On Extension of 1-Lipschitz Mappings between Two Unit Spheres of $l^{p}(\Gamma)$ Type Spaces $(1<p<\infty)$

FANG Xi Nian
(Department of Applied Mathematics, Audit University, Jiangsu 210029, China)
(E-mail: fxn@nau.edu.cn)

Abstract

Let T be a mapping from the unit sphere $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\Delta)\right]$ of two atomic $A L^{p}$ spaces. We prove that if T is a 1-Lipschitz mapping such that $-T\left[S\left[l^{p}(\Gamma)\right]\right] \subset T\left[S\left[l^{p}(\Gamma)\right]\right]$, then T can be linearly isometrically extended to the whole space for $p>2$; if T is injective and the inverse mapping T^{-1} is a 1-Lipschitz mapping, then T can be extended to be a linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\triangle)$ for $1<p \leq 2$.

Keywords 1-Lipschitz mapping; $l^{p}(\Gamma)$ type space; isometric extension.
Document code A
MR(2000) Subject Classification 46A22; 46B20; 46E15
Chinese Library Classification O177.3

1. Introduction

In [1] the author found "a condition under which an into-isometry T between unit spheres can be linearly isometrically extended" (for atomic $A L^{p}$-spaces, $0<p<\infty, p \neq 2$). Under the same assumption as in [1], [2] presented a short and simple proof for the isometric extension theorem of atomic $A L^{p}$-spaces, i.e., $l^{p}(\Gamma)$-type space on index set $\Gamma, l^{p}(\Gamma)=\left\{x=\left(x_{\gamma}\right) \mid x: \Gamma \longrightarrow \mathbb{R},\|x\|^{p}=\right.$ $\left.\sum_{\gamma \in \Gamma}\left|x_{\gamma}\right|^{p}\right\}(p>1, p \neq 2)$. Ding $^{[3]}$ discussed the extension problem on Hilbert spaces E and F, who proved that for any 1-Lipschitz mapping T from $S(E)$ into $S(F)$, if $-T[S(E)] \subset T[S(E)]$, then T can be extended to a real linear isometry of the whole space E. In particular, every isometric mapping from $S(E)$ into $S(F)$ can be extended to a real linear isometric mapping from E into F.

In this paper, we study the linear isometric extension of mappings between two unit spheres of atomic $A L^{p}$-spaces $(1<p<\infty)$. We obtain that for any 1-Lipschitz mapping T from the unit sphere $S\left[l^{p}(\Gamma)\right]$ of $l^{p}(\Gamma)$ into the unit sphere of $l^{p}(\Delta)(2<p<\infty)$, if $-T\left[S\left[l^{p}(\Gamma)\right]\right] \subset T\left[S\left[l^{p}(\Gamma)\right]\right]$, then T can be extended to be a real linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\triangle)$; for any mapping T from $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\triangle)\right](1<p \leq 2)$, if T is injective and the inverse mapping T^{-1} is a 1-Lipschitz mapping, then T can be extended to real linear isometry on the whole $l^{p}(\Gamma)$. In particular, any isometric mapping from $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\triangle)\right](1<p<\infty, p \neq 2)$ can be extended to be a real linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\triangle)$.The main-idea of the proofs in this paper is from the paper

Received date: 2007-05-18; Accepted date: 2008-04-22
Foundation item: the Natural Science Foundation of the Education Department of Jiangsu Province (No. 06KJD110092).
[3] and [5].

2. Some important lemmas

Definition 2.1 Let E and F be two normed spaces, the set $U \subset E$ and $V \subset F$. A mapping $T: U \longrightarrow V$ is said to be a Lipschitz mapping for the constant $k>0$, if $\|T(x)-T(y)\| \leq k \|$ $x-y \|$ for all $x, y \in U$. When $k=1$, the Lipshitz mapping is called a 1-Lipshitz mapping.

