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1. Introduction

Let Cm×n, Cm×n
r , Cm

≥ , and Cm
> denote the set of m × n complex matrices, subset of Cm×n

consisting of matrices with rank r, set of Hermitian positive semidefinite matrices of order m, and

subset of Cm
≥ consisting of positive definite matrices, respectively. Given A ∈ Cm×n, the symbols

A∗, r(A), λ(A), λ1(A), tr(A), A+
MN , R(A), ‖A‖F , and ‖A‖2 stand for the conjugate transpose,

rank, nonzero eigenvalues set, biggest eigenvalue, trace, weighted Moore-Penrose inverse, range,

Frobenius norm, and spectral norm of A, respectively. In addition, without specification, we

always assume that m ≥ n ≥ r and the given weight matrices M ∈ Cm
> , N ∈ Cn

>.

Given the weight matrix M , the weighted inner product in Cm is defined as

(x, y)M = y∗Mx, x, y ∈ Cm,

and the weighted vector norm is defined as

‖x‖M = (x∗Mx)1/2 = ‖M1/2x‖2.

Moreover, from [1,2], the matrix X ∈ Cn×m satisfying

(Ax, y)M = (x, Xy)N , for all x ∈ Cn, y ∈ Cm

is called the weighted conjugate transpose (or adjoint) of the matrix A, and denoted by X = A#.

Thus, it is easy to get that

A# = N−1A∗M, A ∈ Cm×n. (1)

The next is the definition of the weighted partial isometric matrix[3,4].
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Definition 1.1 If E ∈ Cm×n satisfies

‖Ex‖M = ‖x‖N , for all x ∈ R(E#),

then E is called an (M, N) weighted partial isometric (MN-WPI) matrix. Similarly, if E ∈ Cn×m

satisfies

‖Ex‖N = ‖x‖M , for all x ∈ R(E#),

then E is called an (N, M) weighted partial isometric (NM-WPI) matrix. In particular, if

M = Im and N = In, hereafter Ir denotes the identity matrix of order r, then E is called a

partial isometric (or subunitary) matrix[2,5].

Some properties of weighted partial isometric matrices are given in the following lemma[3,4].

Lemma 1.1 Let E ∈ Cm×n. Then the following statements are equivalent.

(a) E is an MN-WPI matrix;

(b) E# is an NM-WPI matrix;

(c) E# = E+
MN ;

(d) E#E is an orthogonal projector, i.e., E#E = PR(E#);

(e) EE# is an orthogonal projector, i.e., EE# = PR(E);

(f) EE#E = E;

(g) E#EE# = E#.

Let A ∈ Cm×n
r . Then A can be written as

A = GE = EH, (2)

where E ∈ Cm×n is an MN-WPI matrix and MG ∈ Cm
≥ , NH ∈ Cn

≥. In this case, G and H are

called generalized positive semidefinite matrices. Thus, from (1), we can conclude that G and H

are self-adjoint matrices, i.e.,

G = G#, H = H#. (3)

The decomposition (2) is called the (M, N) weighted polar decomposition (MN-WPD)[3] of

A, which is a generalization of the (generalized) polar decomposition. The matrices E and G, H

are called the (M, N) weighted unitary polar factor and generalized positive semidefinite polar

factors of this decomposition, respectively. In general, the MN-WPD is not unique. A unique

weighted polar decomposition theorem was proved in [3]. In this paper, we will present two other

conditions from which we can also make this decomposition be unique.

If M = Im and N = In, then the MN-WPD reduces to the generalized polar decomposition[5,6],

and E and G, H reduce to the subunitary polar factor and generalized polar factors, respectively.

Further, if r(A) = n, then the decomposition is just the polar decomposition and E and H are

just the unitary polar factor and positive polar factor.

