Solvability of Multi-Point Boundary Value Problem

ZHANG Hui Xing, LIU Wen Bin, ZHANG Jian Jun, CHEN Tai Yong
(Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China)
(E-mail: huixingzhangcumt@163.com)
Abstract This paper deals with the existence of solutions for the problem

$$
\left\{\begin{array}{l}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0,1), \\
u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{n-2} a_{i} u\left(\eta_{i}\right),
\end{array}\right.
$$

where $\phi_{p}(s)=|s|^{p-2} s, p>1.0<\eta_{1}<\eta_{2}<\cdots<\eta_{n-2}<1, a_{i}(i=1,2, \ldots, n-2)$ are non-negative constants and $\sum_{i=1}^{n-2} a_{i}=1$. Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.
Keywords p-Laplace; multi-point boundary value problem; resonance; degree theory.
Document code A
MR(2000) Subject Classification 34B25; 34C25
Chinese Library Classification O175

1. Introduction

We consider the existence of solutions for multi-point boundary value problem (BVP)

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0,1) \tag{1.1}\\
u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{n-2} a_{i} u\left(\eta_{i}\right) \tag{1.2}
\end{gather*}
$$

where $\phi_{p}(s)=|s|^{p-2} s, p>1.0<\eta_{1}<\eta_{2}<\cdots<\eta_{n-2}<1, a_{i}(i=1,2, \ldots, n-2)$ are nonnegative constants and $\sum_{i=1}^{n-2} a_{i}=1$. Eq.(1.1) is widely applied in mechanics and physics ${ }^{[1-3]}$. When $p=2$, Eq.(1.1) reduces to $u^{\prime \prime}=f\left(t, u, u^{\prime}\right)$.

In recent years, p-Laplace equation associated with various boundary value conditions has been studied ${ }^{[4-10]}$. For example, Carcía-huidobro and Gupta ${ }^{[7]}$ discussed (1.1) with boundary conditions

$$
u^{\prime}(0)=0, \quad u(1)=u(\eta), \quad \eta \in(0,1)
$$

under the following assumptions
$\left(\mathrm{A}_{1}\right)$ There are nonnegative functions $d_{1}(t), d_{2}(t)$, and $r(t) \in L^{1}[0,1]$ such that

$$
|f(t, u, v)| \leq d_{1}(t)|u|^{p-1}+d_{2}(t)|v|^{p-1}+r(t), \text { for a.e. } t \in[0,1], u, v \in \mathbb{R}
$$

Received date: 2007-05-08; Accepted date: 2007-11-22
Foundation item: the National Natural Science Foundation of China (No. 10771212); the Foundation of China University of Mining and Technology (Nos. 2005A041; 2006A042; 2008A037).
$\left(\mathrm{A}_{2}\right)$ There exists $u_{0}>0$, such that for all $|u|>u_{0}, t \in[0,1]$ and $v \in \mathbb{R}$

$$
|f(t, u, v)| \geq \Lambda|u|^{p-1}-A|v|^{p-1}-B
$$

where $\Lambda>0$, and $A, B \geq 0$ are constants;
$\left(\mathrm{A}_{3}\right)$ There is $R>0$ such that for all $|u|>R$

$$
u f(t, u, 0)>0 \text {, a.e. } t \in[0,1], \quad u f(t, u, 0)<0 \text {, a.e. } t \in[0,1]
$$

as well as the other conditions.
In this paper, we discuss the solvability of (1.1)-(1.2) and obtain the following result.
Theorem 3.1 Suppose that $f:[0,1] \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is continuous and has the decomposition

$$
f(t, u, v)=g(t, u, v)+h(t, u, v)
$$

which satisfies the following assumptions:
$\left(H_{1}\right)$ There exist $r_{1}<0, r_{2}>0$, such that

$$
f\left(t, r_{1}, 0\right) \leq 0, \quad f\left(t, r_{2}, 0\right) \geq 0, \quad \text { for all } t \in[0,1]
$$

