Decomposition of λK_{v} into 6-Circuits with Two Chords

KANG Qing De ${ }^{1}$, LIU Shu Xia ${ }^{2}$, YUAN Lan Dang ${ }^{3}$
(1. Institute of Mathematics, Hebei Normal University, Hebei 050016, China;
2. College of Mathematics \& Stat., Hebei University of Economics and Trade, Hebei 050061, China;
3. College of Occupation Technology, Hebei Normal University, Hebei 050031, China)

(E-mail: qdkang@heinfo.net; stliushuxia@heuet.edu.cn; yld6@163.com)

Abstract

In this paper, we discuss the G-decomposition of λK_{v} into 6 -circuits with two chords. We construct some holey G-designs using sharply 2 -transitive group, and present the recursive structure by PBD. We also give a unified method to construct G-designs when the index equals the edge number of the discussed graph. Finally, the existence of $G-G D_{\lambda}(v)$ is given.

Keywords graph design; holey graph design; sharply 2-transitive group.
Document code A
MR(2000) Subject Classification 05C15
Chinese Library Classification O157

1. Introduction

Let K_{v} be a complete graph with v vertices, and $G=(V(G), E(G))$ be a finite simple graph. A G-decomposition (or G-design) is a pair (X, \mathcal{B}), where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any edge of K_{v} occurs in exactly λ blocks of \mathcal{B}. For simplicity, such a G-design is denoted by G - $G D_{\lambda}(v)$. Obviously, the necessary conditions for the existence of a $G-G D_{\lambda}(v)$ are

$$
\begin{equation*}
v \geq|V(G)|, \lambda v(v-1) \equiv 0 \bmod 2|E(G)|, \lambda(v-1) \equiv 0 \bmod d \tag{*}
\end{equation*}
$$

where d is the greatest common divisor of the degrees of the vertices in $V(G)$.
Let $K_{n_{1}, n_{2}, \ldots, n_{t}}$ be a complete multipartite graph with vertex set $\bigcup_{i=1}^{t} X_{i}$, where these X_{i} are disjoint and $\left|X_{i}\right|=n_{i}, 1 \leq i \leq t$. For a given graph G, a holey G-design, denoted by G $H D_{\lambda}\left(n_{1} n_{2} \cdots n_{t}\right)$, is a pair (X, \mathcal{B}), where X is the vertex set of $K_{n_{1}, n_{2}, \ldots, n_{t}}$ and \mathcal{B} is a collection of subgraphs of $K_{n_{1}, n_{2}, \ldots, n_{t}}$ called blocks, such that each block is isomorphic to G and any edge of $K_{n_{1}, n_{2}, \ldots, n_{t}}$ occurs in exactly λ blocks of \mathcal{B}. When the multipartite graph has a_{i} partite of size $g_{i} 1 \leq i \leq r$, the holey G-design is denoted by G - $H D_{\lambda}\left(g_{1}{ }^{a_{1}} g_{2}{ }^{a_{2}} \cdots g_{r}{ }^{a_{r}}\right)$. For $\lambda=1$, the index 1 is often omitted. A $G-H D_{\lambda}\left(1^{v} w^{1}\right)$ is called an incomplete G-design, denoted by G $I D_{\lambda}(v+w, w)$. Obviously, a $G-G D_{\lambda}(v)$ can be regarded as a $G-H D_{\lambda}\left(1^{v}\right)$, a $G-I D_{\lambda}(v+0,0)$ or a $G-I D_{\lambda}((v-1)+1,1)$.

From [2], there are 6 graphs-6-circuit with two chords, which are listed below:
Received date: 2007-07-27; Accepted date: 2007-09-07
Foundation item: the National Natural Science Foundation of China (No. 10671055); the Natural Science Foundation of Hebei Province (No. A2007000230); the Foundation of Hebei Normal University (No. L2007B22).

Figure 1 Graphs-6-circuit with two chords
For convenience, all graphs above are denoted by (a, b, c, d, e, f).
For $\lambda=1$, we have solved the existence of graph designs for these graphs.
Lemma 1.1 ${ }^{[4]}$ For graph $C_{k}, 1 \leq k \leq 6$, there exists a $G-G D(v)$ if and only if $v \equiv 0,1(\bmod 16)$ and $v \geq 16$.

The graph design $C_{1}-G D_{\lambda}(v)$ for $\lambda>1$ has been completed in [5]. In this paper, we shall focus on the left five graphs for $\lambda>1$, i.e., $C_{k}, 2 \leq k \leq 6$.

By (*), we need discuss the following v and λ :

$$
\begin{equation*}
\lambda=2, v \equiv 0,1(\bmod 8) ; \quad \lambda=4, v \equiv 0,1(\bmod 4) ; \quad \lambda=8, v \geq 6 \tag{**}
\end{equation*}
$$

Our main conclusions will be:
Theorem 1.2 The necessary conditions for the existence of $C_{k}-G D_{\lambda}(v), 2 \leq k \leq 6$, are also sufficient.

The following definition and lemmas are important for our constructing methods in this paper.

A pairwise balanced design $B[K, 1 ; v]$ is a pair (V, \mathcal{B}), where V is a v-set (point set) and \mathcal{B} is a family of subsets (blocks) of V with block sizes from K such that every pair of distinct elements of V occurs in exactly one block of \mathcal{B}. When $K=\{k\}, B[K, 1 ; v]=B[k, 1 ; v]$ is just a balanced incomplete block design.

Lemma $1.3^{[3]}$ Let G be a simple graph, K be a set of positive integers, and m, u, v, λ, μ be positive integers.
(1) If there exist a $B[K, 1 ; v]$ and a $G-H D_{\lambda}\left(m^{k}\right)$ for each $k \in K$, then there exists a G $H D_{\lambda}\left(m^{v}\right)$.
(2) If there exists a $G-H D_{\lambda}\left(m^{u}\right)$, then there exists a $G-H D_{\lambda \mu}\left(m^{u}\right)$.

Lemma 1.4 ${ }^{[5]}$ Let G be a simple graph, and h, m, n, λ be positive integers, $w \geq 0$.
(1) If there exist a $G-H D_{\lambda}\left(m^{h}\right)$, a $G-I D_{\lambda}(m+w, w)$ and a $G-G D_{\lambda}(m+w)\left(\right.$ or $\left.G-G D_{\lambda}(w)\right)$, then there exists a $G-G D_{\lambda}(m h+w)$.
(2) If there exist a $G-H D_{\lambda}\left(m^{h} n^{1}\right)$, a $G-I D_{\lambda}(m+w, w)$ and a $G-G D_{\lambda}(n+w)$, then there exists a $G-G D_{\lambda}(m h+n+w)$.

Lemma 1.5 Let m be a positive integer, $q=3,4,5, w=0,1$ and $i=1,2$. If there exist a
$G-H D_{2}\left(m^{q}\right)$ and a $G-G D_{2}(i m+w)$, then there exists a $G-G D_{2}(v)$ for $v \equiv 0,1(\bmod m)$ and $v \geq m$.

Note. The above lemma is just the modified version of Theorem 2.2.7 in [4].
Lemma 1.6 Let positive integer $w<8, q=3,4,5$ and $t \in\{1,2,6,8\}$. If there exist a $G-H D_{\lambda}\left(8^{q}\right)$, a $G-I D_{\lambda}(8+w, w)$ and a $G-G D_{\lambda}(8 t+w)$, then there exists a $G-G D_{\lambda}(v)$ for $v \equiv w(\bmod 8)$ and $v \geq 8+w$.