We first recall the following well-known inequalities.
Lemma 2.1 ${ }^{[4]}$ Suppose that ξ and η be two real numbers. Then

1) $|\xi+\eta|^{p}+|\xi-\eta|^{p} \geq 2\left(|\xi|^{p}+|\eta|^{p}\right)$ for every real number p satisfying that $p>2$,
2) $|\xi+\eta|^{p}+|\xi-\eta|^{p} \leq 2\left(|\xi|^{p}+|\eta|^{p}\right)$ for every real number p satisfying that $1 \leq p<2$.

Moreover, equality of signs in the obove inequalities can only hold if $\xi=0$ or $\eta=0$.
Corollary 2.1 If $x, y, \in l^{p}(\Gamma)$, then

$$
\begin{aligned}
& \|x+y\|^{p}+\|x-y\|^{p} \leq 2\left(\|x\|^{p}+\|y\|^{p}\right), \quad 1 \leq p<2 \\
& \|x+y\|^{p}+\|x-y\|^{p} \geq 2\left(\|x\|^{p}+\|y\|^{p}\right), \quad 2<p<\infty
\end{aligned}
$$

Proof Let $x=\left(x_{\gamma}\right)$ and $y=\left(y_{\gamma}\right)$. When $1 \leq p<2$, by Lemma 2.1(2), we have

$$
\begin{aligned}
\|x+y\|^{p}+\|x-y\|^{p} & =\sum_{\gamma}\left|x_{\gamma}+y_{\gamma}\right|^{p}+\sum_{\gamma}\left|x_{\gamma}-y_{\gamma}\right|^{p} \\
& =\sum_{\gamma}\left(\left|x_{\gamma}+y_{\gamma}\right|^{p}+\left|x_{\gamma}-y_{\gamma}\right|^{p}\right) \\
& \leq \sum_{\gamma} 2\left(\left|x_{\gamma}\right|^{p}+\left|y_{\gamma}\right|^{p}\right) \\
& =2\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

When $2<p<\infty$, by Lemma 2.1(1), we have $\|x+y\|^{p}+\|x-y\|^{p} \geq 2\left(\|x\|^{p}+\|y\|^{p}\right)$.
Corollary 2.2 If $x, y, \in l^{p}(\Gamma)(1 \leq p<\infty, p \neq 2)$, then

$$
(\operatorname{supp} x) \bigcap(\operatorname{supp} y)=\varnothing \Longleftrightarrow\|x+y\|^{p}+\|x-y\|^{p}=2\left(\|x\|^{p}+\|y\|^{p}\right)
$$

(here, $\operatorname{supp} x=\{\gamma \mid x(\gamma) \neq 0, \gamma \in \Gamma\}$).
Lemma 2.2 Let T be an injection from $S(E)$ into $S(F)$ (E and F are two normed spaces) such that the inverse mapping T^{-1} is a 1-Lipshitz mapping, i.e., let T satisfy $\|x-y\| \leq\|T x-T y\|$ for all $x, y \in S(E)$. If F is strictly convex, then $T(-x)=-T(x), \forall x \in S(E)$.

Proof For any $x \in S(F)$, we have

$$
2=\|2 x\|=\|x-(-x)\| \leq\|T(x)-T(-x)\| \leq 2
$$

So, $\|T(x)-T(-x)\|=2$. Since F is strictly convex, $T(-x)=-T(x)$.
Lemma 2.3 Let T be a mapping from the unit spheres $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\triangle)\right](\Gamma, \Delta$ are two
index sets). If $\|x-y\| \leq\|T x-T y\|$ for all $x, y \in S\left[l^{p}(\Gamma)\right]$, then for any $x, y \in S\left[l^{p}(\Gamma)\right]$,

$$
(\operatorname{supp} x) \bigcap(\operatorname{supp} y)=\varnothing \Longrightarrow(\operatorname{supp} T(x)) \bigcap(\operatorname{supp} T(y))=\varnothing,
$$

where $1<p<2$.
Proof By the hypothesis of the T, we have $\|x-y\| \leq\|T(x)-T(y)\|$ for all $x, y \in S\left[l^{p}(\Gamma)\right]$. Since $l^{p}(\triangle)(p>1)$ is strictly convex, by Lemma $2.2, T(-y)=-T(y)$ and so $\|x+y\|=\|x-(-y)\| \leq$ $\|T(x)-T(-y)\|=\|T(x)+T(y)\|$. Therefore, for any $x, y \in S\left[l^{p}(\Gamma)\right]$ with $(\operatorname{supp} x) \bigcap(\operatorname{supp} y)=\varnothing$, using Corollaries 2.1 and 2.2, we have

