Solvability of Multi-Point Boundary Value Problem

ZHANG Hui Xing, LIU Wen Bin, ZHANG Jian Jun, CHEN Tai Yong (Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China) (E-mail: huixingzhangcumt@163.com)

Abstract This paper deals with the existence of solutions for the problem

$$\begin{cases} (\phi_p(u'))' = f(t, u, u'), \quad t \in (0, 1), \\ u'(0) = 0, \quad u(1) = \sum_{i=1}^{n-2} a_i u(\eta_i), \end{cases}$$

where $\phi_p(s) = |s|^{p-2}s$, p > 1. $0 < \eta_1 < \eta_2 < \cdots < \eta_{n-2} < 1$, a_i $(i = 1, 2, \dots, n-2)$ are non-negative constants and $\sum_{i=1}^{n-2} a_i = 1$. Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.

Keywords *p*-Laplace; multi-point boundary value problem; resonance; degree theory.

Document code A MR(2000) Subject Classification 34B25; 34C25 Chinese Library Classification 0175

1. Introduction

We consider the existence of solutions for multi-point boundary value problem (BVP)

$$(\phi_p(u'))' = f(t, u, u'), \quad t \in (0, 1),$$
(1.1)

$$u'(0) = 0, \quad u(1) = \sum_{i=1}^{n-2} a_i u(\eta_i),$$
 (1.2)

where $\phi_p(s) = |s|^{p-2}s$, p > 1. $0 < \eta_1 < \eta_2 < \cdots < \eta_{n-2} < 1$, a_i $(i = 1, 2, \dots, n-2)$ are nonnegative constants and $\sum_{i=1}^{n-2} a_i = 1$. Eq.(1.1) is widely applied in mechanics and physics^[1-3]. When p = 2, Eq.(1.1) reduces to u'' = f(t, u, u').

In recent years, *p*-Laplace equation associated with various boundary value conditions has been studied^[4-10]. For example, Carcía-huidobro and Gupta^[7] discussed (1.1) with boundary conditions

$$u'(0) = 0, \ u(1) = u(\eta), \ \eta \in (0,1)$$

under the following assumptions

(A₁) There are nonnegative functions $d_1(t), d_2(t)$, and $r(t) \in L^1[0, 1]$ such that

$$|f(t, u, v)| \le d_1(t)|u|^{p-1} + d_2(t)|v|^{p-1} + r(t), \text{ for a.e. } t \in [0, 1], u, v \in \mathbb{R};$$

Received date: 2007-05-08; Accepted date: 2007-11-22

Foundation item: the National Natural Science Foundation of China (No. 10771212); the Foundation of China University of Mining and Technology (Nos. 2005A041; 2006A042; 2008A037).

(A₂) There exists $u_0 > 0$, such that for all $|u| > u_0$, $t \in [0, 1]$ and $v \in \mathbb{R}$

$$|f(t, u, v)| \ge \Lambda |u|^{p-1} - A|v|^{p-1} - B,$$

where $\Lambda > 0$, and $A, B \ge 0$ are constants;

(A₃) There is R > 0 such that for all |u| > R

$$uf(t, u, 0) > 0$$
, a.e. $t \in [0, 1]$, $uf(t, u, 0) < 0$, a.e. $t \in [0, 1]$

as well as the other conditions.

In this paper, we discuss the solvability of (1.1)-(1.2) and obtain the following result.

Theorem 3.1 Suppose that $f: [0,1] \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ is continuous and has the decomposition

f(t, u, v) = g(t, u, v) + h(t, u, v)

which satisfies the following assumptions:

 (H_1) There exist $r_1 < 0, r_2 > 0$, such that

$$f(t, r_1, 0) \le 0$$
, $f(t, r_2, 0) \ge 0$, for all $t \in [0, 1]$;

(H₂) $vg(t, u, v) \leq 0$ for all $(t, u) \in [0, 1] \times [r_1, r_2], |v| > 1$;

 (H_3) $|h(t, u, v)| \leq a(t)|v|^m + b(t)$ for all $(t, u, v) \in [0, 1] \times [r_1, r_2] \times \mathbb{R}$, where $a(t), b(t) \in L^1([0, 1], \mathbb{R}^+)$.

