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Abstract Let Dn be the set of all signed permutations on [n] = {1, . . . , n} with even signs,

and let Dn(T ) be the set of all signed permutations in Dn which avoids a set T of signed

patterns. In this paper, we find all the cardinalities of the sets Dn(T ) where T ⊆ B2. Some of

the cardinalities encountered involve inverse binomial coefficients, binomial coefficients, Catalan

numbers, and Fibonacci numbers.
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1. Introduction

Let Sn and Bn be the symmetric and hyperoctahedral groups, respectively, on n letters.

We regard elements of the hyperoctahedral group Bn as signed permutations written as π =

π1π2 . . . πn in which each of the symbols 1, 2, . . . , n appears, possibly signed (barred). Clearly,

the cardinality of Bn is 2nn!. We define the signing operation as the one which changes the

symbol πi to −πi and −πi to πi, so it is an involution, and define the absolute value notation by

|πi| to be πi if πi unbarred and to be −πi otherwise.

A signed permutation π ∈ Bn is said to contain a pattern α ∈ Bk if there exists a sequence

1 ≤ i(1) < · · · < i(k) ≤ n such that

• {|πi(1)|, . . . , |πi(k)|} is an occurrence of the pattern {|α1|, . . . , |αk|}, and,

• πi(j) > 0 if and only if αj > 0 for all 1 ≤ j ≤ k.

A signed permutation π which does not contain such a pattern α is said to avoid α. In this

context α is usually called the pattern.

A signed permutation π ∈ Bn is said to be even if the number of barred symbols in π is

an even number, that is, the cardinality of the set {πi | πi = −|πi|} is an even number. Let

Dn := {π ∈ Bn | π is an even-signed permutation} be the set of even-signed permutations in

Bn. In fact Dn is a normal subgroup of the hyperoctahedral group Bn. A signed permutation

π ∈ Bn is said to be odd if it is not even, and the set of odd signed permutations in Bn is denoted
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by D′
n. Denote by Dn(T ) and D′

n(T ) the collection of even-signed permutations and odd signed

permutations which avoid each element in the set T of signed permutations, respectively. Define

dn(T ) = |Dn(T )| and d′n(T ) = |D′
n(T )|, for all n ≥ 0. Clearly, for all n ≥ 0 and for any set T of

patterns we have

|Bn(T )| = dn(T ) + d′n(T ). (1.1)

We define three simple operations on signed permutations: the reversal (i.e., reading the per-

mutation right-to-left: π1π2 · · ·πn 7→ πn · · ·π2π1), the signing (i.e., π1π2 · · ·πn 7→ (-π1)(-π2)

· · · (-πn)), and the complement (i.e., π1π2 . . . πn 7→ β1β2 . . . βn, where βi = n + 1 − πi if π un-

barred, βi = −(n + 1 − |πi|) if π barred. Let us denote by Gb the group which is generated by

the signing operation and the composition of the reversal and the complement operations.

Proposition 1.1 Let T be any set of patterns. Then dn(T ) = dn(g(T )) and d′n(T ) = d′n(g(T )),

where g(T ) = {g(α) | α ∈ T } and g is either the complement or reversal operation. Moreover,

d2n(T ) = d2n(g(T )) and d2n+1(T ) = d′2n+1(g(T )) if g is the signed opertaion.

In the symmetric group Sn, for every 2-letter pattern τ the number of τ -avoiding permutations

is 1, and for every pattern τ ∈ S3 the number of τ -avoiding permutations is given by the Catalan

numbers. Simion[5, Section 3] proved there are similar results for the hyperoctahedral group Bn

(generalized by Mansour[2]). For every 2-letter signed pattern τ , the number of τ -avoiding signed

permutations is given by
∑n

j=0

(

n
j

)2
j!. Mansour and West[3] enumerated the collections of signed

permutations that avoid a signed pattern T , Bn(T ), for all possible T ⊆ B2. Recently Dukes and

Mansour[1] found the cardinalities of the set of involutions in Bn(T ) for all possible T ⊆ B2. In

this paper, we find the cardinalities of the set of Dn(T ) for all possible T ⊆ B2 (The exhaustive

treatment of cases was suggested by the influential paper of Simion and Schmidt[5], which followed

a similar program for the cardinalities |Sn(T )| where T ⊆ S3). The paper is organized as follows.