For the polar decomposition, the best approximation properties and the perturbation bounds

of polar factors were studied by Higham[7]. Sun and Chen[6] continued the work of Higham[7]

and presented some corresponding results of the generalized polar decomposition. Many other

scholars such as Barrlund, Mathias, Li and so on also studied the perturbation bounds for polar
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decomposition or generalized polar decomposition[8−12], where two perturbation bounds listed in

the following for generalized polar decomposition in Frobenius norm are claimed to be optimal

in some general sense.

Let A, Ã ∈ Cm×n
r with the generalized polar decompositions:

A = EH, Ã = ẼH̃,

where Ã is the perturbed matrix, E, Ẽ are the subunitary polar factors, and H, H̃ are the

generalized polar factors. Then

‖H̃ − H‖F ≤
√

2‖Ã − A‖F , (4)

‖Ẽ − E‖F ≤ 2

σr + σ̃r
‖Ã − A‖F , (5)

where σr and σ̃r are the smallest singular values of A and Ã, respectively.

The bound (4) was proved by Sun and Chen[6], while the bound (5) was obtained by Li and

Sun[12].

In this paper, we study some properties and perturbation bounds of the MN-WPD. The rest

of the paper is organized as follows. Section 2 provides some preliminaries. Section 3 presents two

uniqueness theorems of the weighted polar decomposition. Based on the uniqueness theorems,

the best approximation property of the weighted unitary polar factor is discussed in Section 4

and the perturbation bounds for weighted polar decomposition are given in Section 5.

2. Preliminaries

In the following, we introduce the definition of the weighted Frobenius norm and the (M, N)

singular value decomposition (MN-SVD).

Definition 2.1 Let A ∈ Cm×n. Then, the norm ‖A‖F (MN) = ‖M1/2AN−1/2‖F is called the

weighted Frobenius norm of A.

From Definition 2.1 and the properties of Frobenius norm, the weighted Frobenius norm of

A can be expressed as

‖A‖F (MN) =
(
tr((M1/2AN−1/2)∗(M1/2AN−1/2))

)1/2

= (tr(A#A))1/2. (6)

From Van Loan[13], we know the (M, N) singular values of A ∈ Cm×n
r are the elements of

the set σMN (A) defined by

σMN (A) =
{
σ : σ ≥ 0, σ is a stationary value of

‖Ax‖M

‖x‖N

}
.

By using Lagrange multipliers, for every nonzero element of the set σMN (A), we can get

σi = λ
1/2
i (N−1A∗MA) = λ

1/2
i (A#A), i = 1, . . . , r.

Next is the lemma on MN-SVD which can be found in [1,2,13].

Lemma 2.1 Let A ∈ Cm×n
r . Then there exist U ∈ Cm×m and V ∈ Cn×n satisfying U∗MU = Im
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and V ∗N−1V = In such that

A = U

(
Σ 0

0 0

)
V ∗, (7)

where Σdiag(σ1, . . . , σr), σi =
√

λi and λ1 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of

N−1A∗MA = A#A. Thus, σ1 ≥ · · · ≥ σr > 0 are the nonzero (M, N) singular values of A. In

this case, the weighted Moore-Penrose inverse of A can be written as

A+
MN = N−1V

(
Σ−1 0

0 0

)
U∗M.

Further, let U = (U1, U2) and V = (V1, V2), where U1 ∈ Cm×r and V1 ∈ Cn×r. Then

U∗
1 MU1 = Ir , V ∗

1 N−1V1 = Ir, A = U1ΣV ∗
1 , A+

MN = N−1V1Σ
−1U∗

1 M. (8)

3. Uniqueness theorems of weighted polar decomposition

Now we present the first uniqueness theorem of the weighted polar decomposition.

Theorem 3.1 Let A ∈ Cm×n
r with the MN-WPD in (2). Then the matrices E, G and H are

uniquely determined by

R(E#) = R(H), (9a)

R(E) = R(G), (9b)

in which case

H = (A#A)1/2 = N−1V1ΣV ∗
1 , G = (AA#)1/2 = U1ΣU∗

1 M, E = U1V
∗
1 , (10)

where V1, U1, and Σ are as in Lemma 2.1.