Then there exists at least one solution for BVP (1.1)–(1.2), provided that

$$p-1 < m < (1 + \frac{1}{\|a\|_1 + \|b\|_1 + r})(p-1),$$
 (1.3)

where $r = \max\{-r_1, r_2\}.$

Remark 1.1 When p = 2, n = 3, BVP (1.1)–(1.2) becomes

$$u'' = f(t, u, u'), \quad t \in (0, 1), \tag{1.4}$$

$$u'(0) = 0, \quad u(1) = u(\eta), \quad \eta \in (0, 1).$$
 (1.5)

Feng and Webb in [10] proved that BVP (1.4)–(1.5) has at least a solution under the following assumptions

(B₁) There exists a constant $M \ge 0$ such that

$$uf(t, u, 0) > 0$$
, for all $|u| > M, t \in [0, 1];$

(B₂) $vg(t, u, v) \leq 0$ for all $(t, u, v) \in [0, 1] \times [-M, M] \times \mathbb{R}$;

 $(B_3) |h(t, u, v)| \le a(t)|u| + b(t)|v| + c(t)|u|^r + d(t)|v|^k + e(t) \text{ for all } (t, u, v) \in [0, 1] \times [-M, M] \times \mathbb{R}, \\ \text{where } 0 \le r, k < 1, a, b, c, d, e \in L^1[0, 1] \text{ and } \|b\|_1 < \frac{1}{2}.$

It is easy to see that the conditions $(A_1)-(A_3)$ in [7] and $(B_1)-(B_3)$ in [10] are stronger than the ones of Theorem 3.1. To some extent, we improve the results of [7] and [10].

2. Auxiliary results

From now on, we use the classical spaces $C[0,1], C^1[0,1]$ and $L^1[0,1]$. Define the norm in C[0,1] by $\|\cdot\|_{\infty}$ and in $L^1[0,1]$ by $\|\cdot\|_1$. Moreover, we shall need the following lemmas.

694

Lemma 2.1^[11] Let $a < b, u(t) \in C([a, b], [0, +\infty))$ and $v(t) \in L^1([a, b], [0, +\infty))$. Suppose that there exists a constant $c \ge 0$ and a function $\omega(t)$ such that

(1) $\int_{a}^{b} v(t)\omega(u(t)) \mathrm{d}t < +\infty;$

(2)
$$u(t) \le c + \int_a^t v(s)\omega(u(s)) \mathrm{d}s$$
, for all $t \in [a, b]$.

Then

$$\int_{c}^{u(t)} \frac{\mathrm{d}s}{\omega(s)} \leq \int_{a}^{t} v(s) \mathrm{d}s, \text{ for all } t \in [a, b],$$

where $\omega \in C([0, +\infty), [0, +\infty))$ is increasing.

In Lemma 2.1, if the assumption (2) is replaced by

$$u(t) \le c + \int_t^b v(s)\omega(u(s)) \mathrm{d}s, \text{ for all } t \in [a, b],$$

then

$$\int_{c}^{u(t)} \frac{\mathrm{d}s}{\omega(s)} \le \int_{t}^{b} v(s) \mathrm{d}s, \text{ for all } t \in [a, b].$$

Consider the auxiliary boundary value problem

$$(\phi_p(\frac{u'}{\lambda}))' = f^*(t, u, u', \lambda), \quad \lambda \in (0, 1],$$

$$(2.1)$$

$$u'(0) = 0, \quad u(1) = \sum_{i=1}^{n-2} a_i u(\eta_i),$$
 (2.2)

where $0 < \eta_1 < \eta_2 < \cdots < \eta_{n-2} < 1$, $a_i \ (i = 1, 2, \dots, n-2)$ are non-negative constants and $\sum_{i=1}^{n-2} a_i = 1$, $f^*: [0,1] \times \mathbb{R}^2 \times [0,1] \longrightarrow \mathbb{R}$ is continuous and

$$f^*(t, r, s, 1) = f(t, r, s), \text{ for all } (t, r, s) \in [0, 1] \times \mathbb{R}^2.$$
 (2.3)