Proof Let $v=8 t+w, t \geq 1$. From [1], there exists a $B[\{3,4,5\}, 1 ; t]$ for any $t \geq 3, t \neq 6,8$. Hence, by Lemma $1.3(1)$, there exists a $G-H D_{\lambda}\left(8^{t}\right)$ for any $t \geq 3, t \neq 6,8$, from the existence of $G-H D_{\lambda}\left(8^{q}\right)$ for $q=3,4,5$. Furthermore, by Lemma 1.4(1), there exists a G - $G D_{\lambda}(8 t+w)$ for any $t \geq 3, t \neq 6,8$, from the known $G-I D_{\lambda}(8+w, w)$ and $G-G D_{\lambda}(8+w)$. Adding the given $G-G D_{\lambda}(8 t+w)$ for $t=1,2,6,8$, we obtain the conclusion.

2. Construction of $H D$ via sharply 2-transitive group

Let H be a transformation group acting on the n-set N. For any two ordered 2 -subsets (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ from N, if there exists unique $\xi \in H$ satisfying $(\xi x, \xi y)=\left(x^{\prime}, y^{\prime}\right)$, then H is called a sharply 2 -transitive group on N.

Lemma 2.1 ${ }^{[4]}$ Let F_{q} be a finite field, where q is a prime power. Then, for the multiplication of transformations, all linear transformations on F_{q}

$$
f_{c, d}: x \longmapsto c x+d \quad \forall x \in F_{q}
$$

form a sharply 2-transitive group on $F_{q}: L_{q}=\left\{f_{c, d}: c \in F_{q}^{*}, d \in F_{q}\right\}$.
Lemma 2.2 Let G be a graph with $2 e$ edges. If
(1) There exists a mapping f (i.e., vertex labeling) from its vertex set $V(G)$ to the set $Z_{2 e}$ such that the induced mapping on its edge set (i.e., edge labeling)

$$
f^{*}:\{x, y\} \longmapsto|f(x)-f(y)| \forall\{x, y\} \in E(G)
$$

satisfies $\left\{f^{*}\{x, y\}:\{x, y\} \in E(G)\right\}=\{1,1,2,2, \ldots, e-1, e-1\} \bigcup\{0, e\}$, where $|f(x)-f(y)|=$ $f(y)-f(x)$ if $0 \leq f(y)-f(x) \leq e$ and $|f(x)-f(y)|=f(x)-f(y)$ if $e<f(y)-f(x)<2 e$;
(2) G is q-vertex-colorable (the coloring set is Q);
(3) There exists a sharply 2-transitive group on Q,
then there exists a G - $H D_{2}\left((2 e)^{q}\right)$, where q is a prime power.
Proof We will construct a holey-design G - $H D_{2}\left((2 e)^{q}\right)$ on $Z_{2 e} \times Q$, where the set of partites is $\left\{Z_{2 e} \times\{i\}: i \in Q\right\}$ and Q is just the q-vertex-coloring set. Denote the q-vertex-coloring of G by C, and the graph is labeled according to condition (1) by B. Let L_{q} be the sharply 2 -transitive group on Q. Then $(B, C)=\{(f(x), C(x)): x \in V(G)\} \bmod \left(Z_{2 e}, L_{q}\right)$ forms the block set of $G-H D_{2}\left((2 e)^{q}\right)$.

In fact, since C is a q-vertex-coloring graph, the differences in the base blocks are all mixed
differences between distinct holes (not pure difference in the same hole).
The mixed differences between two distinct holes are $0, \pm 1, \pm 2, \ldots, \pm(e-1)$ and e. In the block B, each edge valuation of $\{1,2, \ldots,(e-1)\}$ appears exactly two times and each edge valuation of $\{0, e\}$ appears exactly once. Under the acting of the sharply- 2 transitive group L_{q}, each edge (x, y) of C takes each ordered pair from Q exactly once. Therefore, in the base blocks each mixed difference in $\{0, e, \pm 1, \pm 2, \ldots, \pm(e-1)\}$ between any two distinct holes appears exactly two times. This completes the proof.

Lemma 2.3 For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists a G - $H D_{2}\left(8^{q}\right)$ for $q=3,4,5$.
Proof For each graph $G(a, b, c, d, e, f)$, we will construct the desired G - $H D_{2}\left(8^{q}\right)$ on $X=Z_{8} \times Z_{q}$ with partites $Z_{8} \times\{x\}, x \in F_{q}$. By Lemma 2.2, we need only to construct the corresponding vertex labeling and vertex coloring, which are listed below.
$C_{2}: B=(0,1,4,5,3,3), C=(0,1,2,1,0,2) ; C_{3}: B=(2,4,4,0,1,3), C=(0,1,2,1,0,2) ;$
$C_{4}: B=(0,1,4,6,6,2), C=(0,1,0,2,1,2) ; C_{5}: B=(0,1,5,2,3,3), C=(0,1,2,1,0,2) ;$
$C_{6}: B=(0,1,5,2,3,3), C=(0,1,2,1,0,2)$.
3. $\lambda=2$

In this section, by $(* *)$, the scope of order v for the existence of $G-G D_{2}(v)$ is $v \equiv 0,1(\bmod 8)$. By the known holey designs and recursive constructions in Sections 1 and 2, it is enough to construct a few $G D$ s with index 2 for some small orders.

Lemma 3.1 For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists a G - $G D_{2}(v)$ for $v \in\{8,9,16,17\}$.
Proof For $v \in\{8,9\}$, we list vertex set and blocks below.
$\underline{v=8}: X=Z_{7} \bigcup\{\infty\}, \bmod 7$.
$C_{2}:(0,1,2,6, \infty, 5), C_{3}:(1,0, \infty, 6,2,3), C_{4}:(1,0,6,2, \infty, 3), C_{5}:(\infty, 0,2,6,3,1)$,
$C_{6}:(2,6, \infty, 0,1,3)$.
$\underline{v=9}: X=Z_{9}, \bmod 9$.
$C_{2}:(0,1,2,8,3,7), C_{3}:(1,0,4,8,2,3), C_{4}:(1,0,8,2,7,3), C_{5}:(6,0,2,8,3,1)$,
$C_{6}:(2,8,5,0,1,3)$.
$\underline{v=16,17}$: The designs can be obtained by Lemmas 1.1 and $1.3(2)$.
Theorem A For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists a $G-G D_{2}(v) \Longleftrightarrow v \equiv 0,1(\bmod 8)$ and $v \geq 8$.

Proof The conclusion holds by Lemmas 1.5, 2.3 and 3.1.
4. $\lambda=4$

In this section, by $(* *)$, the scope of order v for the existence of $G-G D_{4}(v)$ is $v \equiv 0,1(\bmod 4)$ and $v \geq 8$. By the known G-designs, holey designs and recursive constructions in Section $1-3$, it is enough to construct a few $G D$ s and $I D$ s with index 4 for some small orders.

Lemma 4.1 There exists a $C_{2}-I D_{2}(8+w, w)$. Further there exists a $C_{2}-I D_{4}(8+w, w)$ for $w=4,5$, too.