Proof Let E and H satisfy (9a). Then, from (2), (3), and Lemma 1.1, we have

A#A = (EH)
#

EH = HE#EH = HPR(E#)H = HPR(H)H = H2, (11)

which proves the uniqueness of H because of the uniqueness of the square root of A#A. The

uniqueness of E follows from

E = EE#E = EPR(E#) = EPR(H) = EHH+
NN = AH+

NN .

Similarly, (9b) implies G2 = AA# and the uniqueness of G. In this case,

E = GG+
MME = M−1

(
G+

MM

)∗
MGE = M−1

(
G+

MM

)∗
MA,

which also implies the uniqueness of E.

By (8) and (11), we can get

H2 = A#A = (U1ΣV ∗
1 )# U1ΣV ∗

1 = N−1V1ΣU∗
1 MU1ΣV ∗

1 = N−1V1ΣV ∗
1 N−1V1ΣV ∗

1 ,

which implies

H = N−1V1ΣV ∗
1 ,
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and, consequently,

H+
NN = N−1V1Σ

−1V ∗
1 .

Similarly,

G = U1ΣU∗
1 M, G+

MM = U1Σ
−1U∗

1 M.

Therefore,

E = AH+
NN = U1ΣV ∗

1 N−1V1Σ
−1V ∗

1 = U1V
∗
1 ,

E = M−1
(
G+

MM

)∗
MA = M−1MU1Σ

−1U∗
1 MU1ΣV ∗

1 = U1V
∗
1 .

Then, we complete the proof. 2

In order to give an equivalent condition of (9), namely another uniqueness theorem of the

weighted polar decomposition, we need a lemma from [6].

Lemma 3.1 Let X ∈ Cn×n, X∗X ≤ In satisfying X∗ΣX = Σ, where Σ = diag(λ1In1
, . . . , λkInk

),
∑k

i=1 ni = n, λ1 > · · · > λk > 0. Then X∗X = In.

Theorem 3.2 Let A ∈ Cm×n
r with the MN-WPD in (2). Then the following two statements

are equivalent.

(a) R(E#) = R(H), R(E) = R(G); (12)

(b) r(A) = r(E), λ(H) = λ(G) = σMN (A). (13)

Proof (a)⇒(b). From Theorem 3.1, if E, G, and H satisfy (12), then (10) holds. Thus from

Lemma 2.1, we have

r(A) = r(U1) = r(E),

λ(H) = λ(N−1V1ΣV ∗
1 ) = λ(ΣV ∗

1 N−1V1) = λ(Σ) = σMN (A),

λ(G) = λ(U1ΣU∗
1 M) = λ(ΣU∗

1 MU1) = λ(Σ) = σMN (A).

(b)⇒(a). If E, G, and H satisfy (13), then there exist F1, Y1 ∈ Cm×r and G1, X1 ∈ Cn×r

satisfying F ∗
1 MF1 = Y ∗

1 MY1 = Ir and G∗
1N

−1G1 = X∗
1N−1X1 = Ir such that

E = F1G
∗
1, H = N−1X1ΣX∗

1 , G = Y1ΣY ∗
1 M. (14)

(i) Firstly, we show that

r(A) = r(E), λ(H) = σMN (A) ⇒ R(E#) = R(H).