Lemma 2.2 Suppose (2.3) holds. Furthermore, let $\Omega \subset C^1[0,1]$ be an open bounded set. Assume that

(C₁) There exists no solution u of BVP (2.1)–(2.2), $0 < \lambda < 1$, such that $u \in \partial \Omega$;

 (C_2) The equation

$$F(s) := \sum_{i=1}^{n-2} a_i \int_{\eta_i}^1 \phi_p^{-1} (\int_0^\tau f^*(t, s, 0, 0) dt) d\tau = 0$$

has no solution on $\partial \Omega \cap \mathbb{R}$;

(C₃) The Brouwer degree $\deg_B(F, \Omega \cap \mathbb{R}, 0) \neq 0$.

Then BVP (1.1)–(1.2) has at least one solution in $\overline{\Omega}$.

The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [7], so we omit it.

3. Existence results

Theorem 3.1 Suppose that the assumptions $(H_1)-(H_3)$ are satisfied. Then there exists at least one solution for BVP (1.1)-(1.2), provided that

$$p-1 < m < (1 + \frac{1}{\|a\|_1 + \|b\|_1 + r})(p-1),$$

where $r = \max\{-r_1, r_2\}$.

Proof For all $(t, u, v) \in [0, 1] \times \mathbb{R}^2$, define the function \overline{f} by

$$\bar{f}(t, u, v) = \begin{cases} f(t, r_2, v), & \text{if } u > r_2, \\ f(t, u, v), & \text{if } r_1 \le u \le r_2, \\ f(t, r_1, v), & \text{if } u < r_1. \end{cases}$$

Then, the modified problem corresponding to BVP (1.1)–(1.2) is

$$(\phi_p(u'))' = \bar{f}(t, u, u'), \quad t \in (0, 1), \tag{3.2}$$

$$u'(0) = 0, \quad u(1) = \sum_{i=1}^{n-2} a_i u(\eta_i).$$
 (3.3)

Consider the homotopy problem (2.1)-(2.2), where

$$f^*(t, u, u', \lambda) = \lambda u + (1 - \lambda)\overline{f}(t, u, u').$$

Step 1. Let u(t) be a solution for BVP (2.1)–(2.2). Then we have

$$r_1 < u(t) < r_2$$
 for all $t \in [0, 1], \lambda \in (0, 1]$

Otherwise, there exists a point $t_0 \in [0, 1)$ such that

$$u(t_0) = \min_{t \in [0,1]} u(t) \le r_1$$
 or $u(t_0) = \max_{t \in [0,1]} u(t) \ge r_2$.

Without loss of generality, we suppose $u(t_0) = \max_{t \in [0,1]} u(t) \ge r_2$ holds, so there are three cases as follows:

Case 1 Let $t_0 \in (0, 1)$. We have $u'(t_0) = 0$ and

$$u(t_0)(\phi_p(\frac{u'(t)}{\lambda}))'|_{t=t_0} = u(t_0)f^*(t_0, u(t_0), 0, \lambda)$$
$$= \lambda(u(t_0))^2 + (1-\lambda)u(t_0)f(t_0, r_2, 0) > 0.$$

Then, there exists a positive constant $\delta > 0$ such that $(\phi_p(\frac{u'(t)}{\lambda}))' > 0$, for all $t \in (t_0, t_0 + \delta)$. This implies that $\phi_p(\frac{u'(t)}{\lambda})$ is increasing in $(t_0, t_0 + \delta)$. Thus

$$\phi_p(u'(t)) > \phi_p(u'(t_0)) = \phi_p(0) = 0$$
, for all $t \in (t_0, t_0 + \delta)$.

By the monotonicity of ϕ_p , we have u'(t) > 0, for all $t \in (t_0, t_0 + \delta)$. That is, u(t) is increasing in $(t_0, t_0 + \delta)$. This is a contradiction.

Case 2 Let $t_0 = 0$. Then we have

$$u(0)(\phi_p(\frac{u'(t)}{\lambda}))'|_{t=0} = \lambda(u(0))^2 + (1-\lambda)u(0)f(0,r_2,0) > 0.$$

Similar to above process, we can obtain a contradiction.