$\left(H_{2}\right) v g(t, u, v) \leq 0$ for all $(t, u) \in[0,1] \times\left[r_{1}, r_{2}\right],|v|>1$;
$\left(H_{3}\right) \quad|h(t, u, v)| \leq a(t)|v|^{m}+b(t)$ for all $(t, u, v) \in[0,1] \times\left[r_{1}, r_{2}\right] \times \mathbb{R}$, where $a(t), b(t) \in$ $L^{1}\left([0,1], \mathbb{R}^{+}\right)$.
Then there exists at least one solution for BVP (1.1)-(1.2), provided that

$$
\begin{equation*}
p-1<m<\left(1+\frac{1}{\|a\|_{1}+\|b\|_{1}+r}\right)(p-1) \tag{1.3}
\end{equation*}
$$

where $r=\max \left\{-r_{1}, r_{2}\right\}$.
Remark 1.1 When $p=2, n=3$, BVP (1.1)-(1.2) becomes

$$
\begin{gather*}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0,1) \tag{1.4}\\
u^{\prime}(0)=0, \quad u(1)=u(\eta), \quad \eta \in(0,1) \tag{1.5}
\end{gather*}
$$

Feng and Webb in [10] proved that BVP (1.4)-(1.5) has at least a solution under the following assumptions
$\left(\mathrm{B}_{1}\right)$ There exists a constant $M \geq 0$ such that

$$
u f(t, u, 0)>0, \text { for all }|u|>M, t \in[0,1] ;
$$

$\left(\mathrm{B}_{2}\right) \quad v g(t, u, v) \leq 0$ for all $(t, u, v) \in[0,1] \times[-M, M] \times \mathbb{R}$;
$\left(\mathrm{B}_{3}\right)|h(t, u, v)| \leq a(t)|u|+b(t)|v|+c(t)|u|^{r}+d(t)|v|^{k}+e(t)$ for all $(t, u, v) \in[0,1] \times[-M, M] \times \mathbb{R}$, where $0 \leq r, k<1, a, b, c, d, e \in L^{1}[0,1]$ and $\|b\|_{1}<\frac{1}{2}$.

It is easy to see that the conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ in $[7]$ and $\left(\mathrm{B}_{1}\right)-\left(\mathrm{B}_{3}\right)$ in [10] are stronger than the ones of Theorem 3.1. To some extent, we improve the results of [7] and [10].

2. Auxiliary results

From now on, we use the classical spaces $C[0,1], C^{1}[0,1]$ and $L^{1}[0,1]$. Define the norm in $C[0,1]$ by $\|\cdot\|_{\infty}$ and in $L^{1}[0,1]$ by $\|\cdot\|_{1}$. Moreover, we shall need the following lemmas.

Lemma 2.1 ${ }^{[11]}$ Let $a<b, u(t) \in C([a, b],[0,+\infty))$ and $v(t) \in L^{1}([a, b],[0,+\infty))$. Suppose that there exists a constant $c \geq 0$ and a function $\omega(t)$ such that
(1) $\int_{a}^{b} v(t) \omega(u(t)) \mathrm{d} t<+\infty$;
(2) $u(t) \leq c+\int_{a}^{t} v(s) \omega(u(s)) \mathrm{d} s$, for all $t \in[a, b]$.

Then

$$
\int_{c}^{u(t)} \frac{\mathrm{d} s}{\omega(s)} \leq \int_{a}^{t} v(s) \mathrm{d} s, \quad \text { for all } t \in[a, b]
$$

where $\omega \in C([0,+\infty),[0,+\infty))$ is increasing.
In Lemma 2.1, if the assumption (2) is replaced by

$$
u(t) \leq c+\int_{t}^{b} v(s) \omega(u(s)) \mathrm{d} s, \quad \text { for all } t \in[a, b]
$$

then

$$
\int_{c}^{u(t)} \frac{\mathrm{d} s}{\omega(s)} \leq \int_{t}^{b} v(s) \mathrm{d} s, \quad \text { for all } t \in[a, b]
$$