By (8), we can conclude that

A#A = N−1V1ΣU∗
1 MU1ΣV ∗

1 = N−1V1ΣΣV ∗
1 . (15)

While, by (2), (3), and (14), we have

A#A = (EH)#EH = HE#EH = N−1X1ΣX∗
1 (F1G

∗
1)

#F1G
∗
1N

−1X1ΣX∗
1

= N−1X1ΣX∗
1N−1G1G

∗
1N

−1X1ΣX∗
1 . (16)
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Thus, it follows from (15) and (16) that

N−1V1ΣΣV ∗
1 = N−1X1ΣX∗

1N−1G1G
∗
1N

−1X1ΣX∗
1

⇔ V1Σ
2V ∗

1 = X1ΣX∗
1N−1G1G

∗
1N

−1X1ΣX∗
1 . (17)

Let C = G∗
1N

−1X1, D = X∗
1N−1V1, and W = CΣDΣ−1. Then, by (17), we have

W ∗W = Σ−1V ∗
1 N−1X1ΣX∗

1N−1G1G
∗
1N

−1X1ΣX∗
1N−1V1Σ

−1

= Σ−1V ∗
1 N−1(V1Σ

2V ∗
1 )N−1V1Σ

−1 = Ir, (18)

DΣ2D∗ = X∗
1N−1V1Σ

2(X∗
1N−1V1)

∗

= X∗
1N−1(X1ΣX∗

1N−1G1G
∗
1N

−1X1ΣX∗
1 )N−1V1 = ΣC∗CΣ. (19)

Therefore, by (18), we know that W is a unitary matrix, and by (19), we have

Ir = W ∗W = Σ−1D∗ΣC∗CΣDΣ−1 = Σ−1D∗(DΣ2D∗)DΣ−1,

i.e.,

Σ2 = D∗DΣ2D∗D. (20)

From Lemma 3.1 and (20), we know D∗D is a unitary matrix, i.e., (D∗D)2 = Ir, which together

with D∗D ≥ 0 implies D∗D = Ir, namely D is a unitary matrix. Meanwhile, since

(C−1W )Σ2(C−1W )∗ = ΣDΣ−1Σ2Σ−1D∗Σ = ΣDD∗Σ = Σ2,

from Lemma 3.1, we know that C−1W is a unitary matrix. Thus, C is also a unitary matrix.

Therefore,

CC∗ = G∗
1N

−1X1C
∗ = Ir.

Let X̃1 = X1C
∗. Then

G∗
1N

−1X̃1 = Ir, G∗
1N

−1G1 = Ir, X̃∗
1N−1X̃1 = CX∗

1N−1X1C
∗ = Ir. (21)

Thus, let G = (G1, G2) and X̃ = (X̃1, X̃2) satisfy G∗N−1G = In and X̃∗N−1X̃ = In. Then, by

(21), we have

G∗N−1X̃ =

(
Ir G∗

1N
−1X̃2

G∗
2N

−1X̃1 G∗
2N

−1X̃2

)
. (22)

Observe that G∗N−1X̃ is a unitary matrix. In fact,

(G∗N−1X̃)∗G∗N−1X̃ = X̃∗N−1GG∗N−1X̃ = X̃∗N−1GG∗N−1GG−1X̃ = In,

as a result, G∗
2N

−1X̃1 = G∗
1N

−1X̃2 = 0. Then, by (22), we can get

X̃ = (G∗N−1)−1

(
Ir 0

0 G∗
2N

−1X̃2

)
= G

(
Ir 0

0 G∗
2N

−1X̃2

)
.

Consequently, X̃1 = G1 = X1C
∗, which together with (14) gives

R(E#) = R(N−1G1F
∗
1 M) = R(N−1G1) = R(N−1X1C

∗) = R(N−1X1) = R(H).



Weighted polar decomposition 793

(ii) To prove r(A) = r(E), λ(G) = σMN (A) ⇒ R(E) = R(G), we only let C, D, and W in

(i) be replaced by C = F ∗
1 MY1, D = Y ∗

1 MU1, and W = CΣDΣ−1. Here, we omit the detail. 2

4. Best approximation property of weighted unitary polar factor

In this section, we study the best approximation property of the weighted unitary polar factor

using MN-SVD. Firstly, we present a lemma.