Case 3 Let $t_0 = 1$. Combining with the boundary condition (3.3), we know that there exists $\eta \in (0, 1)$ such that $u(1) = u(\eta)$. Similar to Case 1, we can obtain a contradiction.

Step 2. We prove that there exists a positive constant M_0 such that $||u'||_{\infty} \leq M_0$.

Let $||u'||_{\infty} \leq 1$. Then u'(t) has a prior bounds. Otherwise, let $||u'||_{\infty} > 1$, that is, there exists a point $t_0 \in (0, 1]$ such that $|u'(t_0)| = ||u'||_{\infty} > 1$.

This together with the continuity of u'(t) and u'(0) = 0 implies that there exists an interval $[\mu, \nu] \subset [0, 1], t_0 \in [\mu, \nu]$ such that $|u'(\mu)| = 1$ and $|u'(t)| \ge 1$, for all $t \in [\mu, \nu]$. Without loss of generality, we assume that $u'(t) \ge 1$ holds, for all $t \in [\mu, \nu]$.

Multiplying (2.1) by $\phi_p(\frac{u'}{\lambda})$ and integrating on both sides of it from μ to t, we obtain

$$\int_{\mu}^{t} \phi_p(\frac{u'}{\lambda})(\phi_p(\frac{u'}{\lambda}))' \mathrm{d}s = \int_{\mu}^{t} \phi_p(\frac{u'}{\lambda}) f^*(s, u, u', \lambda) \mathrm{d}s,$$

that is,

$$\frac{1}{2}\phi_p^2(\frac{u'(t)}{\lambda}) - \frac{1}{2}\phi_p^2(\frac{u'(\mu)}{\lambda}) = \int_{\mu}^{t}\phi_p(\frac{u'}{\lambda})[\lambda u + (1-\lambda)\bar{f}(s,u,u')]\mathrm{d}s$$

Since $r_1 < u(t) < r_2$, for all $t \in [0, 1]$, we have

$$\begin{split} |\frac{u'(t)}{\lambda}|^{2p-2} = &|\frac{1}{\lambda}|^{2p-2} + 2\int_{\mu}^{t}\phi_{p}(\frac{u'}{\lambda})[\lambda u + (1-\lambda)f(s, u, u')]\mathrm{d}s\\ = &|\frac{1}{\lambda}|^{2p-2} + 2\int_{\mu}^{t}\phi_{p}(\frac{u'(s)}{\lambda})[\lambda u + (1-\lambda)g(s, u, u')]\mathrm{d}s + \\ &2\int_{\mu}^{t}\phi_{p}(\frac{u'(s)}{\lambda})[(1-\lambda)h(s, u, u')]\mathrm{d}s. \end{split}$$

By the assumption (H₂) and $r_1 < u(t) < r_2$, for $t \in [0, 1]$, we get

$$\int_{\mu}^{t} \phi_{p}(\frac{u'}{\lambda})g(s,u,u')\mathrm{d}s = \int_{\mu}^{t} |\frac{u'}{\lambda}|^{p-2} \frac{u'}{\lambda}g(s,u,u')\mathrm{d}s \le 0,$$

 \mathbf{SO}

$$\begin{aligned} |u'(t)|^{2p-2} &\leq 1 + 2\int_{\mu}^{t} \lambda^{2p-2} \phi_{p}(|\frac{u'}{\lambda}|) |\lambda u(s) + (1-\lambda)h(s,u,u')| \mathrm{d}s \\ &\leq 1 + 2\int_{\mu}^{t} |u'|^{p-1} (r+a(s)|u'|^{m} + b(s)) \mathrm{d}s, \end{aligned}$$

where $r = \max\{|r_1|, |r_2|\}$. By $|u'(t)| \ge 1$, for $t \in [\mu, \nu]$

$$|u'(t)|^{2p-2} \le 1 + 2\int_{\mu}^{t} |u'|^{m+p-1}(r+a(s)+b(s))\mathrm{d}s, \text{ for all } t \in [\mu,\nu].$$

For convenience, we write

$$z(t) = |u'(t)|^{2p-2}, \ \omega(t) = t^{\frac{m+p-1}{2p-2}}, \ v(t) = 2(a(t) + b(t) + r).$$

