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Abstract In this paper, we consider two-queue polling model with a Timer and a Randomly-

Timed Gated (RTG) mechanism. At queue Q1, we employ a Timer T (1): whenever the server

polls queue Q1 and finds it empty, it activates a Timer. If a customer arrives before the Timer

expires, a busy period starts in accordance with exhaustive service discipline. However, if the

Timer is shorter than the interarrival time to queue Q1, the server does not wait any more and

switches back to queue Q2. At queue Q2, we operate a RTG mechanism T (2), that is, whenever

the server reenters queue Q2, an exponential time T (2) is activated. If the server empties the

queue before T (2), it immediately leaves for queue Q1. Otherwise, the server completes all the

work accumulated up to time T (2) and leaves. Under the assumption of Poisson arrivals, general

service and switchover time distributions, we obtain probability generating function (PGF) of

the queue lengths at polling instant and mean cycle length and Laplace Stieltjes transform (LST)

of the workload.
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1. Introduction

We consider that a single server attends two queues, denoted Q1 and Q2, by alternating

its service between them. Q1 exercises an extra priority over Q2 through a Timer and a RTG

mechanism, operating as follows. Whenever the server polls Q1 and finds it empty, it activates

a Timer T (1). If a customer arrives before the Timer expires, a busy period starts in accordance

with exhaustive service discipline. However, if the Timer is shorter than the interarrival time to

Q1, the server does not wait any more and switches back to Q2. For RTG policy, whenever the

server reenters Q2, an exponential time T (2) is activated. If the server empties the queue before

T (2), it immediately leaves for Q1. Otherwise, the server completes all the work accumulated up

to time T (2) and leaves.

In queueing models, a single server is shared by multiple users, performs several tasks, or

attends several channels that are widely used to describe computer networks, manufacturing

and production lines, and communication systems. In these models, service periods are usually
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controlled by some mechanisms. The most studied constraining mechanisms are Exhaustive,

Gated and 1-limited. Under the Exhaustive regime, the server completes all the work in the

system. Under the Gated regime, the server performs only the work present in the system at

moment of its arrival. Under the 1-limited regime, at most one job is served. See literatures as in

[1], [6], [7] and [8]. However, in various real-world system, the controlled mechanism is governed

by Timers that limit the server’s sojourn at a queue[2]. Eliazar and Yachiali[5] studied Randomly-

Timed Gated queueing system and derived the joint transforms of two key characteristics: the

length of a busy period starting with r jobs, and the number of jobs left behind at the end of such

busy period. Boxma[3] considered two-queue polling models with a patient server. The service

discipline in each queue is either exhaustive or 1-limited. In this paper, we extend the analysis

of [5] to two-queue polling models with a patient server. This will extend the configuration of

[3].

This paper is organized as follows: Section 2 presents the model description and preliminary

results. In Section 3, we study queue lengths and derive multi-dimensional PGFs of the system’s

state at polling instant. In Section 4, we calculate mean cycle length. Applying level-crossing

argument,we obtain the steady-state distribution of the workload in Section 5.

2. Model description and preliminary results

We consider a polling system consisting of two queues Q1 and Q2 with infinite buffer capac-

ity each, attended by a single server that alternates between the queues. The model and the

parameters of the system are as follows: For i = 1, 2

Arrival process {A(i)(t), t ≥ 0}: Poisson process with rate λi.

Service times B(i): the distribution B(i)(·), and LST B̃(i)(·). Successive i.i.d service times

are denoted by B
(i)
n (·), n = 1, 2, . . . , ρi = λiEB

(i) and ρ = ρ1 + ρ2. We assume henceforth that

the stability condition ρ < 1.

Timer T (1) : the distribution T (1)(·), LST T̃ (1)(·).

RTG mechanism T (2): exponential distribution random variable with mean µ−1.

Switchover times D(i): switching from Qi to the other queue , the distribution D(i)(·), mean

di, LST D̃(i)(·), d = d1 + d2.

Independence assumption: the arrival process {A(i)(t), t ≥ 0}, the service times B(i), Switchover

times D(i), Timer T (1) and T (2) are mutually independent.