Lemma 4.1 Let A ∈ Cm×n
r with the MN-SVD as Lemma 2.1. Then

max
Ẽ∈Um×n

r

Retr(Ẽ#A) =
r∑

i=1

σi = Retr(E#A),

where Um×n
r denotes the set of m × n MN-WPI matrices with rank r, E ∈ Cm×n is the (M, N)

weighted unitary polar factor of A given in (10), σ1 ≥ · · · ≥ σr > 0 are the (M, N) singular

values of A, and Re stands for the real part of a complex number.

Proof For any Ẽ ∈ Um×n
r , let W = V ∗

1 Ẽ#U1 = (wij). Then ‖W‖2 ≤ 1. In fact, from the

definition of the spectral norm, Lemma 1.1, Poincare separation theorem[14], and (8), we can get

‖W‖2 = λ
1/2
1 (W ∗W ) = λ

1/2
1 ((V ∗

1 Ẽ#U1)
∗V ∗

1 Ẽ#U1)

= λ
1/2
1 ((M1/2U1)

∗M1/2ẼN−1V V ∗
1 N−1Ẽ∗M1/2M1/2U1)

≤ λ
1/2
1 (M1/2ẼN−1V V ∗

1 N−1Ẽ∗M1/2)

= λ
1/2
1 ((N−1/2V1)

∗N−1/2Ẽ∗MẼN−1/2N−1/2V )

≤ λ
1/2
1 (N−1/2Ẽ∗MẼN−1/2) = λ

1/2
1 (Ẽ#Ẽ) = 1,

which gives |wii| ≤ 1, i = 1, 2, . . . , r. Then

Retr(Ẽ#A) = Retr(Ẽ#U1ΣV ∗
1 ) = Retr(V ∗

1 Ẽ#U1Σ) = Retr(WΣ) ≤
r∑

i=1

σi, (23)

where the equality holds if and only if wii = 1, i = 1, 2, . . . , r. Meanwhile, it is easy to get that

when ‖W‖2 ≤ 1, then wii = 1, i = 1, 2, . . . , r if and only if W = Ir. Therefore, the equality in

(23) holds if and only if W = Ir, i.e., V ∗
1 Ẽ#U1 = Ir.

Since, for any Ẽ ∈ Um×n
r , there must exist X1 =

(
X11

X21

)

r

r

m − r
and Y1 =

(
Y11

Y21

)

r

r

n − r

satisfying X∗
1X1 = Y ∗

1 Y1 = Ir such that Ẽ = UX1Y
∗
1 V ∗. Using the methods in [6], we can prove

that V ∗
1 Ẽ#U1 = Ir if and only if X11 = Y11 are unitary matrices. In fact, the sufficiency is

trivial. We prove the necessity in the following. From

Ir = V ∗
1 Ẽ#U1 = V ∗

1 (UX1Y
∗
1 V ∗)#U1 = V ∗

1 N−1V Y1X
∗
1U∗MU1

= V ∗
1 N−1(V1, V2)Y1X

∗
1 (U1, U2)

∗MU1 = IrY1X
∗
1 Ir = Y11X

∗
11,

we have Y11 = (X∗
11)

−1, which together with X∗
11X11 ≤ Ir and

Y ∗
11Y11 = X−1

11 (X∗
11)

−1 = (X∗
11X11)

−1 ≤ Ir
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gives X∗
11X11 = Ir, namely, X11 is a unitary matrix. Then Y11 = (X∗

11)
−1 is also a unitary

matrix. Consequently, we complete the proof of the necessity. In this case, we have X21 = 0,

Y21 = 0, i.e.,

X1 =

(
X11

0

)
, Y1 =

(
Y11

0

)
.

Therefore,

Ẽ = UX1Y
∗
1 V ∗ = U

(
Ir 0

0 0

)
V ∗ = U1V

∗
1 = E.