Consider the auxiliary boundary value problem

$$
\begin{gather*}
\left(\phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)\right)^{\prime}=f^{*}\left(t, u, u^{\prime}, \lambda\right), \quad \lambda \in(0,1] \tag{2.1}\\
u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{n-2} a_{i} u\left(\eta_{i}\right) \tag{2.2}
\end{gather*}
$$

where $0<\eta_{1}<\eta_{2}<\cdots<\eta_{n-2}<1$, $a_{i}(i=1,2, \ldots, n-2)$ are non-negative constants and $\sum_{i=1}^{n-2} a_{i}=1, f^{*}:[0,1] \times \mathbb{R}^{2} \times[0,1] \longrightarrow \mathbb{R}$ is continuous and

$$
\begin{equation*}
f^{*}(t, r, s, 1)=f(t, r, s), \quad \text { for all }(t, r, s) \in[0,1] \times \mathbb{R}^{2} \tag{2.3}
\end{equation*}
$$

Lemma 2.2 Suppose (2.3) holds. Furthermore, let $\Omega \subset C^{1}[0,1]$ be an open bounded set. Assume that
$\left(C_{1}\right)$ There exists no solution u of $B V P(2.1)-(2.2), 0<\lambda<1$, such that $u \in \partial \Omega$;
$\left(C_{2}\right)$ The equation

$$
F(s):=\sum_{i=1}^{n-2} a_{i} \int_{\eta_{i}}^{1} \phi_{p}^{-1}\left(\int_{0}^{\tau} f^{*}(t, s, 0,0) \mathrm{d} t\right) \mathrm{d} \tau=0
$$

has no solution on $\partial \Omega \cap \mathbb{R}$;
$\left(C_{3}\right)$ The Brouwer degree $\operatorname{deg}_{B}(F, \Omega \cap \mathbb{R}, 0) \neq 0$.
Then BVP (1.1)-(1.2) has at least one solution in $\bar{\Omega}$.
The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [7], so we omit it.

3. Existence results

Theorem 3.1 Suppose that the assumptions $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied. Then there exists at least one solution for $B V P$ (1.1)-(1.2), provided that

$$
p-1<m<\left(1+\frac{1}{\|a\|_{1}+\|b\|_{1}+r}\right)(p-1)
$$

where $r=\max \left\{-r_{1}, r_{2}\right\}$.

Proof For all $(t, u, v) \in[0,1] \times \mathbb{R}^{2}$, define the function \bar{f} by

$$
\bar{f}(t, u, v)= \begin{cases}f\left(t, r_{2}, v\right), & \text { if } u>r_{2} \\ f(t, u, v), & \text { if } r_{1} \leq u \leq r_{2} \\ f\left(t, r_{1}, v\right), & \text { if } u<r_{1}\end{cases}
$$

Then, the modified problem corresponding to BVP (1.1)-(1.2) is

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=\bar{f}\left(t, u, u^{\prime}\right), \quad t \in(0,1) \tag{3.2}\\
u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{n-2} a_{i} u\left(\eta_{i}\right) \tag{3.3}
\end{gather*}
$$

Consider the homotopy problem (2.1)-(2.2), where

$$
f^{*}\left(t, u, u^{\prime}, \lambda\right)=\lambda u+(1-\lambda) \bar{f}\left(t, u, u^{\prime}\right)
$$

Step 1. Let $u(t)$ be a solution for BVP (2.1)-(2.2). Then we have

$$
r_{1}<u(t)<r_{2} \text { for all } t \in[0,1], \lambda \in(0,1] .
$$

Otherwise, there exists a point $t_{0} \in[0,1)$ such that

$$
u\left(t_{0}\right)=\min _{t \in[0,1]} u(t) \leq r_{1} \quad \text { or } \quad u\left(t_{0}\right)=\max _{t \in[0,1]} u(t) \geq r_{2} .
$$

Without loss of generality, we suppose $u\left(t_{0}\right)=\max _{t \in[0,1]} u(t) \geq r_{2}$ holds, so there are three cases as follows:

Case 1 Let $t_{0} \in(0,1)$. We have $u^{\prime}\left(t_{0}\right)=0$ and

$$
\begin{aligned}
\left.u\left(t_{0}\right)\left(\phi_{p}\left(\frac{u^{\prime}(t)}{\lambda}\right)\right)^{\prime}\right|_{t=t_{0}} & =u\left(t_{0}\right) f^{*}\left(t_{0}, u\left(t_{0}\right), 0, \lambda\right) \\
& =\lambda\left(u\left(t_{0}\right)\right)^{2}+(1-\lambda) u\left(t_{0}\right) f\left(t_{0}, r_{2}, 0\right)>0
\end{aligned}
$$

Then, there exists a positive constant $\delta>0$ such that $\left(\phi_{p}\left(\frac{u^{\prime}(t)}{\lambda}\right)\right)^{\prime}>0$, for all $t \in\left(t_{0}, t_{0}+\delta\right)$. This implies that $\left.\phi_{p}\left(\frac{u^{\prime}(t)}{\lambda}\right)\right)$ is increasing in $\left(t_{0}, t_{0}+\delta\right)$. Thus

$$
\phi_{p}\left(u^{\prime}(t)\right)>\phi_{p}\left(u^{\prime}\left(t_{0}\right)\right)=\phi_{p}(0)=0, \text { for all } t \in\left(t_{0}, t_{0}+\delta\right) .
$$

By the monotonicity of ϕ_{p}, we have $u^{\prime}(t)>0$, for all $t \in\left(t_{0}, t_{0}+\delta\right)$. That is, $u(t)$ is increasing in $\left(t_{0}, t_{0}+\delta\right)$. This is a contradiction.

Case 2 Let $t_{0}=0$. Then we have

$$
\left.u(0)\left(\phi_{p}\left(\frac{u^{\prime}(t)}{\lambda}\right)\right)^{\prime}\right|_{t=0}=\lambda(u(0))^{2}+(1-\lambda) u(0) f\left(0, r_{2}, 0\right)>0
$$

Similar to above process, we can obtain a contradiction.
Case 3 Let $t_{0}=1$. Combining with the boundary condition (3.3), we know that there exists $\eta \in(0,1)$ such that $u(1)=u(\eta)$. Similar to Case 1 , we can obtain a contradiction.

Step 2. We prove that there exists a positive constant M_{0} such that $\left\|u^{\prime}\right\|_{\infty} \leq M_{0}$.
Let $\left\|u^{\prime}\right\|_{\infty} \leq 1$. Then $u^{\prime}(t)$ has a prior bounds. Otherwise, let $\left\|u^{\prime}\right\|_{\infty}>1$, that is, there exists a point $t_{0} \in(0,1]$ such that $\left|u^{\prime}\left(t_{0}\right)\right|=\left\|u^{\prime}\right\|_{\infty}>1$.

This together with the continuity of $u^{\prime}(t)$ and $u^{\prime}(0)=0$ implies that there exists an interval $[\mu, \nu] \subset[0,1], t_{0} \in[\mu, \nu]$ such that $\left|u^{\prime}(\mu)\right|=1$ and $\left|u^{\prime}(t)\right| \geq 1$, for all $t \in[\mu, \nu]$. Without loss of generality, we assume that $u^{\prime}(t) \geq 1$ holds, for all $t \in[\mu, \nu]$.

Multiplying (2.1) by $\phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)$ and integrating on both sides of it from μ to t, we obtain

$$
\int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)\left(\phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)\right)^{\prime} \mathrm{d} s=\int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}}{\lambda}\right) f^{*}\left(s, u, u^{\prime}, \lambda\right) \mathrm{d} s
$$

that is,

$$
\frac{1}{2} \phi_{p}^{2}\left(\frac{u^{\prime}(t)}{\lambda}\right)-\frac{1}{2} \phi_{p}^{2}\left(\frac{u^{\prime}(\mu)}{\lambda}\right)=\int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)\left[\lambda u+(1-\lambda) \bar{f}\left(s, u, u^{\prime}\right)\right] \mathrm{d} s
$$