Proof For $w \in\{4,5\}$, we list vertex set and blocks below.
$\underline{w=4:} X=Z_{8} \bigcup\{A, B, C, D\}$.
$(6,5, B, 0,7, D),(5,4, A, 1,0, D),(5,3,2,1, D, 7),(6,4,3, C, 5,0),(3,0, A, 7,6, C)$,
$(7,2, A, 3,4, C),(7,4, B, 2,6, C),(7,5,4, B, 6,1),(0,2, C, 1,4, D),(3,2, B, 1,6, D)$,
$(6,5, A, 1, B, 0),(7,3, B, 5, C, 1),(2,0,7,6, A, 4),(4,2,1, D, 3,6),(3,1,0, A, 2,5)$.
$\underline{w=5:} X=Z_{8} \bigcup\{A, B, C, D, E\}$.
$(6, A, 7,1, B, 0),(5, A, 1,4, E, 3),(3, A, 7,4, C, 2),(4, A, 6,3, D, 1),(4, D, 7,5, E, 2)$,
$(6, C, 7,2, D, 3),(1, C, 0,3, E, 7),(6, D, 5,0, A, 4), \quad(1, E, 6,2, A, 5),(2, B, 7,0, E, 1)$,
$(5, C, 3,2, E, 6),(2, B, 6,1, C, 5),(2, C, 4,5, D, 0), \quad(2,0,5,4,3,1),(0, E, 7,5, B, 4)$, $(0, B, 3,1, D, 6),(3, B, 4,0, D, 7)$.

Lemma 4.2 For graph $G \in\left\{C_{k}: 3 \leq k \leq 6\right\}$, there exists a $G-I D_{4}(8+w, w)$ for $w=4,5$.
Proof For $w \in\{4,5\}$, we list vertex set and blocks below.
$\underline{w=4:} X=Z_{8} \bigcup\{A, B, C, D\}$.
$C_{3}:(A, 4,0, B, 1,5),(C, 2,1, D, 3,5),(A, 0,6, A, 2,7) \bmod 8 ;$ $(0,3,6, D, 4, C),(1,3,5, C, 7, D),(C, 2,5,7, D, 0),(0,6,1, C, 3, D)$, $(C, 1,4, D, 2,7),(6,4,2, D, 5, C)$.
$C_{4}:(A, 4, B, 0,1,5),(C, 2, D, 0,3,5),(A, 0, B, 3,4,7) \bmod 8 ;$ $(3,1, D, 0,2, C),(0,6, C, 7,1, D),(C, 0,6,4, D, 2),(2,4, C, 5,3, D)$, $(C, 1,7,5, D, 3),(4,6, D, 7,5, C)$.
$C_{5}:(A, 4,0, B, 1,5),(C, 2,0, D, 3,5),(A, 0,3, B, 4,7) \bmod 8 ;$
$(3, C, 2,0, D, 1),(6, C, 7,1, D, 0),(C, 1,3, D, 5,7),(5, C, 4,2, D, 3)$,
$(C, 2,4, D, 6,0),(4, C, 5,7, D, 6)$.
$C_{6}:(4,1, A, 0, B, 5),(5,2, C, 7, D, 3),(2,0, A, 3, B, 7) \bmod 8 ;$
$(0, C, 1, D, 4,2),(5, C, 3, D, 2,7),(5,0, C, 2, D, 3),(1, C, 5, D, 6,3)$,
$(1,4, C, 6, D, 7),(4, C, 7, D, 0,6)$.
$\underline{w=5:} X=Z_{8} \bigcup\{A, B, C, D, E\}$.
$C_{3}:(0, A, 4, E, 3,2),(0, D, 5,2,6,3), \quad(B, 0,1, C, 4,2) \bmod 8 ;$
$(4, E, 0,7,6,5),(7, E, 3,4,5,6), \quad(0, D, 3, C, 1,6),(6, C, 5, D, 2,4),(3, E, 7,0,1,2)$,
$(1, D, 7, C, 5,3),(C, 0, D, 7,5,2),(C, 7,2, D, 4,1), \quad(0, C, 4, D, 6,3),(0, E, 4,3,2,1)$.
$C_{4}:(0, A, 2,3, C, 1),(0, B, 1,4, D, 3),(0, E, 2,5,1,4) \bmod 8 ;$
$(0, D, 1,7, C, 6),(C, 2, D, 4,6,0),(2, D, 3,5, C, 4),(7,6,5,4,2,0),(C, 3, D, 5,7,1)$,
$(3, C, 2,0, D, 1),(4, C, 5,7, D, 6),(6,7,0,1,3,5), \quad(4,3,2,1,7,5),(1,2,3,4,6,0)$.
$C_{5}:(4, A, 1,5, B, 0),(E, 0,3, D, 4,7),(C, 0,3, E, 4,7) \bmod 8 ;$
$(6, C, 7,1, D, 0),(C, 1,3, D, 5,7),(5, C, 4,2, D, 3),(4, C, 5,7, D, 6),(A, 2,4, B, 6,0)$,
$(3, C, 2,0, D, 1),(B, 2,4, A, 6,0),(C, 2,4, D, 6,0),(B, 1,7, A, 5,3),(A, 1,7, B, 5,3)$.
$C_{6}:(A, 0, D, 2, E, 1),(B, 0, D, 4, E, 3),(C, 0,3,5,6,4) \bmod 8 ;$
$(4, C, 1,3,2,7),(5, C, 6,2,1,0),(6,3, C, 2,4,7),(1, B, 6,3,5,7),(0,3, B, 4,1,7)$, $(2, B, 5,4,6,0),(3, A, 6,5,7,2),(6,5, A, 7,0,1),(0, A, 1,2,5,4),(6,4,3,0,5,1)$. In what follows, for a block $B, B \times m$ means m times of the block B for $m>0$.

Lemma 4.3 For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists $G-G D_{4}(v)$ for $v \in\{12,13,20,21,52$, $53,68,69\}$.