That is to say that W = Ir if and only if Ẽ = E. Then

max
Ẽ∈Um×n

r

Retr(Ẽ#A) =

r∑

i=1

σi = Retr(E#A),

and E ∈ Cm×n is the only matrix that makes the equality hold. 2

Theorem 4.1 Let A ∈ Cm×n
r with the MN-WPD in (2). Then

min
Ẽ∈Um,n

r

‖A − Ẽ‖F (MN) = ‖A − E‖F (MN) =
( r∑

i=1

(σi − 1)2
)1/2

, (24)

where Um×n
r , E, and σi (i = 1, 2, . . . , r) are as in Lemma 4.1.

Proof It follows from (6) and Lemma 4.1 that

‖A − Ẽ‖2
F (MN) = tr

(
(A − Ẽ)#(A − Ẽ)

)
= tr(A#A) + tr(Ẽ#Ẽ) − 2Retr(Ẽ#A)

≥ tr(A#A) + tr(E#Ẽ) − 2Retr(E#A) = ‖A − E‖2
F (MN),

where the equality holds if and only if Ẽ = E = U1V
∗
1 , and E is the only matrix that makes the

equality hold. Moreover,

‖A − E‖2
F (MN) = tr

(
(A − E)#(A − E)

)
= tr

(
A#A + E#E − A#E − E#A

)
.

Meanwhile, from (8) and E = U1V
∗
1 , we have

tr
(
A#A + E#E − A#E − E#A

)

= tr
(
(U1ΣV ∗

1 )#U1ΣV ∗
1 + (U1V

∗
1 )#U1V

∗
1 − (U1ΣV ∗

1 )#U1V
∗
1 − (U1V

∗
1 )#U1ΣV ∗

1

)

= tr
(
N−1V1ΣΣV ∗

1 + N−1V1V
∗
1 − N−1V1ΣV ∗

1 − N−1V1ΣV ∗
1

)

= tr
(
Σ2 − 2Σ + Ir

)
=

r∑

i=1

(σi − 1)2.

Therefore, (24) holds. 2

5. Perturbation bounds

We begin this section with two lemmas from [9] and [12], respectively.

Lemma 5.1 Let W ∈ Cn×n be a unitary matrix, X ∈ Cn×n satisfy ‖X‖2 ≤ 1, and Σ =
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diag(σ1, σ2, . . . , σn), Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0.

Then

|tr(ΣX∗Σ̃W )| ≤ 1

2
Retr(ΣW ∗Σ̃W ) +

1

2

n∑

i=1

σiσ̃i.

Remark 5.1 From the proof of Lemma 2.3 in [9], we can get that, in fact, the unitary matrix

W in Lemma 5.1 can be replaced by any W ∈ Cn×n.

Lemma 5.2 Let B ∈ Cm×m and C ∈ Cn×n be two unitary matrices, and Σ = diag(σ1, . . . , σr),

Σ̃ = diag(σ̃1, . . . , σ̃r), σ1 ≥ · · · ≥ σr > 0, σ̃1 ≥ · · · ≥ σ̃r > 0. Then
∥∥∥∥∥B
(

Σ 0

0 0

)
−
(

Σ̃ 0

0 0

)
C

∥∥∥∥∥
F

≥ σr + σ̃r

2

∥∥∥∥∥B
(

Ir 0

0 0

)
−
(

Ir 0

0 0

)
C

∥∥∥∥∥
F

.

Next we discuss the perturbation bounds for the weighted unitary polar factor and the generalized

positive semidefinite polar factors of the MN-WPD in the weighted Frobenius norm.

Theorem 5.1 Let A, Ã ∈ Cm×n
r , and A = GE = EH , Ã = G̃Ẽ = ẼH̃ be the MN-WPDs of A

and Ã satisfying the condition (12) or (13). Then

‖H̃ − H‖F (NN) ≤
√

2‖Ã − A‖F (MN), (25)

‖G̃ − G‖F (MM) ≤
√

2‖Ã − A‖F (MN), (26)

‖Ẽ − E‖F (MN) ≤
2

σr + σ̃r
‖Ã − A‖F (MN), (27)

where σr and σ̃r are the smallest (M, N) singular values of A and Ã, respectively.