$$
\begin{aligned}
2\left(\|x\|^{p}+\|y\|^{p}\right) & =\|x+y\|^{p}+\|x-y\|^{p} \leq\|T(x)+T(y)\|^{p}+\|T(x)-T(y)\|^{p} \\
& \leq 2\left(\|T(x)\|^{p}+\|T(y)\|^{p}\right)=2\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

Which implies that $\|T(x)+T(y)\|^{p}+\|T(x)-T(y)\|^{p}=2\left(\|T(x)\|^{p}+\|T(y)\|^{p}\right)$.
So, using Corollary 2.2 again, we have $(\operatorname{supp} T(x)) \bigcap(\operatorname{supp} T(y))=\varnothing$.
Lemma 2.4 ${ }^{[3]}$ Let T be a 1-Lipschitz mapping from the unit sphere $S(E)$ into $S(F)$ (E and F are two normed spaces). If E is strcictly convex and if $-T[S(E)] \subset T[S(E)]$, then $T(-x)=-T(x)$, $\forall x \in S(E)$.

Lemma 2.5 Let T be a 1-Lipschitz mapping from the unit sphere $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\Delta)\right](2<$ $p<\infty)$. If $-T\left[S\left[l^{p}(\Gamma)\right]\right] \subset T\left[S\left[l^{p}(\Gamma)\right]\right]$, then, for any $x, y \in S\left[l^{p}(\Gamma)\right]$,

$$
(\operatorname{supp} x) \bigcap(\operatorname{supp} y)=\varnothing \Longrightarrow(\operatorname{supp} T(x)) \bigcap(\operatorname{supp} T(y))=\varnothing
$$

Proof For any $x, y \in S\left[l^{p}(\Gamma)\right]$, we have $\|T(x)-T(y)\| \leq\|x-y\|$, by Lemma $2.4, \| T(x)+$ $T(y)\|=\| T(x)-T(-y)\|\leq\| x-(-y)\|=\| x+y \|$ (notice that $l^{p}(\Gamma)(p>1)$ is strictly convex).

Hence, if $(\operatorname{supp} x) \bigcap(\operatorname{supp} y)=\varnothing$, by Corollaries 2.1 and 2.2 ,

$$
\begin{aligned}
& 2\left(\|T(x)\|^{p}+\|T(y)\|^{p}\right) \leq\|T(x)+T(y)\|^{p}+\|T(x)-T(y)\|^{p} \leq\|x+y\|^{p}+\|x-y\|^{p} \\
& \quad=2\left(\|x\|^{p}+\|y\|^{p}\right)=2\left(\|T(x)\|^{p}+\|T(y)\|^{p}\right)
\end{aligned}
$$

which implies that

$$
\|T(x)+T(y)\|^{p}+\|T(x)-T(y)\|^{p}=2\left(\|T(x)\|^{p}+\|T(y)\|^{p}\right)
$$

So, using Corollary 2.2 again, we obtain $(\operatorname{supp} T(x)) \bigcap(\operatorname{supp} T(y))=\varnothing$.

3. The main results

Now we derive the isometric extension theorem for the 1-Lipschitz mapping between two unit spheres of atomic $A L^{p}$-spaces $(1<p<\infty)$.

Theorem 3.1 Let T be a mapping from the unit spheres $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\triangle)\right](1<p<2)$. If $\|x-y\| \leq\|T x-T y\|$ for all $x, y \in S\left[l^{p}(\Gamma)\right]$, then we have

$$
T(x)=\sum_{\gamma \in \Gamma} \xi_{\gamma} T\left(e_{\gamma}\right), \quad \forall x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S\left[l^{p}(\Gamma)\right]
$$