Then

$$\int_{\mu}^{\nu} v(s)\omega(z(s))\mathrm{d}s < +\infty \quad \text{and} \quad z(t) \leq 1 + \int_{\mu}^{t} v(s)\omega(z(s))\mathrm{d}s, \quad \text{for all } t \in [\mu,\nu].$$

By Lemma 2.1, we can conclude that

$$\int_{1}^{z(t)} \frac{ds}{\omega(s)} \le \int_{\mu}^{t} v(s) \mathrm{d}s, \text{ for all } t \in [\mu, \nu].$$

 So

$$\int_{1}^{z(t)} s^{-\frac{m+p-1}{2p-2}} \mathrm{d}s \le \int_{\mu}^{t} v(s) \mathrm{d}s \le 2 \int_{0}^{1} (r+a(s)+b(s)) \mathrm{d}s$$

 $\leq 2(||a||_1 + ||b||_1 + r) := M_1, \text{ for all } t \in [\mu, \nu].$

By the assumption (H_3) and (1.3), we have

$$\int_{1}^{+\infty} s^{-\frac{m+p-1}{2p-2}} \mathrm{d}s > 2(\|a\|_{1} + \|b\|_{1} + r)$$

This inequality implies that there exists a constant M_2 (independent of λ) such that $z(t) \leq M_2$, that is, $|u'(t)| \leq (M_2)^{\frac{1}{2p-2}} := M_3$, for all $t \in [\mu, \nu]$. Put $M_0 = \max\{1, M_3\}$ (independent of λ), then $|u'|_{\infty} \leq M_0$.

Step 3. By using Lemma 2.2, we prove that BVP (3.2)-(3.3) has at least one solution. Put

$$\Omega = \{ u(t) \in C^1[0,1] : r_1 < u(t) < r_2, t \in [0,1]; \|u'\|_{\infty} < M_0 + 1 \}.$$

It is clear that the assumption (C_1) of Lemma 2.2 is satisfied.

By the assumption (H_1) and (3.1), we deduce

$$f^*(t, r_1, 0, 0) = \bar{f}(t, r_1, 0) \le 0, \quad f^*(t, r_2, 0, 0) = \bar{f}(t, r_2, 0) \ge 0.$$

Combining with the monotonicity of ϕ_p yields

$$F(r_1) = \sum_{i=1}^{n-2} a_i \int_{\eta_i}^1 \phi_p^{-1} (\int_0^\tau f^*(t, r_1, 0, 0) dt) d\tau) \le 0,$$

$$F(r_2) = \sum_{i=1}^{n-2} a_i \int_{\eta_i}^1 \phi_p^{-1} (\int_0^\tau f^*(t, r_2, 0, 0) dt) d\tau) \ge 0.$$

If $F(r_1) \cdot F(r_2) = 0$, we can conclude that BVP (1.1)–(1.2) has at least one solution r_1 or r_2 . Otherwise, $F(r_1)F(r_2) < 0$, which implies the assumption (C₂) of Lemma 2.2 holds. By the property of Brouwer degree, we have $\deg_B(F, \Omega \cap \mathbb{R}, 0) = 1$. So the assumption (C₃) of Lemma 2.2 is satisfied. By Lemma 2.2, we prove that BVP (3.2)–(3.3) has at least one solution u(t) satisfying $r_1 < u(t) < r_2$, for all $t \in [0, 1]$. This implies that BVP (1.1)–(1.2) has at least one solution. The proof is completed.

Theorem 3.2 Let assumptions (H_1) – (H_3) be satisfied. Furthermore, suppose the following inequality

 (H_4) $f(t, u_1, v_1) > f(t, u_2, v_2)$, for all $u_1, u_2, v_1, v_2 \in \mathbb{R}, u_1 > u_2, v_1 \le v_2$ holds. Then there exists a unique solution for BVP (1.1)–(1.2).

Proof We have proved that BVP (1.1)-(1.2) has at least one solution in Theorem 3.1. Next, we will obtain the uniqueness of the solution for BVP (1.1)-(1.2) by (H_4) .