Proof For $v \in\{12,13,20,21,52,53,68,69\}$, we list vertex set and blocks below.
$\underline{v=12:} X=Z_{11} \bigcup\{\infty\}, \bmod 11$.
$C_{2}:(0,3,10,8, \infty, 9) \times 2,(1,0,5,8,3,4) ; C_{3}:(10,1, \infty, 2,0,4) \times 2,(4,0,3,6,1,5) ;$
$C_{4}:(\infty, 0,9,3,5,1) \times 2,(5,0,4,3,9,1) ; C_{5}:(\infty, 0,4,2,10,1) \times 2,(4,0,6,10,7,1) ;$
$C_{6}:(10,2, \infty, 1,0,4) \times 2,(6,10,3,0,1,7)$.
$\underline{v=13:} \quad X=Z_{13}, \bmod 13$.
$C_{2}:(0,1,5,8,2,6) \times 2,(0,12,10,7,9,11) ; C_{3}:(12,1,8,2,0,4) \times 2,(4,0,3,6,1,5) ;$
$C_{4}:(7,0,11,3,5,1) \times 2,(5,0,4,3,11,1) ; C_{5}:(7,0,4,2,12,1) \times 2,(4,0,8,12,9,1) ;$
$C_{6}:(12,2,8,1,0,4) \times 2,(8,12,3,0,1,9)$.
$\underline{v=20:} \quad X=Z_{19} \bigcup\{\infty\}, \bmod 19$.
$C_{2}:(4,0,2,9,16,8),(2,0,8,9,14,5) \times 2,(5,2,11, \infty, 10,9) \times 2 ;$
$C_{3}:(2,0,1,9,8,4),(\infty, 10,5,14,8,11) \times 2,(4,0,7,14,6,9) \times 2$;
$C_{4}:(2,0,3,6,10,4),(\infty, 10,1,8,3,11) \times 2,(9,0,3,7,13,8) \times 2$;
$C_{5}:(0,5,9,16,11,7),(\infty, 10,1,7,3,11) \times 2,(0,3,12,11,5,8) \times 2$;
$C_{6}:(0,4,12,6,7,8),(2,10, \infty, 11,4,1) \times 2,(0,5,3,6,11,7) \times 2$.
$\underline{v=21:} X=Z_{21}, \bmod 21$.
$C_{2}:(5,2,11,0,10,9) \times 2,(2,0,8,9,14,5) \times 2,(4,0,2,9,16,8) ;$
$C_{3}:(0,10,5,14,8,11) \times 2,(4,0,7,14,6,9) \times 2,(2,0,1,9,8,4) ;$
$C_{4}:(0,10,1,8,3,11) \times 2,(9,0,3,7,13,8) \times 2,(2,0,3,6,10,4) ;$
$C_{5}:(0,10,1,7,3,11) \times 2,(0,3,12,11,5,8) \times 2,(0,5,9,16,11,7)$;
$C_{6}:(2,10,0,11,4,1) \times 2,(0,5,3,6,11,7) \times 2,(0,4,12,6,7,8)$.
$\underline{v=52:} X=Z_{51} \bigcup\{\infty\}, \bmod 51$.
$C_{2}:(7,19,27, \infty, 26,8) \times 2,(25,0,6,7,20,13) \times 2,(14,0,21,6,9,4) \times 2$, $(9,0,24,14,5,23) \times 2,(22,0,17,6,23,3) \times 2,(2,0,25,9,3,24) \times 2$, $(8,0,4,20,18,16)$;
$C_{3}:(23,0,16,2,7,13) \times 2,(20,0,18,1,13,22) \times 2,(\infty, 26,17,41,16,27) \times 2$, $(27,6,26,7,28,9) \times 2,(17,14,7,30,6,0) \times 2,(12,0,15,30,5,16) \times 2$, $(2,0,1,9,8,4)$;
$C_{4}:(\infty, 26,1,13,2,27) \times 2,(10,0,15,23,17,24) \times 2,(24,0,16,21,9,22) \times 2$, $(4,0,19,20,5,21) \times 2,(23,0,9,22,4,18) \times 2,(17,0,7,19,9,20) \times 2$, (2, $0,3,6,10,4)$;
$C_{5}:(3,27,4,16,1,13) \times 2,(\infty, 26,15,24,2,27) \times 2,(0,9,5,24,1,25) \times 2$,
$(0,21,1,22,9,19) \times 2,(22,0,16,19,33,15) \times 2,(11,08,7,25,5) \times 2$, $(0,5,11,18,13,7)$;
$C_{6}:(2,26, \infty, 27,3,1) \times 2,(0,23,4,22,1,15) \times 2,(0,20,7,18,1,16) \times 2$, $(0,17,4,6,26,7) \times 2,(0,5,17,7,30,14) \times 2,(0,12,33,11,6,3) \times 2$, $(0,4,12,6,7,8)$.
$\underline{v=53:} X=Z_{53}, \bmod 53$.
$C_{2}:(7,19,27,0,26,8) \times 2,(25,0,6,7,20,13) \times 2,(14,0,21,6,9,4) \times 2$,
$(9,0,24,14,5,23) \times 2,(22,0,17,6,23,3) \times 2,(2,0,25,9,3,24) \times 2$, $(8,0,4,20,18,16)$;
$C_{3}:(0,26,17,41,16,27) \times 2,(23,0,16,2,7,13) \times 2,(20,0,18,1,13,22) \times 2$, $(27,6,26,7,28,9) \times 2, \quad(17,14,7,30,6,0) \times 2,(12,0,15,30,5,16) \times 2$, $(2,0,1,9,8,4)$;
$C_{4}:(0,26,1,13,2,27) \times 2,(10,0,15,23,17,24) \times 2,(24,0,16,21,9,22) \times 2$, $(17,0,7,19,9,20) \times 2,(4,0,19,20,5,21) \times 2,(23,0,9,22,4,18) \times 2$, $(2,0,3,6,10,4)$;
$C_{5}:(0,26,15,24,2,27) \times 2,(3,27,4,16,1,13) \times 2,(22,0,16,19,33,15) \times 2$, $(0,21,1,22,9,19) \times 2,(0,9,5,24,1,25) \times 2,(11,08,7,25,5) \times 2$, $(0,5,11,18,13,7)$;
$C_{6}:(2,26,0,27,3,1) \times 2,(0,23,4,22,1,15) \times 2,(0,20,7,18,1,16) \times 2$, $(0,17,4,6,26,7) \times 2,(0,5,17,7,30,14) \times 2,(0,12,33,11,6,3) \times 2$, $(0,4,12,6,7,8)$.
$\underline{v=68:} X=Z_{67} \bigcup\{\infty\}, \bmod 67$.
$C_{2}:(9,2,35, \infty, 34,19) \times 2,(7,1,31,1,29,32) \times 2,(11,6,38,7,6,34) \times 2$,
$(0,12,21,7,15,29) \times 2,(13,11,29,2,9,0) \times 2,(20,19,42,13,26,0) \times 2$, $(24,22,12,17,20,0) \times 2, \quad(21,25,6,17,18,0) \times 2, \quad(16,0,8,40,46,32) ;$
$C_{3}:(\infty, 35,16,6,2,34) \times 2,(31,0,18,7,30,8) \times 2,(35,6,15,33,0,11) \times 2$, $(38,10,23,7,0,17) \times 2,(9,0,21,45,14,12) \times 2,(15,27,12,34,14,0) \times 2$, $(26,0,27,2,25,20) \times 2, \quad(16,0,32,4,30,19) \times 2, \quad(2,0,1,9,8,4)$;
$C_{4}:(\infty, 34,1,32,2,35) \times 2,(32,0,28,18,38,29) \times 2,(19,0,26,20,2,27) \times 2$, $(14,0,12,24,3,25) \times 2,(8,0,5,28,14,7) \times 2,,(5,0,11,26,2,32) \times 2$, $(17,0,16,31,2,21) \times 2, \quad(13,0,9,22,6,23) \times 2, \quad(2,0,3,6,10,4) ;$
$C_{5}:(\infty, 34,15,20,2,35) \times 2,(3,35,17,23,0,14) \times 2, \quad(20,0,31,3,2,30) \times 2$, $(27,0,22,18,31,15) \times 2,(5,3,30,13,38,29) \times 2,(24,0,32,16,36,3) \times 2$, $(30,0,29,6,32,22) \times 2,(31,0,15,1,26,19) \times 2,(0,5,11,18,13,7) ;$
$C_{6}:(2,34, \infty, 35,9,7) \times 2,(31,0,29,2,34,1) \times 2,(0,28,5,24,49,25) \times 2$, $(0,22,1,19,6,18) \times 2,(7,0,10,21,6,23) \times 2,(0,12,38,10,1,21) \times 2$, $(0,15,28,6,37,7) \times 2, \quad(20,0,16,5,3,17) \times 2,(0,4,12,6,7,8)$.
$\underline{v=69:} X=Z_{69}, \bmod 69$.
$C_{2}:(9,2,35,0,34,19) \times 2,(7,1,31,1,29,32) \times 2,(11,6,38,7,6,34) \times 2$, $(0,12,21,7,15,29) \times 2,(13,11,29,2,9,0) \times 2,(20,19,42,13,26,0) \times 2$, $(24,22,12,17,20,0) \times 2, \quad(21,25,6,17,18,0) \times 2, \quad(16,0,8,40,46,32) ;$
$C_{3}:(0,35,16,6,2,34) \times 2,(31,0,18,7,30,8) \times 2,(35,6,15,33,0,11) \times 2$,