Furthermore, the map

$$
V(x)=\sum_{\gamma \in \Gamma} \lambda_{\gamma} T\left(e_{\gamma}\right), \quad \forall x=\sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma),
$$

is a real linear isometric extension of T (here, $e_{\gamma}=\left\{\xi_{\gamma^{\prime}} \mid \xi_{\gamma}=1, \xi_{\gamma^{\prime}}=0, \gamma^{\prime} \neq \gamma, \gamma^{\prime} \in \Gamma\right\}$).
Proof For any $x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S\left[l^{p}(\Gamma)\right]$, when $\xi_{\gamma_{1}} \neq 0$, we have

$$
\begin{align*}
\| & x+\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\left\|^{p}=\right\| \sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma}+\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}} \|^{p} \\
& =\left\|\sum_{\gamma \neq \gamma_{1}} \xi_{\gamma} e_{\gamma}+\left(\xi_{\gamma_{1}}+\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|}\right) e_{\gamma_{1}}\right\|^{p}=\sum_{\gamma \neq \gamma_{1}}\left|\xi_{\gamma}\right|^{p}+\left|\xi_{\gamma_{1}}+\frac{\xi_{\gamma_{1}}}{\mid \xi_{\gamma_{1}}}\right|^{p} \\
& =1-\left|\xi_{\gamma_{1}}\right|^{p}+\left(1+\left|\xi_{\gamma_{1}}\right|\right)^{p} . \tag{1}
\end{align*}
$$

By Lemmas 2.2 and 2.3, $T\left(-e_{\gamma}\right)=-T\left(e_{\gamma}\right), \forall \gamma \in \Gamma,\left(\operatorname{supp} T\left(e_{\gamma}\right)\right) \bigcap\left(\operatorname{supp} T\left(e_{\gamma^{\prime}}\right)\right)=\varnothing$, $\gamma \neq \gamma^{\prime}, \gamma, \gamma^{\prime} \in \Gamma$. Hence, we can put

$$
\begin{equation*}
T(x)=\left.\Sigma_{\gamma \in \Gamma} T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}+y\left(\text { here } y=\left.T(x)\right|_{\Delta \backslash \cup_{\gamma \in \Gamma} \operatorname{supp} T\left(e_{\gamma}\right)}\right) \tag{2}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \left\|T(x)+T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|^{p}=1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}+T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|^{p} \\
& \quad \leq 1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left(\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|+\left\|T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|\right)^{p} \\
& \quad=1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left(1+\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|\right)^{p} \tag{3}
\end{align*}
$$

Noticing the assumption of T and Lemma 2.2, we obtain

$$
\begin{equation*}
1-\left|\xi_{\gamma_{1}}\right|^{p}+\left(1+\left|\xi_{\gamma_{1}}\right|\right)^{p} \leq 1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left(1+\|\left. T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)} \mid\right)^{p} \tag{4}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\left(1+\left|\xi_{\gamma_{1}}\right|\right)^{p}-\left|\xi_{\gamma_{1}}\right|^{p} \leq\left(1+\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|\right)^{p}-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p} \tag{5}
\end{equation*}
$$

Recall that the function $f(t)=(1+t)^{p}-t^{p}$ is strictly increasing in R^{+}when $p>1$. Therefore, by (5), we get

$$
\left|\xi_{\gamma_{1}}\right| \leq\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|, \quad \forall \gamma_{1} \in \operatorname{supp} x
$$

Moreover, it follows from

$$
\begin{aligned}
\sum_{\gamma \in \Gamma}\left|\xi_{\gamma}\right|^{p} & =\|x\|^{p}=\|T(x)\|^{p}=\left\|\left.\sum_{\gamma \in \Gamma} T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}+y\right\|^{p} \\
& =\sum_{\gamma \in \Gamma}\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}\right\|^{p}+\|y\|^{p}
\end{aligned}
$$

that $y=0$ and

$$
\begin{equation*}
\left|\xi_{\gamma}\right|=\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}\right\|, \quad \forall \gamma \in \Gamma \tag{6}
\end{equation*}
$$

Hence, (4) is an equality. By (1), (3) and (4), (3) is also an equality. The equality (3) implies that

$$
\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}+T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|=\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|+\left\|T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|
$$