In Sections 2 and 3, we treat the cases |T | = 1 and |T | = 2, respectively. Finally, in Section 4

we present all the values dn(T ) where T ⊆ B2 such that |T | ≥ 3.

Pattern τ Cardinality of Dn(τ)

12, 21 n!
[n/2]
∑

j=0

1
(2[n/2]−2j)!

12, 21, 12, 21 1
2

(

n
∑

j=0

(

n
j

)2
+ n!

2n

(

n
n/2

)

)

12, 21 n!
[n/2]
∑

j=0

1
(n−2j)!

Talbe 1 The cardinality of Dn(τ ) where τ ∈ B2.

2. Single 2-letter pattern
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In this section we find all the cardinalities dn(τ) where τ ∈ B2, see Table 1. By taking

advantage of Proposition 1.1 together with Equation 1.1, the question of determining the values

dn(τ) for the 8 choices of one 2-letter signed pattern in B2, reduces to 4 cases, which are τ = 12,

τ = 12, τ = 12, and τ = 12.

2.1 τ = 12 or τ = 12

In this subsection we find an explicit formula for dn(12) and d′n(12).

Theorem 2.1 For any integer n ≥ 0, we have

d2n(12) = d2n(12) =
n
∑

j=0

(

2n

2j

)2

2j!, d2n+1(12) = d′2n+1(12) =
n
∑

j=0

(

2n + 1

2j + 1

)2

(2j + 1)!,

d′2n(12) = d′2n(12) =

n−1
∑

j=0

(

2n

2j + 1

)2

(2j + 1)!, d′2n+1(12) = d2n+1(12) =

n
∑

j=0

(

2n + 1

2j

)2

2j!.

Proof We can choose an even-signed permutation in Dm(12) by choosing m − j unbarred

symbols, and m − j positions where 0 ≤ j ≤ m such that j is an even number, and in the other

positions we put any permutation with the barred symbols. Hence

d2n(12) = d2n(12) =
n
∑

j=0

(

2n

2j

)2

2j! and d2n+1(12) = d′2n+1(12) =
n
∑

j=0

(

2n + 1

2j + 1

)2

(2j + 1)!.

Using the barred operation, see Proposition 1.1, together with (1.1), we get that d2n(12) =

d2n(12), d2n+1(12) = d′2n+1(12), d′2n(12) = d′2n(12), and d′2n+1(12) = d2n+1(12), as claimed.2

2.2 τ = 12 or τ = 12

In this subsection we present explicit formulae for dn(12) and d′n(12).

Lemma 2.2 For any integer n ≥ 0, we have

dn(12) = ndn−1(12) +
∑

j=2,4,...

(

n − 1

j − 1

)

(j − 1)!dn−j(12) +
∑

j=1,3,...

(

n − 1

j − 1

)

(j − 1)!d′n−j(12);

d′n(12) = nd′n−1(12) +
∑

j=2,4,...

(

n − 1

j − 1

)

(j − 1)!d′n−j(12) +
∑

j=1,3,...

(

n − 1

j − 1

)

(j − 1)!dn−j(12).

Proof Let π ∈ Dn(12) such that |πj | = n. If πj = n, then π ∈ Dn(12) if and only if (π1, . . . , πj−1,

πj+1, . . . , πn) ∈ Dn−1(12). So in this case there are ndn−1(12) even-signed permutations. Other-

wise πj = n, then all the symbols πi where i ≤ j − 1 are barred. Hence, π ∈ Dn(12) if and only

if (πj+1, . . . , πn) ∈ Dn−j(12) where j is an even number or (πj+1, . . . , πn) ∈ D′
n−j(12) where j

is an odd number. So in this case there are
∑

j=2,4,...