$$
\begin{aligned}
& (38,10,23,7,0,17) \times 2,(9,0,21,45,14,12) \times 2,(15,27,12,34,14,0) \times 2, \\
& (26,0,27,2,25,20) \times 2,(16,0,32,4,30,19) \times 2,(2,0,1,9,8,4) ; \\
C_{4}: & (0,34,1,32,2,35) \times 2,(32,0,28,18,38,29) \times 2,(19,0,26,20,2,27) \times 2, \\
& (14,0,12,24,3,25) \times 2,(8,0,5,28,14,7,) \times 2,(5,0,11,26,2,32) \times 2, \\
& (17,0,16,31,2,21) \times 2,(13,0,9,22,6,23) \times 2,(2,0,3,6,10,4) ; \\
C_{5}: & (0,34,15,20,2,35) \times 2,(3,35,17,23,0,14) \times 2,(20,0,31,3,2,30) \times 2, \\
& (27,0,22,18,31,15) \times 2,(5,3,30,13,38,29) \times 2,(24,0,32,16,36,3) \times 2, \\
& (30,0,29,6,32,22) \times 2,(31,0,15,1,26,19) \times 2,(0,5,11,18,13,7) ; \\
C_{6}: & (2,34,0,35,9,7) \times 2,(31,0,29,2,34,1) \times 2,(0,28,5,24,49,25) \times 2, \\
& (0,22,1,19,6,18) \times 2, \quad(7,0,10,21,6,23) \times 2,(0,12,38,10,1,21) \times 2, \\
& (0,15,28,6,37,7) \times 2, \quad(20,0,16,5,3,17) \times 2,(0,4,12,6,7,8) .
\end{aligned}
$$

Theorem B For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists a $G-G D_{4}(v) \Longleftrightarrow v \equiv 0,1(\bmod 4)$ and $v \geq 8$.

Proof The conclusion holds by Lemmas 1.6, 2.3 and 4.1-4.3.
5. $\lambda=8$

5.1 A constructing method for $\lambda=|E(G)|$

Let G be a connected graph, $|V(G)|=m$ and $|E(G)|=e$. Consider the graph design G $G D_{e}(v)=(X, \mathcal{B})$. Let $n=2\left\lceil\frac{v}{2}\right\rceil-1$, which is odd. The vertex set X is denoted by Z_{n} for odd v or $Z_{n} \cup\{\infty\}$ for even v. The block set consists of $n \cdot \frac{n-1}{2}$ or $n \cdot \frac{n+1}{2}$ blocks. Let us construct $\frac{n-1}{2}$ (for odd v) or $\frac{n+1}{2}$ (for even v) base blocks as follows.

Step 1. Define a mapping from Z_{n} to $\left\{1,2, \ldots, \frac{n-1}{2}\right\}: a \mapsto\langle 2 a\rangle$, where $\langle t\rangle=t$ (if $t \leq \frac{n-1}{2}$) or $n-t$ (if $t>\frac{n-1}{2}$). Then, the integers $1,2, \ldots, \frac{n-1}{2}$ are partitioned into equivalent classes, each of which forms a cycle. The cycle contains the integer $a\left(1 \leq a \leq \frac{n-1}{2}\right)$ and its length is denoted by (a) and $l(a)$ respectively, where the length $s=l(a)$ is the minimal positive integer satisfying $a \cdot 2^{s} \equiv \pm a(\bmod n)$. Obviously, $l(a) \leq l(1)$ for $1 \leq a \leq \frac{n-1}{2}$. All the cycles form a graph H_{n}, which is 2-regular.

Step 2. For any $a \in\left[1, \frac{n-1}{2}\right]$ and $l(a) \geq 3$, take an injection f from $V(G)$ to $M=\{m a$: $\left.-\frac{n-1}{2} \leq m \leq \frac{n-1}{2}\right\}$ such that for any edge $\{x, y\} \in E(G)$, the integer $\langle f(x)-f(y)\rangle$ is in the cycle (a). Note that f is an injection if and only if $f(x) \neq f(y)$ for any $x \neq y \in V(G)$. When $|V(G)| \leq 7$, the set M may be restricted to the 7 -set: $\{-2 a,-a, 0, a, 2 a\} \bigcup T$, where $T=\{3 a, 4 a\}$ or $\{-3 a,-4 a\}$, or $\{3 a,-3 a\}$, or $\{4 a,-4 a\}$. Then, for $x \neq y \in V(G)$, the equation $f(x)=f(y)$ holds only for the following cases:

$$
\begin{aligned}
& 1^{\circ} \quad 0= \pm 3 a, \pm a= \pm 4 a, \pm a=\mp 2 a, \pm 2 a=\mp 4 a, 3 a=-3 a \\
& \Longrightarrow n=3 a, l(a)=1 \text { and }(a) \text { is the unique 1-cycle } \\
& 2^{\circ} \quad \pm a=\mp 4 a, \pm 2 a=\mp 3 a
\end{aligned}
$$

$$
\Longrightarrow n=5 a, l(a)=2 \text { and }(a, 2 a) \text { is the unique } 2 \text {-cycle. }
$$

Furthermore, there is another related case
$3^{\circ} n=15 a$, there is a unique 1-cycle ($5 a$) and a unique 2-cycle $(3 a, 6 a)$.
Therefore, we only need to discuss the four cases:
Case $1 \operatorname{gcd}(n, 15)=1$, and the length $l(a) \geq 3$ for any cycle (a) in H_{n}. The injection f here gives a base block B_{a}. But the base blocks $B_{a}\left(1 \leq a \leq \frac{n-1}{2}\right)$ will cover all differences in $Z_{n} e$ times. In fact, let the cycle (a) be $\left(a, 2 a, 4 a, \ldots, 2^{s-1} a\right)$ and each $2^{j} a$, as edge-value $\langle f(x)-f(y)\rangle$, appear i_{j} times in the base block B_{a}, where $0 \leq j \leq s-1$ and $\sum_{j=0}^{s-1} i_{j}=e$. Then, all the edges in $B_{a}, B_{2 a}, \ldots, B_{2^{s-1} a}$ will take edge-values as follows.

	a	$2 a$	$2^{2} a$	\cdots	$2^{s-2} a$	$2^{s-1} a$
B_{a}	i_{0}	i_{1}	i_{2}	\cdots	i_{s-2}	i_{s-1}
$B_{2 a}$	i_{s-1}	i_{0}	i_{1}	\cdots	i_{s-3}	i_{s-2}
\vdots						
$B_{2^{s-1} a}$	i_{1}	i_{2}	i_{3}	\cdots	i_{s-1}	i_{0}

Table 1 Difference distribution
Thus, the base blocks $B_{a}, B_{2 a}, \ldots, B_{2^{s-1} a}$ corresponding $a, 2 a, \ldots, 2^{s-1} a$ in the cycle (a) cover the differences $a, 2 a, \ldots, 2^{s-1} a e$ times.

Case $2 n=3 b$ and $b \neq 0(\bmod 5)$, there is a unique 1-cycle (b).
Case $3 n=5 b$ and $b \neq 0(\bmod 3)$, there is a unique 2-cycle $(b, 2 b)$.
Case $4 n=15 b$, there are a unique 1-cycle (5b) and a unique 2-cycle $(3 b, 6 b)$.
Step 3. For the Cases 2,3 and 4, the method stated in step 2 cannot be used for 1-cycle or 2 -cycle because, replacing a by $b, 2 b, 3 b, 5 b$ or $6 b$, the number of the available integers in the set M is less than six. We may change a few base blocks in \mathcal{A} corresponding to cycle (1) (or b when $n=15 b$) and add some base blocks relating to the elements $b, 2 b, 3 b, 5 b, 6 b$. Note that the edges in these changed and added base blocks belong not yet to one cycle (but two or three cycles).