Since $l^{p}(\Delta)(p>1)$ is strictly convex,

$$
\begin{equation*}
\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}=\left|\xi_{\gamma_{1}}\right| T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)=\xi_{\gamma_{1}} T\left(e_{\gamma_{1}}\right), \quad \forall \gamma_{1} \in \operatorname{supp} x \tag{7}
\end{equation*}
$$

From (2), (6) and (7), we find

$$
T(x)=\sum_{\gamma \in \Gamma} \xi_{\gamma} T\left(e_{\gamma}\right), \quad \forall x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S\left[l^{p}(\Gamma)\right]
$$

Thus we immediately obtain that the real linear isometric extension of T as follows:

$$
V(x)=\sum_{\gamma \in \Gamma} \lambda_{\gamma} T\left(e_{\gamma}\right), \forall x=\sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma)
$$

Theorem 3.2 Let T be a mapping from the unit spheres $S(E)$ into $S(F)$ (E and F are two Hilbert spaces). If $\|x-y\| \leq\|T x-T y\|$ for all $x, y \in S(E)$, then T can be extended to a real linear isometry from E into F.

Proof Since E and F are Hilbert spaces, by the "parallelogram law", we have

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

and $\|T(x)+T(y)\|^{2}+\|T(x)-T(y)\|^{2}=2\left(\|T(x)\|^{2}+\|T(y)\|^{2}\right)$, for any $x, y \in S(E)$. By the assumption of T and Lemma 2.2, we have $\|x-y\| \leq\|T(x)-T(y)\|$ and $\|x+y\| \leq\|T(x)+T(y)\|$. So,

$$
\begin{aligned}
2\left(\|x\|^{2}+\|y\|^{2}\right) & =\|x+y\|^{2}+\|x-y\|^{2} \leq\|T(x)+T(y)\|^{2}+\|T(x)-T(y)\|^{2} \\
& =2\left(\|T(x)\|^{2}+\|T(y)\|^{2}\right)=2\left(\|x\|^{2}+\|y\|^{2}\right)
\end{aligned}
$$

which means that $\|x-y\|=\|T(x)-T(y)\|, \forall x, y \in S(E)$, i.e., T is an isometry from $S(E)$ into $S(F)$. Thus, by [3], T can be extended to a real linear isometry from E into F.

Theorem 3.3 Let T be a 1-Lipschitz mapping from the unit sphere $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\Delta)\right](2<$ $p<\infty)$. If $-T\left[S\left(l^{p}(\Gamma)\right)\right] \subset T\left[S\left(l^{p}(\Gamma)\right)\right]$, then we have $T(x)=\sum_{\gamma \in \Gamma} \xi_{\gamma} T\left(e_{\gamma}\right), \forall x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in$ $S\left[l^{p}(\Gamma)\right]$. Furthermore, the map $V(x)=\sum_{\gamma \in \Gamma} \lambda_{\gamma} T\left(e_{\gamma}\right), \forall x=\sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma)$ is a real linear isometric extension of T.

Proof For each $x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S\left[l^{p}(\Gamma)\right]$, from the above assumption and Lemmas 2.4 and 2.5, we can put

$$
\begin{equation*}
T(x)=\left.\Sigma_{\gamma \in \Gamma} T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}+y\left(y=\left.T(x)\right|_{\Delta \backslash \cup_{\gamma \in \Gamma} \operatorname{supp} T\left(e_{\gamma}\right)}\right) \tag{8}
\end{equation*}
$$

Similarly to the proof of Theorem 3.1, we have, for each $\gamma_{1} \in \operatorname{supp} x$,

$$
\begin{align*}
1 & -\left|\xi_{\gamma_{1}}\right|^{p}+\left(1-\left|\xi_{\gamma_{1}}\right|\right)^{p}=\left\|x-\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right\|^{p} \geq\left\|T(x)-T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|^{p} \\
& =1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}-T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|^{p} \\
& \geq 1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|^{p}+\left(1-\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|\right)^{p} \tag{9}
\end{align*}
$$

Notice that the function $g(t)=(1-t)^{p}-t^{p}$ is decreasing in $[0,1]$, so that from the above inequality
we can derive

$$
\left|\xi_{\gamma_{1}}\right| \leq\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right\|, \quad \forall \gamma_{1} \in \operatorname{supp} x .
$$