Since $r_{1}<u(t)<r_{2}$, for all $t \in[0,1]$, we have

$$
\begin{aligned}
\left|\frac{u^{\prime}(t)}{\lambda}\right|^{2 p-2}= & \left|\frac{1}{\lambda}\right|^{2 p-2}+2 \int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}}{\lambda}\right)\left[\lambda u+(1-\lambda) f\left(s, u, u^{\prime}\right)\right] \mathrm{d} s \\
= & \left|\frac{1}{\lambda}\right|^{2 p-2}+2 \int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}(s)}{\lambda}\right)\left[\lambda u+(1-\lambda) g\left(s, u, u^{\prime}\right)\right] \mathrm{d} s+ \\
& 2 \int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}(s)}{\lambda}\right)\left[(1-\lambda) h\left(s, u, u^{\prime}\right)\right] \mathrm{d} s
\end{aligned}
$$

By the assumption $\left(\mathrm{H}_{2}\right)$ and $r_{1}<u(t)<r_{2}$, for $t \in[0,1]$, we get

$$
\int_{\mu}^{t} \phi_{p}\left(\frac{u^{\prime}}{\lambda}\right) g\left(s, u, u^{\prime}\right) \mathrm{d} s=\int_{\mu}^{t}\left|\frac{u^{\prime}}{\lambda}\right|^{p-2} \frac{u^{\prime}}{\lambda} g\left(s, u, u^{\prime}\right) \mathrm{d} s \leq 0
$$

so

$$
\begin{aligned}
\left|u^{\prime}(t)\right|^{2 p-2} & \leq 1+2 \int_{\mu}^{t} \lambda^{2 p-2} \phi_{p}\left(\left|\frac{u^{\prime}}{\lambda}\right|\right)\left|\lambda u(s)+(1-\lambda) h\left(s, u, u^{\prime}\right)\right| \mathrm{d} s \\
& \leq 1+2 \int_{\mu}^{t}\left|u^{\prime}\right|^{p-1}\left(r+a(s)\left|u^{\prime}\right|^{m}+b(s)\right) \mathrm{d} s
\end{aligned}
$$

where $r=\max \left\{\left|r_{1}\right|,\left|r_{2}\right|\right\}$. By $\left|u^{\prime}(t)\right| \geq 1$, for $t \in[\mu, \nu]$

$$
\left|u^{\prime}(t)\right|^{2 p-2} \leq 1+2 \int_{\mu}^{t}\left|u^{\prime}\right|^{m+p-1}(r+a(s)+b(s)) \mathrm{d} s, \quad \text { for all } t \in[\mu, \nu]
$$

For convenience, we write

$$
z(t)=\left|u^{\prime}(t)\right|^{2 p-2}, \omega(t)=t^{\frac{m+p-1}{2 p-2}}, v(t)=2(a(t)+b(t)+r)
$$

Then

$$
\int_{\mu}^{\nu} v(s) \omega(z(s)) \mathrm{d} s<+\infty \text { and } z(t) \leq 1+\int_{\mu}^{t} v(s) \omega(z(s)) \mathrm{d} s, \quad \text { for all } t \in[\mu, \nu] .
$$

By Lemma 2.1, we can conclude that

$$
\int_{1}^{z(t)} \frac{d s}{\omega(s)} \leq \int_{\mu}^{t} v(s) \mathrm{d} s, \quad \text { for all } t \in[\mu, \nu]
$$

So

$$
\int_{1}^{z(t)} s^{-\frac{m+p-1}{2 p-2}} \mathrm{~d} s \leq \int_{\mu}^{t} v(s) \mathrm{d} s \leq 2 \int_{0}^{1}(r+a(s)+b(s)) \mathrm{d} s
$$

$$
\leq 2\left(\|a\|_{1}+\|b\|_{1}+r\right):=M_{1}, \quad \text { for all } t \in[\mu, \nu] .
$$

By the assumption $\left(\mathrm{H}_{3}\right)$ and (1.3), we have

$$
\int_{1}^{+\infty} s^{-\frac{m+p-1}{2 p-2}} \mathrm{~d} s>2\left(\|a\|_{1}+\|b\|_{1}+r\right)
$$

This inequality implies that there exists a constant M_{2} (independent of λ) such that $z(t) \leq M_{2}$, that is, $\left|u^{\prime}(t)\right| \leq\left(M_{2}\right)^{\frac{1}{2 p-2}}:=M_{3}$, for all $t \in[\mu, \nu]$. Put $M_{0}=\max \left\{1, M_{3}\right\}$ (independent of λ), then $\left|u^{\prime}\right|_{\infty} \leq M_{0}$.