θ
(i)
r : the length of a busy period generated by r awaiting jobs in standard M/G/1 queue,

LST θ̃r

(i)
(·) and denote θ̃(i)(·) = θ̃

(i)
1 (·).

∆
(i)
r : the length of a busy period initiated by r awaiting jobs in the model with RTG mech-

anism.

Yr: queue size at the end of the busy period initiated by r awaiting jobs at Q2.

Next, we give a proposition which considers the model with just one queue with RTG

mechanism[5]. The multi-dimensional PGFs of the system’s state at polling instant are com-

puted. We will use it to analyze the state of Q2. The notations have the same meaning as

defined above.
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Proposition 2.1 Under RTG regime, T ∼ Exp(µ), arrival process {A(t), t ≥ 0} is a Poisson

process with rate λ, service time {Bn}, LST B̃(·). ∆r is the length of a busy period initiated by

r awaiting jobs and Yr is queue size at the end of ∆r. Define the joint transform

Φr(ω, z) = E[e−ω∆rzYr ].

Then the joint distribution of (∆r, Yr) satisfies

(∆r , Yr)
d
=1(T>B1)(B1 + ∆r+A(B1)−1, Yr+A(B1)−1)+

1(T≤B1)(

r+A(T )∑

i=1

Bi, A(

r+A(T )∑

i=1

Bi) −A(T )),

and Φr(ω, z) satisfies
{

Φ0(ω, z) = 1,

Φr(ω, z) =
∑∞

j=0 aj(ω)Φr+j−1(ω, z) + c(ω, z)ξ(ω, z)r, r ≥ 1
(1)

and the equation has a unique solution given by

Φr(ω, z) = ψ(ω, z)[ξ(ω, z)]r + (1 − ψ(ω, z))[θ̃(ω + µ)]r, (2)

where

aj(ω) = E[
(λB)j

j!
e−(ω+µ+λ)B ],

ξ(ω, z) = B̃(ω + λ(1 − z)),

ψ(ω, z) =
µ

λ(z − B̃(ω + λ(1 − z))) + µ
,

c(ω, z) =
µ

B̃(ω + λ(1 − z))

B̃(ω + λ(1 − z)) − B̃(ω + λ(1 − B̃(ω + λ(1 − z))) + µ)

λ(z − B̃(ω + λ(1 − z))) + µ
.

Let ∆̃r(ω) = Φr(ω, 1) and Ỹr(z) = Φr(0, z). We also obtain

1) ∀ω ≥ 0, ∀r = 0, 1, 2, . . .

∆̃r(ω) = ψ(ω)B̃(ω)r + (1 − ψ(ω))[θ̃(ω + µ)]r, (3)

where ψ(ω) = ψ(ω, 1) = µ

µ+λ(1−B̃(ω))
.

2) ∀z ≥ 0, ∀r = 0, 1, 2, . . .

Ỹr(z) = α(z)B̃(λ(1 − z))r + (1 − α(z))θ̃(µ)r, (4)

where α(z) = ψ(0, z) = µ

µ+λ(z−B̃(λ(1−z)))
.

We can calculate state-dependent performance measures

E∆r = −
d

dω
∆̃r(ω)|ω=0 = EB[r +

λ

µ
(1 − θ̃(µ)r)], (5)

EYr =
d

dz
Ỹr(z)|z=1 = λ[rEB − (1 − λEB)

1 − θ̃(µ)r

µ
]. (6)
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3. Queue length

In this section, we construct the evolution equations for the queue lengths at polling instant

(a moment when the server enters the system, following an intermission interval). We restrict

ourselves to the stationary situation.

LetXj
i (i, j = 1, 2) be the number of jobs atQj when Qi is polled, with joint PGF Fi(z1, z2) =

E[z
X1

i

1 z
X2

i

2 ] (i = 1, 2). Let IA be the interarrival time at Q1 and M = min{IA, T (1)}. Then

P (IA ≤ T (1)) = 1 − T̃ (1)(λ1),

EM = Emin{IA, T (1)} = E[IA1(IA ≤ T (1))] +E[T (1)1(IA > T (1))]

= E

∫ T (1)

0

tλ1e
−λ1tdt+ E[T (1)e−λ1T (1)

] =
1

λ1
(1 − T̃ (1)(λ1)), (7)

where 1(A) denotes the indicator function of the event A.