It follows from

$$
\sum_{\gamma \in \Gamma}\left|\xi_{\gamma}\right|^{p}=\|x\|^{p}=\|T(x)\|^{p}=\left\|\left.\sum_{\gamma \in \Gamma} T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}+y\right\|^{p}=\sum_{\gamma \in \Gamma}\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma}\right)}\right\|^{p}+\|y\|^{p}
$$

that $y=0$ and

$$
\begin{equation*}
\left|\xi_{\gamma}\right|=\left\|T(x) \mid \operatorname{supp} T\left(e_{\gamma}\right)\right\|, \quad \forall \gamma \in \Gamma . \tag{10}
\end{equation*}
$$

Hence, (9) is an equality and so

$$
\left.\left\|\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}-T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)\right\|=\left\|T\left(\frac{\xi_{\gamma_{1}}}{\mid \xi_{\gamma_{1} \mid}} e_{\gamma_{1}}\right)\right\|-\|\left. T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}\right) \|, \quad \forall \gamma_{1} \in \operatorname{supp} x .
$$

Since $l^{p}(\Delta)(p>2)$ is strictly convex, we get

$$
\left.T(x)\right|_{\operatorname{supp} T\left(e_{\gamma_{1}}\right)}=\left|\xi_{\gamma_{1}}\right| T\left(\frac{\xi_{\gamma_{1}}}{\left|\xi_{\gamma_{1}}\right|} e_{\gamma_{1}}\right)=\xi_{\gamma_{1}} T\left(e_{\gamma_{1}}\right), \quad \forall \gamma_{1} \in \operatorname{supp} x .
$$

Together with (8) and (10), we obtain

$$
T(x)=\sum_{\gamma \in \Gamma} \xi_{\gamma} T\left(e_{\gamma}\right), \quad \forall x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in S\left[l^{p}(\Gamma)\right] .
$$

Thus, we immediately obtain the map $V(x)=\sum_{\gamma \in \Gamma} \lambda_{\gamma} T\left(e_{\gamma}\right), \forall x=\sum_{\gamma \in \Gamma} \lambda_{\gamma} e_{\gamma} \in l^{p}(\Gamma)$ is a real linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\Delta)$ that agrees with T on $S\left[l^{p}(\Gamma)\right]$.

Corollary 3.1 Let T be an isometry from the unit sphere $S\left[l^{p}(\Gamma)\right]$ into $S\left[l^{p}(\Delta)\right](p>1, p \neq 2)$.
Then T can be extended to a real linear isometry from $l^{p}(\Gamma)$ into $l^{p}(\Delta)$.
Proof When $1<p<2$, the conclusion is obtained directly from Theorem 3.1.
If $p>2$, noticing that $\|T(x)-T(-x)\|=\|2 x\|=\|T(x)\|+\|T(-x)\|, \forall x \in S\left[l^{p}(\Gamma)\right]$, we have $T(-x)=-T(x)$. So, $-T\left[S\left(l^{p}(\Gamma)\right)\right] \subset T\left[S\left(l^{p}(\Gamma)\right)\right]$. By Theorem 3.3, the conclusion is valid.

References

[1] WANG Jian. On the extension of isometries between unit spheres of $A L_{p}$-spaces $(0<p<\infty)$ [J]. Proc. Amer. Math. Soc., 2004, 132: 2899-2909.
[2] DING Guanggui. A note on linear extension of into-isometries between two unit spheres of atomic $A L_{p}$-space $(0<p<\infty)[J]$. Acta Math. Sin. (Engl. Ser.), 2006, 22(1): 279-282.
[3] DING Guanggui. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space [J]. Sci. China Ser. A, 2002, 45(4): 479-483.
[4] ROYDEN H L. Real Analysis [M]. New York: Macmillan, 1968.
[5] DING Guanggui. The isometric extension problem in the unit spheres of $l_{p}(\Gamma)(p>1)$ type spaces [J]. Sci. China Ser. A, 2003, 46(3): 333-338.