Step 3. By using Lemma 2.2, we prove that BVP (3.2)-(3.3) has at least one solution. Put

$$
\Omega=\left\{u(t) \in C^{1}[0,1]: r_{1}<u(t)<r_{2}, t \in[0,1] ;\left\|u^{\prime}\right\|_{\infty}<M_{0}+1\right\}
$$

It is clear that the assumption $\left(\mathrm{C}_{1}\right)$ of Lemma 2.2 is satisfied.
By the assumption $\left(\mathrm{H}_{1}\right)$ and (3.1), we deduce

$$
f^{*}\left(t, r_{1}, 0,0\right)=\bar{f}\left(t, r_{1}, 0\right) \leq 0, \quad f^{*}\left(t, r_{2}, 0,0\right)=\bar{f}\left(t, r_{2}, 0\right) \geq 0
$$

Combining with the monotonicity of ϕ_{p} yields

$$
\begin{aligned}
& \left.F\left(r_{1}\right)=\sum_{i=1}^{n-2} a_{i} \int_{\eta_{i}}^{1} \phi_{p}^{-1}\left(\int_{0}^{\tau} f^{*}\left(t, r_{1}, 0,0\right) \mathrm{d} t\right) \mathrm{d} \tau\right) \leq 0 \\
& \left.F\left(r_{2}\right)=\sum_{i=1}^{n-2} a_{i} \int_{\eta_{i}}^{1} \phi_{p}^{-1}\left(\int_{0}^{\tau} f^{*}\left(t, r_{2}, 0,0\right) \mathrm{d} t\right) \mathrm{d} \tau\right) \geq 0
\end{aligned}
$$

If $F\left(r_{1}\right) \cdot F\left(r_{2}\right)=0$, we can conclude that BVP (1.1)-(1.2) has at least one solution r_{1} or r_{2}. Otherwise, $F\left(r_{1}\right) F\left(r_{2}\right)<0$, which implies the assumption $\left(\mathrm{C}_{2}\right)$ of Lemma 2.2 holds. By the property of Brouwer degree, we have $\operatorname{deg}_{B}(F, \Omega \cap \mathbb{R}, 0)=1$. So the assumption $\left(\mathrm{C}_{3}\right)$ of Lemma 2.2 is satisfied. By Lemma 2.2, we prove that BVP (3.2)-(3.3) has at least one solution $u(t)$ satisfying $r_{1}<u(t)<r_{2}$, for all $t \in[0,1]$. This implies that BVP (1.1)-(1.2) has at least one solution. The proof is completed.

Theorem 3.2 Let assumptions $\left(H_{1}\right)-\left(H_{3}\right)$ be satisfied. Furthermore, suppose the following inequality
$\left(H_{4}\right) f\left(t, u_{1}, v_{1}\right)>f\left(t, u_{2}, v_{2}\right)$, for all $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}, u_{1}>u_{2}, v_{1} \leq v_{2}$
holds. Then there exists a unique solution for BVP (1.1)-(1.2).
Proof We have proved that BVP (1.1)-(1.2) has at least one solution in Theorem 3.1. Next, we will obtain the uniqueness of the solution for BVP (1.1)-(1.2) by $\left(\mathrm{H}_{4}\right)$.

Assume to the contrary that there exist two different solutions $x(t), y(t)$ of $\mathrm{BVP}(1.1)-$ (1.2). Let $z(t)=x(t)-y(t)$. By the condition (1.2), there exists some $t_{0} \in[0,1)$ such that $z\left(t_{0}\right)=\max _{t \in[0,1]} z(t)>0$.

Case 1 If $t_{0} \in(0,1)$, then $z^{\prime}\left(t_{0}\right)=0, z\left(t_{0}\right)>0$. By the continuity of $z^{\prime}(t), z(t)$, there exists an interval $\left[t_{0}, t_{1}\right]$ such that $z(s)>0, z^{\prime}(s) \leq 0$, for all $s \in\left[t_{0}, t_{1}\right]$.