Assume to the contrary that there exist two different solutions x(t), y(t) of BVP (1.1)–(1.2). Let z(t) = x(t) - y(t). By the condition (1.2), there exists some $t_0 \in [0, 1)$ such that $z(t_0) = \max_{t \in [0,1]} z(t) > 0$.

Case 1 If $t_0 \in (0,1)$, then $z'(t_0) = 0$, $z(t_0) > 0$. By the continuity of z'(t), z(t), there exists an interval $[t_0, t_1]$ such that z(s) > 0, $z'(s) \le 0$, for all $s \in [t_0, t_1]$.

Since

$$(\phi_p(x') - \phi_p(y'))' = f(t, x, x') - f(t, y, y'),$$

Solvability of multi-point boundary value problem

by (H_4) , we have

$$\int_{t_0}^s (\phi_p(x'(t)) - \phi_p(y'(t)))' dt = \int_{t_0}^s (f(t, x(t), x'(t)) - f(t, y(t), y'(t))) dt > 0, \text{ for all } s \in [t_0, t_1].$$

Combining with the monotonicity of ϕ_p , we have z'(s) = x'(s) - y'(s) > 0, for all $s \in [t_0, t_1]$. This is a contradiction.

Case 2 If $t_0 = 0$, then z'(0) = 0, z(0) > 0. By the continuity of z'(t), z(t), there exists an interval $[0, t_2]$ such that $z(s) > 0, z'(s) \le 0$, for all $s \in [0, t_2]$. Similar to above process, we obtain z'(s) = x'(s) - y'(s) > 0, for all $s \in [0, t_2]$. This is a contradiction.

Combining with the two cases, we deduce that BVP (1.1)–(1.2) has a unique solution.

Especially, let $\eta_i \to 1$, i = 1, 2, ..., n - 2. We can obtain the following result.

Corollary 3.1 Suppose the assumptions $(H_1)-(H_4)$ in Theorem 3.2 hold. Then the following Neumann BVP

$$(\phi_p(u'))' = f(t, u, u'), \quad t \in (0, 1),$$

 $u'(0) = u'(1) = 0$

has at least one solution.

References

- LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium [C]. Izvestia Akad. Nauk SSSR, Geography and Geophysics, IX, 1983, 7–10. (In Russian)
- [2] BOBISUD L E. Steady-state turbulent flow with reaction [J]. Rocky Mountain J. Math., 1991, 21(3): 993–1007.
- [3] HERRERO M A, VÁZQUEZ J L. On the propagation properties of a nonlinear degenerate parabolic equation [J]. Comm. Partial Differential Equations, 1982, 7(12): 1381–1402.
- [4] DE C C. Pairs of positive solutions for the one-dimensional p-Laplacian [J]. Nonlinear Anal., 1994, 23(5): 669–681.
- JIANG Daqing, WANG Junyu. A generalized periodic boundary value problem for the one-dimensional p-Laplacian [J]. Ann. Polon. Math., 1997, 65(3): 265–270.
- [6] O'REGAN D. Some general existence principles and results for $(\phi(y'))' = qf(t, y, y')$, 0 < t < 1 [J]. SIAM J. Math. Anal., 1993, **24**(3): 648–668.
- [7] GARCÍA-HUIDOBRO M, GUPTA C P, MANASEVICH R. Solvability for a nonlinear three-point boundary value problem with p-Laplacian-like operator at resonance [J]. Abstr. Appl. Anal., 2001, 6(4): 191–213.
- [8] GUPTA C P. Existence theorems for a second order m-point boundary value problem at resonance [J]. Internat. J. Math. Math. Sci., 1995, 18(4): 705–710.
- MA Ruyun. Existence theorems for a second order m-point boundary value problem [J]. J. Math. Anal. Appl., 1997, 211(2): 545-555.
- [10] FENG W, WEBB J R L. Solvability of m-point boundary value problems with nonlinear growth [J]. J. Math. Anal. Appl., 1997, 212(2): 467–480.
- [11] RÅDULESCU M, RADULESCU S. Global inversion theorems and applications to differential equations [J]. Nonlinear Anal., 1980, 4(5): 951–965.