Proposition 3.1 At polling instant, the system’s law of motion is given by

X1
1

d
= X1

2 +A(1)(∆X2
2
) +A(1)(D(2)),

X2
1

d
= A(2)(D(2)) + YX2

2
, X1

2
d
= A(1)(D(1)),

X2
2

d
=

{
X2

1 +A(2)(θ
(1)

X1
1
) +A(2)(D(1)), if X1

1 > 0,

X2
1 +A(2)(M) +A(2)(θ

(1)
1 )1(IA ≤ T (1)) +A(2)(D(1)), if X1

1 = 0.
(8)

Remark X1
1 , the number of jobs at queue Q1 when queue Q1 is polled, is equal to the sum of

X1
2 and the new arrivals to queue Q1 during the time ∆

(2)

X2
2

+D(2) when the server is at queue

Q2.

X2
1 , the number of jobs at queue Q2 when queue Q1 is polled, equals the sum of YX2

2
(re-

maining jobs at the end of ∆
(2)

X2
2
) and the number of arrivals to queue Q2 during the time D(2).

X1
2 , the number of jobs at queue Q1 when queue Q2 is polled, equals the number of arrivals

to queue Q1 during the time D(1) because queue Q1 is exhaustively served.

Finally, since a Timer is employed at Q1, we need consider whether the number of jobs at

queue Q1 are more than zero or not. X2
2 , the number of jobs at queue Q2 when queue Q2

is polled, if X1
1 > 0, equals the sum of X2

1 and the number of arrivals to queue Q2 during

the time θ
(1)

X1
1

+ D(1), and if X1
1 = 0, equals the sum of X2

1 and the number of arrivals to

queue Q2 during the time T (1)1(IA > T (1)) + (IA + θ
(1)
1 )1(IA ≤ T (1)) +D(1), which equals to

M + θ
(1)
1 1(IA ≤ T (1)) +D(1).

Theorem 3.1 For ∀z1, z2 ≥ 0, the joint PGF Fi(z1, z2) (i = 1, 2) satisfies the following equations.

F1(z1, z2) = D̃(2)(ω1 + ω2)[ψ(ω1, z2)F2(z1, ξ(ω1, z2)) + (1 − ψ(ω1, z2))F2(z1, θ̃
(2)(ω1 + µ))], (9)

F2(z1, z2) = D̃(1)(ω1 + ω2)[F1(θ̃
(1)(ω2), z2) + F1(0, z2)(h(z2) − 1)], (10)

where ωi = λi(1 − zi), h(z2) = E[z
A(2)(M)+A(2)(θ

(1)
1 )1(IA≤T (1))

2 ].

Proof For i = 1, 2, write ωi = λi(1 − zi)

E[z
A(1)(D(i))
1 z

A(2)(D(i))
2 ] = D̃(i)(λ1(1 − z1) + λ2(1 − z2)) = D̃(i)(ω1 + ω2). (11)
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Applying Proposition 2.1 and independence assumption, we have

E[z
A(1)(∆(2)

r
)

1 zYr

2 ] =

∫ ∫
E(z

A(1)(t)
1 )zx

2Φr(t, x)dtdx

=

∫ ∫ ∞∑

k=0

(λ1t)
k

k!
e−λ1tzk

1z
x
2Φr(t, x)dtdx

=

∫ ∫
e−λ1t(1−z1)zx

2 Φr(t, x)dtdx

= Φr(ω1, z2), (12)

where Φr(t, x) is the joint distribution of (∆r, Yr). Thus, we obtain

E[z
A(1)(∆

(2)

X2
2

)

1 z
Y

X2
2

2 |X2
2 ] = ΦX2

2
(ω1, z2). (13)

Applying relationship (2), we have

E[z
X1

2+A(1)(∆
X2

2
)

1 z
Y

X2
2

2 ]

= E[z
X1

2+A(1)(∆
X2

2
)

1 1(X2
2 > 0)z

Y
X2

2
2 ] + E[z

X1
2

1 1(X2
2 = 0)]

