \right).$$
(8)

Similarly to the proof of Theorem 3.1, we have, for each $\gamma_1 \in \operatorname{supp} x$,

$$1 - |\xi_{\gamma_{1}}|^{p} + (1 - |\xi_{\gamma_{1}}|)^{p} = ||x - \frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|} e_{\gamma_{1}} ||^{p} \ge ||T(x) - T(\frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|} e_{\gamma_{1}}) ||^{p} = 1 - ||T(x)|_{\operatorname{supp} T(e_{\gamma_{1}})} ||^{p} + ||T(x)|_{\operatorname{supp} T(e_{\gamma_{1}})} - T(\frac{\xi_{\gamma_{1}}}{|\xi_{\gamma_{1}}|} e_{\gamma_{1}}) ||^{p} \ge 1 - ||T(x)|_{\operatorname{supp} T(e_{\gamma_{1}})} ||^{p} + (1 - ||T(x)|_{\operatorname{supp} T(e_{\gamma_{1}})} ||)^{p}.$$
(9)

Notice that the function $g(t) = (1-t)^p - t^p$ is decreasing in [0,1], so that from the above inequality

we can derive

$$|\xi_{\gamma_1}| \le ||T(x)|_{\operatorname{supp} T(e_{\gamma_1})}||, \quad \forall \gamma_1 \in \operatorname{supp} x$$

It follows from

$$\sum_{\gamma \in \Gamma} |\xi_{\gamma}|^{p} = ||x||^{p} = ||T(x)||^{p} = ||\sum_{\gamma \in \Gamma} T(x)|_{\operatorname{supp} T(e_{\gamma})} + y||^{p} = \sum_{\gamma \in \Gamma} ||T(x)|_{\operatorname{supp} T(e_{\gamma})} ||^{p} + ||y||^{p}$$

that y = 0 and

$$\xi_{\gamma} = \| T(x) \|_{\operatorname{supp} T(e_{\gamma})} \|, \quad \forall \gamma \in \Gamma.$$
(10)

Hence, (9) is an equality and so

$$\| T(x) \|_{\operatorname{supp} T(e_{\gamma_1})} - T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|} e_{\gamma_1}) \| = \| T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|} e_{\gamma_1}) \| - \| T(x) \|_{\operatorname{supp} T(e_{\gamma_1})} \|, \quad \forall \gamma_1 \in \operatorname{supp} x.$$

Since $l^p(\Delta)$ (p > 2) is strictly convex, we get

$$T(x) \mid_{\text{supp } T(e_{\gamma_1})} = |\xi_{\gamma_1}| T(\frac{\xi_{\gamma_1}}{|\xi_{\gamma_1}|} e_{\gamma_1}) = \xi_{\gamma_1} T(e_{\gamma_1}), \quad \forall \gamma_1 \in \text{supp } x.$$

Together with (8) and (10), we obtain

$$T(x) = \sum_{\gamma \in \Gamma} \xi_{\gamma} T(e_{\gamma}), \quad \forall x = \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S[l^p(\Gamma)].$$

Thus, we immediately obtain the map $V(x) = \sum_{\gamma \in \Gamma} \lambda_{\gamma} T(e_{\gamma}), \forall x = \sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma)$ is a real linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\Delta)$ that agrees with T on $S[l^{p}(\Gamma)]$.

Corollary 3.1 Let T be an isometry from the unit sphere $S[l^p(\Gamma)]$ into $S[l^p(\Delta)]$ $(p > 1, p \neq 2)$. Then T can be extended to a real linear isometry from $l^p(\Gamma)$ into $l^p(\Delta)$.

Proof When 1 , the conclusion is obtained directly from Theorem 3.1.

If p > 2, noticing that $|| T(x) - T(-x) || = || 2x || = || T(x) || + || T(-x) ||, \forall x \in S[l^p(\Gamma)]$, we have T(-x) = -T(x). So, $-T[S(l^p(\Gamma))] \subset T[S(l^p(\Gamma))]$. By Theorem 3.3, the conclusion is valid.

References

- [1] WANG Jian. On the extension of isometries between unit spheres of AL_p -spaces (0 [J]. Proc. Amer. Math. Soc., 2004,**132**: 2899–2909.
- [2] DING Guanggui. A note on linear extension of into-isometries between two unit spheres of atomic AL_p-space (0
- [3] DING Guanggui. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space [J]. Sci. China Ser. A, 2002, 45(4): 479–483.
- [4] ROYDEN H L. Real Analysis [M]. New York: Macmillan, 1968.
- [5] DING Guanggui. The isometric extension problem in the unit spheres of $l_p(\Gamma)$ (p > 1) type spaces [J]. Sci. China Ser. A, 2003, **46**(3): 333–338.