Step 4. For odd order v, the graph design $G-G D_{e}(v)$ will be obtained after Steps 2 and 3. For even order $v=n+1$, we need to add one vertex ∞ to the vertex set Z_{n}, to change some base blocks in \mathcal{A} corresponding to cycle (1), and to add some base blocks containing ∞.

Lemma 5.1 There exists a $C_{k}-G D_{8}(v)$ for $v \geq 6, k=4,5,6$.
Proof Using the method mentioned above, we list the following table. First, the base block B_{a} for odd v and $l(a) \geq 3$, i.e., case 1 (odd), is given in the first row. The vertex sets are obviously in $\{0, \pm a, \pm 2 a\} \bigcup T$ pointed in Step 2. We denote $\mathcal{A}=\left\{B_{a}: 1 \leq a \leq \frac{n-1}{2}\right\}$ for the B_{a} listed in the first row, then the base blocks for other cases will be uniformly denoted as $(\mathcal{A} \backslash \mathcal{C}) \bigcup \mathcal{C}^{\prime} \bigcup \mathcal{D}$,
where \mathcal{C} is a few base blocks in \mathcal{A} like B_{1}, B_{2}, B_{4} or $B_{b}, B_{2 b}, \ldots$, which is changed to \mathcal{C}^{\prime} (denoted by \rightarrow), and \mathcal{D} is a few added base blocks.

		C_{4}	C_{5}	C_{6}
odd v Case 1	\mathcal{A}	$(a, 0,2 a, 4 a, 3 a,-a)$	$(-a, a, 3 a, 4 a, 2 a, 0)$	$(-2 a, 0, a,-a, 3 a, 2 a)$
odd v	\mathcal{C}	B_{1}	B_{1}	B_{1}
Case 2 $n=3 b$	\mathcal{D}^{\prime}	$\begin{aligned} & (-b, 0,2,1, b+1, b) \\ & (-b, 0,2,4, b+4, b) \end{aligned}$	$\begin{gathered} (2 b, b, b+2,2 b+2,2,0) \\ (2,1, b+1, b+2, b, 0) \end{gathered}$	$\begin{aligned} & (-2,2, b+2, b-2, b, 0) \\ & (0,2 b, 2 b+1,1, b+1, b) \end{aligned}$
odd v	\mathcal{C}	B_{1}, B_{2}	B_{1}, B_{2}	B_{1}, B_{2}
Case 3 $n=5 b$	\mathcal{D}	$\begin{gathered} (3 i b, 0,2 i, 4 i, i b+4 i, i b) \\ (3 i b, 0,2 i, i, i b+i, i b) \\ i=1,2 \end{gathered}$	$\begin{gathered} (-2,0, b, b+1, b+2,2) \times 2 \\ (2 b, 0, i, 2 b+i, 4 b+i, 4 b) \\ i=2,4 \end{gathered}$	$\begin{gathered} (i b, 3 i b, 3 i b+i, i b+i, i, 0) \\ (2 i,-2 i, i b-2 i, i b+2 i, i b, 0) \\ i=1,2 \end{gathered}$
odd v	\mathcal{C}	B_{b}	B_{b}	B_{b}
Case 4 $n=15 b$	D	$\begin{gathered} (2 b,-b,-3 b,-5 b, 0,5 b) \\ (6 b, 0,9 b, 3 b, b,-3 b) \\ (9 b, 0,-5 b, 5 b, 2 b, 3 b) \\ (6 b, 0,-5 b, 5 b, 4 b, 3 b) \end{gathered}$	$\begin{gathered} (3 b, 6 b, 11 b, 8 b, 5 b, 0) \\ (2 b, 3 b, 8 b, 7 b, 5 b, 0) \\ (2 b, 5 b, 11 b, 8 b, 6 b, 0) \\ (-b, 5 b, 11 b, 12 b, 6 b, 0,) \end{gathered}$	$\begin{gathered} (3 b, b, 13 b, 7 b, 12 b, 0) \times 2 \\ (-5 b,-6 b, 4 b, b, 6 b, 0) \\ (-5 b,-3 b, 7 b, b, 6 b, 0) \end{gathered}$

Table 2 Some blocks of $C_{k}-G D_{8}(v), k=4,5,6$, for odd v

		C_{4}	C_{5}	C_{6}
even v	\mathcal{C}^{\prime}	$B_{1}: 0 \rightarrow \infty$	$B_{i}:(i=1,2)$	$B_{1}:-1 \rightarrow \infty$
			$0 \rightarrow \infty$	$B_{2}: 2 \rightarrow \infty$
	\mathcal{D}	$(0, \infty, 2,3,-1,1)$	$(\infty,-1,0,4,2,1)$	$(0,2,-2, \infty, 3,4)$
even v	\mathcal{C}	B_{1}	B_{1}	B_{1}
Case 2	\mathcal{D}	$(-b, \infty, 2,4,0, b) \times 2$	$(2 b, b, \infty, 3,1,0) \times 2$	$(-b, b, b+2, \infty, 4,0) \times 2$
$n=3 b$		$(-b, 0,2,1, b+1, b)$	$(1,2, b+2, \infty, b, 0)$	$(1,0, b, b+1, \infty, 2)$
even v	\mathcal{D}	$(b, 0,3 b, 4 b, \infty, 2 b) \times 2$	$(3 b, 4 b, 2 b, b, 0, \infty) \times 2$	$(\infty, 4 b, 2 b, 3 b, b, 0) \times 2$
Case 3		$(0, \infty, 3 b, b, 4 b, 2 b)$	$(\infty, b, 3 b, 2 b, 0,4 b)$	$(0,3 b, b, 4 b, \infty, 2 b)$
$n=5 b$				
even v	\mathcal{D}	$(\infty, 0,9 b, 3 b, 8 b, 5 b) \times 4$	$(\infty, 8 b, 5 b,-5 b, 0,3 b) \times 2$	$(-5 b, 5 b, \infty,-2 b, 3 b, 0) \times 2$
Case 4			$(\infty, 12 b, 9 b, 3 b, 0,6 b)$	$(0,9 b, 12 b, 6 b, \infty, 3 b) \times 2$
$n=15 b$				

Table 3 Some blocks of $C_{k}-G D_{8}(v), k=4,5,6$, for even v
In what follows, we point out some facts:

1) Obviously, the necessary condition for the existence of a $C_{k}-G D_{8}(v), k=4,5,6$, is $v \geq 6$. In addition, let $n=2\left\lceil\frac{v}{2}\right\rceil-1$. Then we have $n \geq 7, n \geq 9, n \geq 25$ or $n \geq 15$ for odd v or even v in Case $1,2,3,4$, in which $n=2\left\lceil\frac{v}{2}\right\rceil-1 \geq 5$ for even v in Case 3.
2) For Case $2(n=3 b$, odd $b, b \geq 3, b \not \equiv 0 \bmod 5)$. Consider the blocks containing b. We know that the vertex-values are obviously distinct each other for odd v or even v with the
exception $\left(b, C_{k}\right)=\left(3, C_{5}\right)$ and even v. Here is $C_{5}-G D_{8}(10)=(X, \mathcal{B})$, where $X=Z_{9} \bigcup\{\infty\}$, $\mathcal{B}:(4,2,6,1,3, \infty) \times 2,(1,0,3,7,6,2) \times 2,(\infty, 0,1,2,4,6) \bmod 9$.
3) For Case $3(n=5 b$, odd $b, b \not \equiv 0 \bmod 3)$ and Case $4(n=5 b$, odd $b)$, the vertex-values are obviously distinct each other for odd v or even v.