= E[z
X1

2
1 1(X2

2 > 0)E[z
A(1)(∆

(2)

X2
2

)

1 z
Y

X2
2

2 |X2
2 ]] +E[z

X1
2

1 1(X2
2 = 0)]

= E[z
X1

2
1 1(X2

2 > 0)ΦX2
2
(ω1, z2)] +E[z

X1
2

1 1(X2
2 = 0)]

= E[z
X1

2
1 (ψ(ω1, z2)ξ(ω1, z2)

X2
2 + (1 − ψ(ω1, z2))θ̃

(2)(ω1 + µ)X2
2 )]

= ψ(ω1, z2)E[z
X1

2
1 ξ(ω1, z2)

X2
2 ] + (1 − ψ(ω1, z2))E[z

X1
2

1 θ̃(2)(ω1 + µ)X2
2 ]

= ψ(ω1, z2)F2(z1, ξ(ω1, z2)) + (1 − ψ(ω1, z2))F2(z1, θ̃
(2)(ω1 + µ)). (14)

Thus

F1(z1, z2) = E[z
X1

1
1 z

X2
1

2 ]

= E[z
X1

2+A(1)(∆
X2

2
)+A(1)(D(2))

1 z
A(2)(D(2))+Y

X2
2

2 ]

= E[z
A(1)(D(2))
1 z

A(2)(D(2))
2 ]E[z

X1
2+A(1)(∆

X2
2
)

1 z
Y

X2
2

2 ]

= D̃(2)(ω1 + ω2)[ψ(ω1, z2)F2(z1, ξ(ω1, z2))+

(1 − ψ(ω1, z2))F2(z1, θ̃
(2)(ω1 + µ))]. (15)

On the other hand,

E[z
A(2)(θ(1)

r
)

2 ] =

∫ ∞∑

k=0

(λ2t)
k

k!
e−λ2tzk

2dP (θ(1)r ≤ t)

=

∫
e−λ2t(1−z2)dP (θ(1)r ≤ t)

= θ̃(1)r (ω2) = (θ̃(1)(ω2))
r, (16)

E[z
A(2)(θ

(1)

X1
1

)

2 |X1
1 ] = (θ̃(1)(ω2))

X1
1 , (17)
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E[z
X2

1
2 z

A(2)(θ
(1)

X1
1

)

2 ] =

∞∑

i,j=0

Ez
A(2)(θ

(1)
i

)
2 zj

2f(i, j)

=

∞∑

i,j=0

(θ̃(1)(ω2))
izj

2f(i, j) = F1(θ̃
(1)(ω2), z2), (18)

where f(i, j) is the joint density function of (X1
1 , X

2
1 ). We can obtain

F2(z1, z2) = E[z
X1

2
1 z

X2
2

2 ]

= E
[
z

A(1)(D(1))
1 z

X2
1+A(2)(θ

(1)

X1
1

)1(X1
1>0)+(A(2)(M)+A(2)(θ

(1)
1 )1(IA≤T (1)))1(X1

1=0)+A(2)(D(1))

2

]

= E[z
A(1)(D(1))
1 z

A(2)(D(1))
2 ](E[z

X2
1

2 z
A(2)(θ

(1)

X1
1

)

2 1(X1
1 > 0)]+

E[z
X2

1
2 z

A(2)(M)+A(2)(θ
(1)
1 )1(IA≤T (1))

2 1(X1
1 = 0)])

= D̃(1)(ω1 + ω2)(E[z
X2

1
2 z

A(2)(θ
(1)

X1
1

)

2 1(X1
1 > 0)]+

E[z
X2

1
2 1(X1

1 = 0)] +E[z
X2

1
2 1(X1

1 = 0)](h(z2) − 1))

= D̃(1)(ω1 + ω2)(E[z
X2

1
2 z

A(2)(θ
(1)

X1
1

)

2 ] + E[z
X2

1
2 1(X1

1 = 0)](h(z2) − 1))

= D̃(1)(ω1 + ω2)[F1(θ̃
(1)(ω2), z2) + F1(0, z2)(h(z2) − 1)], (19)

where h(z2) = E[z
A(2)(M)+A(2)(θ1

1)1(IA≤T (1))
2 ]. 2

4. Cycle lengths

Clearly, at the polling instant, the PGFs of the number of jobs at queue Q1 and Q2 are given

by

E[zX1
1 ] = F1(z, 1) = X̂1

1 (z), E[zX2
2 ] = F2(1, z) = X̂2

2 (z).