Proof Similarly to Lemma 2.1, let Ã have the MN-SVDs:

Ã = Ũ

(
Σ̃ 0

0 0

)
Ṽ ∗, (28)

and let Ũ = (Ũ1, Ũ2), Ṽ = (Ṽ1, Ṽ2), where Ũ1 ∈ Cm×r, Ṽ1 ∈ Cn×r. Thus, from Theorem 3.1, we

have

Ã = G̃Ẽ = ẼH̃, (29)

where

Ẽ = Ũ1Ṽ
∗
1 , G̃ = Ũ1Σ̃Ũ∗

1 M, H̃ = N−1Ṽ1Σ̃Ṽ ∗
1 . (30)

(i) Since the ways to prove the perturbation bounds for H and G are similar, here, we only

prove (25). By (6), (3), (8), and (30), we have

‖H̃ − H‖2
F (NN) = tr((H̃ − H)#(H̃ − H)) = tr(H̃2) + tr(H2) − 2Retr(HH̃)

= tr(H̃2) + tr(H2) − 2Retr(N−1V1ΣV ∗
1 N−1Ṽ1Σ̃Ṽ ∗

1 ). (31)

Let W = Ṽ ∗
1 N−1V1 ∈ Cr×r. Then (31) can be rewritten as

‖H̃ − H‖2
F (NN) = tr(H̃2) + tr(H2) − 2Retr(ΣW ∗Σ̃W ). (32)
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While, from (6), (2), Theorem 3.1, (29), and (30), we have

‖Ã − A‖2
F (MN) = tr((ẼH̃ − EH)#(ẼH̃ − EH))

= tr(H̃Ẽ#ẼH̃) + tr(HE#EH) − 2Retr(HE#ẼH̃)

= tr(H̃2) + tr(H2) − 2Retr(HE#ẼH̃)

= tr(H̃2) + tr(H2) − 2Retr(N−1V1ΣV ∗
1 N−1V1U

∗
1 MŨ1Ṽ

∗
1 N−1Ṽ1Σ̃Ṽ ∗

1 )

= tr(H̃2) + tr(H2) − 2Retr(N−1V1ΣU∗
1 MŨ1Σ̃Ṽ ∗

1 ). (33)

Let X = Ũ∗
1 MU1 ∈ Cr×r. Then (33) can be rewritten as

‖Ã − A‖2
F (MN) = tr(H̃2) + tr(H2) − 2Retr(ΣX∗Σ̃W ). (34)

Note that (from Lemma 2.1 and Poincare separation theorem[14]),

‖X‖2
2 = ‖Ũ∗

1 MU1‖2
2 = λ1(U

∗
1 M1/2M1/2Ũ1Ũ

∗
1 M1/2M1/2U1) ≤ λ1(M

1/2Ũ1Ũ
∗
1 M1/2) = 1.

Then X ∈ Cr×r satisfies ‖X‖2 ≤ 1. Thus, it follows from Lemma 5.1, Remark 5.1, (32), and

(34) that

‖Ã − A‖2
F (MN) ≥ tr(H̃2) + tr(H2) − 2|tr(ΣX∗Σ̃W )|

≥ tr(H̃2) + tr(H2) − Retr(ΣW ∗Σ̃W ) −
r∑

i=1

σiσ̃i

=
1

2
‖H̃ − H‖2

F (NN) +

tr(H̃2) + tr(H2) − 2
r∑

i=1

σiσ̃i

2

=
1

2
‖H̃ − H‖2

F (NN) +

tr(Σ̃2) + tr(Σ2) − 2
r∑

i=1

σiσ̃i

2
≥ 1

2
‖H̃ − H‖2

F (NN).

Therefore,

‖H̃ − H‖F (NN) ≤
√

2‖Ã − A‖F (MN).