5.2 Graphs $C_{k}, 2 \leq k \leq 3$

Lemma 5.2 There exists a $C_{2}-I D_{8}(8+w, w)$ for $w=2,3,6,7$.
Proof Let $X=Z_{8} \bigcup\left\{\infty_{1}, \ldots, \infty_{w}\right\}$.
$\underline{w=2:}\left(2, x_{1}, 4, x_{2}, 3,0\right),\left(1, x_{1}, 2,4,3,0\right),(1,0,4,5,7,3),\left(3, x_{2}, 4, x_{1}, 2,0\right),\left(4, x_{2}, 7,6,3,0\right) \bmod 8 ;$ $(7,3,5,4,0,1),(0,4,6,5,1,2),(1,5,7,6,2,3),(2,6,0,7,3,4)$.
$\underline{w=3:}\left(2, x_{1}, 5, x_{2}, 4,0\right),\left(3, x_{1}, 0,1,4,7\right),\left(1, x_{3}, 3, x_{1}, 2,0\right),\left(3, x_{2}, 4, x_{3}, 1,0\right),\left(4, x_{2}, 6,5,3,0\right)$, $\left(6, x_{3}, 1,0,2,5\right) \bmod 8 ;(7,3,5,4,0,1),(0,4,6,5,1,2),(1,5,7,6,2,3),(2,6,0,7,3,4)$.
$\underline{w=6}:\left(1,0, x_{1}, 2,4, x_{2}\right),\left(3,0, x_{2}, 1,4, x_{3}\right),\left(1,0, x_{3}, 2,4, x_{4}\right),\left(1, x_{4}, 0,2, x_{1}, 4\right),\left(3, x_{5}, 0,1, x_{2}, 6\right)$, $\left(1, x_{6}, 0,4, x_{3}, 3\right),\left(3, x_{1}, 0,1, x_{4}, 7\right),\left(3, x_{6}, 0,2, x_{5}, 7\right),\left(1, x_{5}, 0,5, x_{6}, 3\right) \bmod 8 ;$ $(7,3,5,4,0,1),(0,4,6,5,1,2),(1,5,7,6,2,3),(2,6,0,7,3,4)$.
$\underline{w=7}:\left(5,2, x_{2}, 0,3, x_{3}\right),\left(4,2, x_{3}, 0,1, x_{4}\right),\left(4, x_{4}, 3,0, x_{7}, 6\right),\left(4, x_{5}, 3,0, x_{6}, 6\right),\left(4, x_{6}, 3,0, x_{5}, 6\right)$,
$\left(2, x_{7}, 1,0, x_{4}, 4\right),\left(3, x_{1}, 1,0, x_{3}, 6\right),\left(7, x_{7}, 4,0, x_{2}, 5\right),\left(3, x_{6}, 1,0, x_{1}, 6\right) \bmod 8$;
$\left(4,0, x_{1}, 1,5, x_{5}\right)+i,\left(4,0, x_{2}, 5,1, x_{5}\right)+i,\left(4,0, x_{1}, 5,1, x_{2}\right)+i \bmod 8, i=0,1,2,3$.
Lemma 5.3 There exists a $C_{3}-I D_{8}(8+w, w)$ for $w=2,3,6,7$.
Proof It suffices to give the following constructions. $X=Z_{8} \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$.
$\underline{C_{3}-I D_{2}(8+2,2): ~}\left(\infty_{1}, 0,4, \infty_{2}, 3,1\right) \bmod 8 ; \quad(1,0,7,5,6,3),(7,1,2,5,4,6),(7,2,0,5,3,4)$.
$\underline{C_{3}-I D_{2}(8+3,3):\left(x_{1}, 0,4, x_{2}, 3,1\right) \bmod 8 ;\left(7,0,5,4,1, x_{3}\right),\left(5,2,1,6,3, x_{3}\right),\left(5,6,0,2,4, x_{3}\right), ~, ~, ~, ~}$
$\left(6,7,5,3,1, x_{3}\right),\left(0, x_{3}, 2,7,4,3\right)$.
$\underline{C_{3}-I D_{4}(8+6,6):}\left(0, x_{5}, 1, x_{3}, 6,3\right),\left(0, x_{2}, 2,4,5,1\right),\left(4, x_{1}, 6,5,2,0\right),\left(0, x_{6}, 2, x_{4}, 3,1\right) \bmod 8 ;$
$\left(0, x_{3}, 4, x_{4}, 6,3\right),\left(0, x_{4}, 3, x_{3}, 1,6\right),\left(6, x_{3}, 5, x_{4}, 2,4\right),\left(x_{3}, 0, x_{4}, 7,5,2\right)$,
$\left(1, x_{4}, 7, x_{3}, 5,3\right),\left(x_{3}, 7,2, x_{4}, 4,1\right)$.
$\underline{C_{3}-I D_{4}(8+7,7):\left(0, x_{1}, 3, x_{3}, 2,1\right),\left(0, x_{2}, 1, x_{4}, 4,2\right),\left(0, x_{6}, 1, x_{5}, 6,3\right),\left(4, x_{7}, 5,7,3,0\right) \bmod 8 ; ~}$
$\left(0, x_{3}, 4, x_{4}, 6,3\right),\left(0, x_{4}, 3, x_{3}, 1,6\right),\left(6, x_{3}, 5, x_{4}, 2,4\right),\left(0, x_{5}, 4,3,2,1\right)$, $\left(x_{3}, 0, x_{4}, 7,5,2\right),\left(x_{3}, 7,2, x_{4}, 4,1\right),\left(1, x_{4}, 7, x_{3}, 5,3\right),\left(4, x_{5}, 0,7,6,5\right)$, $\left(7, x_{5}, 3,4,5,6\right),\left(3, x_{5}, 7,0,1,2\right)$.

Lemma 5.4 (1) There exists a $C_{2}-G D_{8}(v)$ for all $v>6$ except for $(v, 15)=3$ or $(v, 15)=5$ when v is odd and $v \equiv 1(\bmod 15)$ when v is even;
(2) There exists a $C_{3}-G D_{8}(v)$ for all $v>6$ except for $(v, 15)=3$ when v is odd and $v \equiv 1(\bmod 15)$ when v is even.

Proof Similarly to the proof of Lemma 5.1, we can list the following table.