Moreover, from Proposition 3.1, one observes that

X1
1 = A(1)(D(1)) +A(1)(∆

(2)

X2
2
) +A(1)(D(2)),

X2
2 =





A(2)(D(2)) + YX2
2

+A(2)(θ
(1)

X1
1
) +A(2)(D(1)), if X1

1 > 0,

A(2)(D(2)) + YX2
2

+A(2)(M),

+A(2)(θ
(1)
1 )1(IA ≤ T (1)) +A(2)(D(1)), if X1

1 = 0.

(20)

Define the cycle time length C as the time length between two successive polling instants by the

server of queue Q1. Then

C = ∆(1) +M1(X1
1 = 0) +D(1) + ∆(2) +D(2). (21)

Where

∆(1) =

{
θ
(1)

X1
1
, if X1

1 > 0,

θ
(1)
1 1(IA ≤ T (1)), if X1

1 = 0,
(22)

and ∆(2) denotes the busy period at Q2 during a cycle. In the following, we derive the mean of
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the cycle time length C. Firstly,

E∆(1) = E[θ
(1)

X1
1
1(X1

1 > 0)] +E[θ
(1)
1 1(IA ≤ T (1))1(X1

1 = 0)]

= Eθ
(1)

X1
1

+ E[θ
(1)
1 1(IA ≤ T (1))]P (X1

1 = 0). (23)

Since θ
(1)

X1
1

= 0 when X1
1 = 0, and since queue Q1 is exhaustive, we have

Eθ
(1)

X1
1

=
EX1

1EB
(1)

1 − ρ1
, (24)

and

EX1
1 = EA(1)(D(1) +D(2) + ∆(2)) = λ1(d+ E∆(2)), (25)

Eθ
(1)

X1
1

=
ρ1

1 − ρ1
(d+ E∆(2)), (26)

E[θ
(1)
1 1(IA ≤ T (1))] =

EB(1)

1 − ρ1
(1 − T̃ (1)(λ1)) =

ρ1

1 − ρ1
EM. (27)

Therefore, it follows from (21), (23), (26) and (27) that

E∆(1) =
ρ1

1 − ρ1
(d+ E∆(2)) +

ρ1

1 − ρ1
EMP (X1

1 = 0)

=
ρ1

1 − ρ1
(EC − E∆(1)),

E∆(1) = ρ1EC. (28)

From Proposition 2.1 (since queue Q2 is RTG)

E∆(2) = E[E[∆(2)|X2
2 ]] = EX2

2EB
(2) + ρ2γ, (29)

where

γ =
1 − X̂2

2 (θ̃(2)(µ))

µ
.

By the Proposition 3.1, we have

EX2
2 =E[A(2)(D(1) +D(2)) + YX2

2
+A(2)(θ

(1)

X1
1
)1(X1

1 > 0)+

(A(2)(M) +A(2)(θ
(1)
1 )1(IA ≤ T (1)))1(X1

1 = 0)]

=λ2[d+ EX2
2EB

(2) − (1 − ρ2)γ + Eθ
(1)

X1
1
P (X1

1 > 0)+

EMP (X1
1 = 0) +

ρ1

1 − ρ1
EMP (X1

1 = 0)],

where

E[A(2)(θ
(1)

X1
1
)1(X1

1 > 0)] = E[E[A(2)(θ
(1)

X1
1
)1(X1

1 > 0)|X1
1 ]]

= λ2Eθ
(1)

X1
1
P (X1

1 > 0).

Thus

EX2
2 =

λ2

1 − ρ2
(d+ E∆(1) + EMP (X1

1 = 0)) − λ2γ. (30)

From (29) and (30), we have

E∆(2) =
ρ2

1 − ρ2
(d+ E∆(1) + EMP (X1

1 = 0))
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=
ρ2

1 − ρ2
(EC − E∆(2)),

E∆(2) = ρ2EC. (31)

It follows from (21), (28) and (31) that

EC = ED(1) + ED(2) + E∆(1) + E∆(2) + EMP (X1
1 = 0)

= d+ ρ1EC + ρ2EC + EMP (X1
1 = 0)

= d+ ρEC + EMP (X1
1 = 0).