Since

$$
\left(\phi_{p}\left(x^{\prime}\right)-\phi_{p}\left(y^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)-f\left(t, y, y^{\prime}\right)
$$

by $\left(\mathrm{H}_{4}\right)$, we have

$$
\int_{t_{0}}^{s}\left(\phi_{p}\left(x^{\prime}(t)\right)-\phi_{p}\left(y^{\prime}(t)\right)\right)^{\prime} \mathrm{d} t=\int_{t_{0}}^{s}\left(f\left(t, x(t), x^{\prime}(t)\right)-f\left(t, y(t), y^{\prime}(t)\right)\right) \mathrm{d} t>0, \quad \text { for all } s \in\left[t_{0}, t_{1}\right]
$$

Combining with the monotonicity of ϕ_{p}, we have $z^{\prime}(s)=x^{\prime}(s)-y^{\prime}(s)>0$, for all $s \in\left[t_{0}, t_{1}\right]$. This is a contradiction.

Case 2 If $t_{0}=0$, then $z^{\prime}(0)=0, z(0)>0$. By the continuity of $z^{\prime}(t), z(t)$, there exists an interval $\left[0, t_{2}\right]$ such that $z(s)>0, z^{\prime}(s) \leq 0$, for all $s \in\left[0, t_{2}\right]$. Similar to above process, we obtain $z^{\prime}(s)=x^{\prime}(s)-y^{\prime}(s)>0$, for all $s \in\left[0, t_{2}\right]$. This is a contradiction.

Combining with the two cases, we deduce that BVP (1.1)-(1.2) has a unique solution.
Especially, let $\eta_{i} \rightarrow 1, i=1,2, \ldots, n-2$. We can obtain the following result.
Corollary 3.1 Suppose the assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ in Theorem 3.2 hold. Then the following Neumann BVP

$$
\begin{gathered}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0,1) \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{gathered}
$$

has at least one solution.

References

[1] LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium [C]. Izvestia Akad. Nauk SSSR, Geograhy and Geophysics, IX, 1983, 7-10. (In Russian)
[2] BOBISUD L E. Steady-state turbulent flow with reaction [J]. Rocky Mountain J. Math., 1991, 21(3): 9931007.
[3] HERRERO M A, VÁZQUEZ J L. On the propagation properties of a nonlinear degenerate parabolic equation [J]. Comm. Partial Differential Equations, 1982, 7(12): 1381-1402.
[4] DE C C. Pairs of positive solutions for the one-dimensional p-Laplacian [J]. Nonlinear Anal., 1994, 23(5): 669-681.
[5] JIANG Daqing, WANG Junyu. A generalized periodic boundary value problem for the one-dimensional p-Laplacian [J]. Ann. Polon. Math., 1997, 65(3): 265-270.
[6] O'REGAN D. Some general existence principles and results for $\left(\phi\left(y^{\prime}\right)\right)^{\prime}=q f\left(t, y, y^{\prime}\right), 0<t<1$ [J]. SIAM J. Math. Anal., 1993, 24(3): 648-668.
[7] GARCíA-HUIDOBRO M, GUPTA C P, MANASEVICH R. Solvability for a nonlinear three-point boundary value problem with p-Laplacian-like operator at resonance [J]. Abstr. Appl. Anal., 2001, 6(4): 191-213.
[8] GUPTA C P. Existence theorems for a second order m-point boundary value problem at resonance [J]. Internat. J. Math. Math. Sci., 1995, 18(4): 705-710.
[9] MA Ruyun. Existence theorems for a second order m-point boundary value problem [J]. J. Math. Anal. Appl., 1997, 211(2): 545-555.
[10] FENG W, WEBB J R L. Solvability of m-point boundary value problems with nonlinear growth [J]. J. Math. Anal. Appl., 1997, 212(2): 467-480.
[11] RĂDULESCU M, RADULESCU S. Global inversion theorems and applications to differential equations [J]. Nonlinear Anal., 1980, 4(5): 951-965.