		C_{2}	C_{3}
odd v Case 1	\mathcal{A}	$(0, a, 2 a,-2 a,-3 a,-a)$	$(a, 0,-a,-3 a,-2 a, 2 a)$
odd v	\mathcal{C}		B_{1}, B_{2}
Case 3 $v=5 b$	D		$\begin{gathered} (2 b, 0,1, b+1, b, 3 b) \times 2 \\ (-1,, 0, b, b+2,2,-2) \times 2 \end{gathered}$
odd v	\mathcal{C}	B_{b}	B_{b}
Case 4 $v=15 b$	\mathcal{D}	$\begin{gathered} (3 b, 0,6 b, b, 4 b, 9 b) \times 2 \\ (0,5 b,-5 b,-3 b,-2 b, 3 b) \\ (3 b, 0, b, 7 b,-2 b,-b) \end{gathered}$	$\begin{gathered} (b, 0,3 b, 8 b, 5 b,-5 b) \\ (-b, 0,-6 b,-4 b, 2 b,-2 b) \\ (3 b, 0,-3 b, 2 b, 5 b, 6 b) \\ (3 b, 0,-5 b, b, 6 b, 9 b) \end{gathered}$
even v	\mathcal{C}^{\prime}	$B_{1}, B_{2}: 0 \rightarrow \infty$	$B_{1}: 0 \rightarrow \infty$
Case 1	\mathcal{D}	$(2,0,4, \infty,-1,1)$	$(0, \infty, 2,3,-1,1)$
even v	\mathcal{C}	B_{1}	B_{1}
Case 2 $v=3 b+1$	\mathcal{D}	$\begin{gathered} (b,-b, \infty, b+1,1,0) \times 2 \\ (2,0,1,-1, \infty,-2) \end{gathered}$	$\begin{gathered} (\infty, 0,1, b+1, b,-b) \times 2 \\ (2, \infty,-4,-2,0,4) \end{gathered}$
even v Case 3 $v=5 b+1$	\mathcal{D}	$\begin{gathered} (2 b, b, \infty, 4 b, 3 b, 0) \times 2 \\ (0,2 b, 4 b, \infty, b, 3 b) \end{gathered}$	$\begin{gathered} (3 b, 0, b, \infty, 2 b, 4 b) \times 2 \\ (0, \infty, 2 b, 4 b, 3 b, b) \end{gathered}$

Table 4 Some blocks of $C_{k}-G D_{8}(v), k=2,3$
Lemma 5.5 There exist a $C_{k}-G D_{8}(v)$ for $k=2,3, v=6,10,51$, and a $C_{2}-G D_{8}(55)$.
Proof For each case, we list vertex set and blocks below. $v=6: \quad X=Z_{5} \bigcup\{\infty\}, \bmod 5$.
$C_{2}:(\infty, 0,4,1,3,2) \times 2,(1,0,4,3, \infty, 2) ; C_{3}:(4,0,3,1,2, \infty) \times 2,(\infty, 0,4,3,1,2)$. $\underline{v=10:} X=Z_{9} \bigcup\{\infty\}, \bmod 9$.
$C_{2}:(3,0,8,1,4,5) \times 2,(\infty, 3,2,0,4,1) \times 2,(4,0,3,6, \infty, 8)$;
$C_{3}:(4,0,3,1,2,8) \times 2,(4,2,7,0,3, \infty) \times 2,(4,3,6, \infty, 8,0)$.
$v=51: ~ X=Z_{51}, \bmod 51$.
$C_{2}:(4,0,17,36,18,15),(2,0,23,48,25,24),(3,0,20,41,21,19),(6,0,10,17,23,8)$, $(7,0,12,35,21,10),(4,0,24,48,44,23),(5,0,14,30,15,12),(23,0,1,11,5,21)$, $(20,0,17,5,10,19),(7,0,18,39,34,15),(3,0,20,42,29,19),(8,0,9,26,50,25)$, $(7,0,13,19,20,12),(7,0,18,11,36,17),(2,0,20,8,10,19),(4,0,15,7,21,14)$, $(1,0,24,11,6,22),(6,0,15,29,17,14),(6,0,22,4,19,21),(2,0,24,1,19,23)$, $(8,0,14,6,23,13),(4,0,14,34,25,13),(1,0,25,3,2,26),(5,0,18,31,27,16)$, ($9,0,12,23,3,25$),
$C_{3}:(19,0,24,50,21,22),(23,0,22,1,15,20),(19,0,2,1,18,16),(18,0,17,2,24,25)$, $(12,0,23,48,24,25),(23,0,25,6,22,19),(14,0,23,3,8,10),(16,0,13,1,12,11)$, $(20,0,14,10,13,15),(20,0,8,21,9,15),(24,0,9,21,10,22),(21,0,9,3,8,14)$,
$(19,0,18,36,20,11),(11,0,14,3,13,23),(17,0,24,2,25,9,(20,0,17,37,18,5)$, $(16,0,32,34,17,7),(10,0,3,8,4,18),(24,0,8,17,7,18),(21,0,19,1,16,14)$ $(15,0,16,2,17,21),(23,0,21,1,22,13),(23,0,7,3,9,16),(1,0,25,1,4,2)$, (11, $0,1,4,25,8)$.
$\underline{C_{2}-G D_{8}(55):} X=Z_{55}, \bmod 55$.
$(1,0,27,47,11,25),(2,0,23,1,12,22),(3,0,19,1,10,18),(11,0,26,2,1,24)$,
$(4,0,17,20,27,14),(5,0,12,23,32,11),(8,0,9,26,3,27),(13,0,27,2,29,25)$,
$(5,0,15,40,21,14),(3,0,22,45,29,21),(4,0,20,2,22,17),(9,0,14,1,27,10)$,
$(12,0,23,1,17,22),(14,0,20,16,8,19),(5,0,21,1,11,20),(7,0,20,47,23,17)$,
$(2,0,26,4,19,25),(6,0,12,26,28,11),(8,0,7,10,11,2),(4,0,23,11,3,22)$,
$(3,0,27,1,13,26),(4,0,25,51,24,22),(3,0,17,1,7,18),(9,0,21,3,24,7)$, $(8,0,16,1,11,15),(9,0,12,16,14,11),(1,0,27,2,9,25)$.

Theorem C For graph $G \in\left\{C_{k}: 2 \leq k \leq 6\right\}$, there exists a G - $G D_{8}(v)$ for $v \geq 6$.
Proof From the following table, the existence of $G-G D_{8}(v)$ for $v \equiv 2,3(\bmod 4)$ can be gotten, where $w=2,3,6,7$.

Graph G	C_{2}, C_{3}	C_{4}, C_{5}, C_{6}
$G-G D_{8}(v)$	$v=6,7,10,11,14,15,18,19$,	
	$22,23,50,51,54,55,66,67$,	
	$70,71($ Lemma $5.4,5.5)$	
G - $I D_{8}(8 r+w, w)$	$r=1($ Lemma $5.2,5.3)$	
$G-H D_{2}(-)$	$\left(8^{q}\right): q=3,4,5$	
$\Longrightarrow G$ - $H D_{4}(-)$	(Lemma 2.3)	
Conclusion	by Lemma 1.6	by Lemma 5.1

Table 5 Proof of Theorem C

Furthermore, by Theorem B, the conclusion follows.

6. Conclusion

Proof of Theorem 1.2 Summarizing Lemma 1.1, Theorems A, B and C, we obtain the conclusion.

References

[1] COLBOURN C J, DINITZ J H. Handbook of Combinatorial Designs (Second Edition) [M]. Chapman \& Hall/CRC, Boca Raton, FL, 2007.
[2] F. Harary, Graph Theory [M], 1968.7. Shanghai Sci. \& Tech. Press, 1980.
[3] KANG Qingde, DU Yanke, TIAN Zihong. Decomposition of λK_{v} into some graph with six vertices and seven edges [J]. J. Statist. Plann. Inference, 2006, 136(4): 1394-1409.
[4] KANG Qingde, YUAN Landang, LIU Shuxia. Graph designs for all graphs with six vertices and eight edges [J]. Acta Math. Appl. Sin. Engl., 2005, 21(3): 469-484.
[5] LIU Shuxia. Decomposition of λK_{v} into a bipartite graph [J]. J. Hebei Norm. Univ. Nat. Sci. Ed., 2004, 28(6): 552-555. (in Chinese)