Hence

EC =
d+ EMP (X1

1 = 0)

(1 − ρ)
.

From (28) and (31), we can see that ρ1 and ρ2 denote the server’s busy fraction at Q1 and Q2

during a cycle, respectively. Therefore, we have the following theorem.

Theorem 4.1 1) The mean cycle length EC = (d + EMP (X1
1 = 0))/(1 − ρ), 2) The server’s

busy fraction Pbusy = (E∆(1) + E∆(2))/EC = ρ.

By the law of motion (8) and the expression for E∆(1), E∆(2), we can easily get the following

results.

Theorem 4.2 The expectations of EXj
i (i, j = 1, 2) are

EX1
1 = λ1(d+

ρ2

1 − ρ
(d+ EMP (X1

1 = 0))),

EX2
1 = λ2d2 +

λ2ρ2

1 − ρ
(d+ EMP (X1

1 = 0)) − λ2γ,

EX1
2 = λ1d1,

EX2
2 =

λ2

1 − ρ
(d+ EMP (X1

1 = 0)) − λ2γ.

5. Workload

In this section, we only consider zero switchover time (non-zero switchover time is similar).

This model can also be viewed as M/G/1 with server intermissions, whose arrival intensity is λ =

λ1 +λ2, service time B = λ1

λ1+λ2
B(1) + λ2

λ1+λ2
B(2), transfic intensity ρ = ρ1 +ρ2, and intermission

time M . Then let V be workload process with the distribution function V (·), the density function

v(·) and LST Ṽ (·). Applying Level-crossing theory[4], we know that the rate of upcrossing the

level x is equal to the rate of downcrossing the level x. Denote v0(x) = d
dxP (V ≤ x,Timer on).

Since a downcrossing is only possible when the Timer is off, the rate of downcrossing the level x

is v(x) − v0(x). Therefore, we have

v(x) − v0(x) = λ

∫ x

0−

B(x− y)v(y)dy. (32)

Then there is the stochastic decomposition

V (x) = VM/G/1 ∗ V0(x),
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where B(x) = 1 −B(x), and VM/G/1is the workload of the standard M/G/1 model.

Taking LST in the both sides of (32), we have

Ṽ (s) − E[e−sV 1(Timer on)] = ρβ(s)Ṽ (s),

where β(s) = 1
EB

∫ ∞

0
e−sxB(x)dx. From Theorem 4.1, P (Timer on) = 1 − ρ, thus

Ṽ (s) =
1 − ρ

1 − ρβ(s)
E[e−sV |Timer on]. (33)

Since {V |Timer on(t), t ≥ 0} is a regeneration process, we obtain

E[e−sV |Timer on ] =
1

EM
E

∫ M

0

e−sV |Timer on(t)dt

=
1

EM
E

∫ ∞

0

1(M > t)e
−s(λ−1

2 Y
X2

2
+

∑ A
(2)(t)

i=0 B
(2)
i

)
dt

=
Ee

−sλ−1
2 Y

X2
2

EM
E

∫ ∞

0

1(M > t)e−s
∑ A

(2)(t)
i=0 B

(2)
i dt

=
Ee

−sλ−1
2 Y

X2
2

EM

∫ ∞

0

P (M > t)e−λ2(1−B̃(2)(s))tdt

=
Ee

−sλ−1
2 Y

X2
2

EM

1 − M̃(λ2(1 − B̃(2)(s))

λ2(1 − B̃(2)(s))
.

Therefore, we have

E[V |Timer on] = λ−1
2 EYX2

2
+
ρ2EM

2

2EM
.

From (33), we can obtain the mean workload

EV = EVM/G/1 + E[V |Timer on]

=

2∑
i=1

λiEB
(i)2

2(1 − ρ)
+

ρ2

1 − ρ
EMP (X1

1 = 0) − γ +
ρ2EM

2

2EM
.
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