(ii) Now we prove the perturbation bound (27). From Definition 2.1, (7), and (28), we have

‖Ã − A‖F (MN) = ‖M1/2(Ã − A)N−1/2‖F

=

∥∥∥∥∥M
1/2Ũ

(
Σ̃ 0

0 0

)
Ṽ ∗N−1/2 − M1/2U

(
Σ 0

0 0

)
V ∗N−1/2

∥∥∥∥∥
F

=

∥∥∥∥∥U
∗MŨ

(
Σ̃ 0

0 0

)
−
(

Σ 0

0 0

)
V ∗N−1Ṽ

∥∥∥∥∥
F

. (35)

Meanwhile,

U∗MŨ(U∗MŨ)∗ = U∗MŨŨ∗MU = U∗MŨŨ∗MŨŨ−1U = Im.

Similarly,

V ∗N−1Ṽ (V ∗N−1Ṽ )∗ = In.
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Both of which imply that U∗MŨ ∈ Cm×m and V ∗N−1Ṽ ∈ Cn×n are unitary matrices. Then,

it follows from Lemma 5.2 and (35) that

‖Ã − A‖F (MN) ≥
σr + σ̃r

2

∥∥∥∥∥U
∗MŨ

(
Ir 0

0 0

)
−
(

Ir 0

0 0

)
V ∗N−1Ṽ

∥∥∥∥∥
F

. (36)

Notice that

U∗MU = Im ⇔ (M1/2U)
∗
M1/2U = Im ⇔ U∗M1/2 = (M1/2U)−1,

Ṽ ∗N−1Ṽ = In ⇔ (N−1/2Ṽ )
∗
N−1/2Ṽ = In ⇔ Ṽ ∗N−1/2 = (N−1/2Ṽ )−1.

Then from (36), we have

‖Ã − A‖F (MN) ≥
σr + σ̃r

2

∥∥∥∥∥M
1/2Ũ

(
Ir 0

0 0

)
Ṽ ∗N−1/2 − M1/2U

(
Ir 0

0 0

)
V ∗N−1/2

∥∥∥∥∥
F

=
σr + σ̃r

2
‖M1/2Ũ1Ṽ

∗
1 N−1/2 − M1/2U1V

∗
1 N−1/2‖F

=
σr + σ̃r

2
‖M1/2ẼN−1/2 − M1/2EN−1/2‖F =

σr + σ̃r

2
‖Ẽ − E‖F (MN),

i.e.,

‖Ẽ − E‖F (MN) ≤
2

σr + σ̃r
‖Ã − A‖F (MN).

Thus, we complete the proof. 2

Remark 5.2 From (25), we can get that

lim
Ã→A

‖H̃ − H‖F (NN) = 0.

That is to say the generalized positive semidefinite polar factor of the weighted polar decompo-

sition is continuous and then is always well behaved under perturbations. Whereas, in general,

the weighted unitary polar factor of the weighted polar decomposition is discontinuous. Here,

we take an example from [6] to verify it.

Example 5.1 Let A and Ã have the MN-SVDs:

A = U

(
Σ 0

0 0

)
V ∗, Ã = U




Σ 0 0

0 ε 0

0 0 0


V ∗,

where ε > 0, Σ = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0, and U ∈ Cm×m and V ∈ Cn×n satisfying

U∗MU = Im, V ∗N−1V = In.

Let A and Ã have the MN-WPDs as (2) satisfying the condition (12) or (13), and let U =

(U1, ur+1, . . . , um) and V = (V1, vr+1, . . . , vn). Then, the weighted unitary polar factors of A

and Ã can be obtained from Theorem 3.1, i.e.,

E = U1V
∗
1 , Ẽ = (U1, ur+1)(V1, vr+1)

∗ = E + ur+1v
∗
r+1.
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Therefore,

‖Ã − A‖F (MN) = ‖M1/2ur+1εv∗r+1N
−1/2‖F = ε,

‖Ẽ − E‖F (MN) = ‖M1/2ur+1v
∗
r+1N

−1/2‖F = 1,

namely, Ẽ is discontinuous.
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