(

n − 1

j − 1

)

(j − 1)!dn−j(12) +
∑

j=1,3,...

(

n − 1

j − 1

)

(j − 1)!d′n−j(12)

even-signed permutations. Hence, if adding the above two cases, then the formula for dn(12)

holds. Similar arguments give the formula for d′n(12). 2
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Let DT (x) [resp. D′
T (x)] be the exponential generating function for the number of even-

signed [resp. odd-signed] permutations in Dn(T ) [resp. D′
n(T )], that is, DT (x) =

∑

n≥0 dn(T )xn/n!

[resp. D′
T (x) =

∑

n≥0 d′n(T )xn/n!]. Using the following lemma which holds immediately by

definitions, we obtain explicit formulae for the generating functions D12(x) and D′
12

(x).

Lemma 2.3 Let A(x) be the generating function for the sequence {an}n≥0. Then

(1) the generating function for {
∑

j=2,4,... an−j}n≥0 is given by x2A(x)
1−x2 ,

(2) the generating function for {
∑

j=1,3,... an−j}n≥0 is given by xA(x)
1−x2 .

Lemma 2.2 gives for n ≥ 1,
{

ndn(12)
n! = ndn−1(12)

(n−1)! +
∑

j=2,4,...
dn−j(12)
(n−j)! +

∑

j=1,3,...
d′

n−j(12)
(n−j)! ,

nd′

n(12)
n! = nd′

n−1(12)
(n−1)! +

∑

j=2,4,...
d′

n−j(12)
(n−j)! +

∑

j=1,3,...
dn−j(12)
(n−j)! .

If multiplying by xn and summing over all n ≥ 1 together with using Lemma 2.3, we get that










d

dx
(D12(x) − 1 − xD12(x)) =

1

1 − x2
(xD12(x) + D′

12(x)),

d

dx
(D′

12(x) − 1 − xD′
12(x)) =

1

1 − x2
(xD′

12(x) + D12(x)).

Define MT (x) = DT (x) − D′
T (x) for any set T of signed patterns. Subtracting the above two

equations, we obtain
d

dx
((1 − x)M12(x)) = −

1 − x

1 − x2
M12(x).

Clearly, M12(0) = 1. Hence, M12(x) = 1√
1−x2

, which implies the following proposition.

Proposition 2.4 For any integer n ≥ 0, we have

dn(12) − d′n(12) =
n!

2n

(

n
n
2

)

.

Using Proposition 2.4 and the fact that |Bn(12)| =
∑n

j=0

(

n
j

)2
j![4] together with (1.1), we

have explicit expressions for dn(12) and d′n(12).

Theorem 2.5 For any integer n ≥ 0, we have

dn(12) =
1

2

{

n
∑

j=0

(

n

j

)2

j! +
n!

2n

(

n
n
2

)

}

and d′n(12) =
1

2

{

n
∑

j=0

(

n

j

)2

j! −
n!

2n

(

n
n
2

)

}

,

where
(

a
b

)

is assumed 0 whenever b or a is a non-integer number.

3. Pair 2-letter signed patterns

By taking advantage of Proposition 1.1 together with (1.1), the second question of determin-

ing the values dn(τ, τ ′) for 28 choices of two 2-letter signed patterns, reduces to 8 cases.

3.1 The pair {12, 12}

Theorem 3.1 For any integer n ≥ 0, we have that dn(12, 12) = d′n(12, 12) = (n + 1)! .

Proof Let π ∈ Dn(12, 12) [resp. π ∈ D′
n(12, 12)] such that |πj | = n. If πj = n, then j = 1,
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so π ∈ Dn(12, 12) [resp. π ∈ D′
n(12, 12)] if and only if (π2, . . . , πn) in Dn−1(12, 12) [resp.

D′
n−1(12, 12)]. So in this case there are dn−1(12, 12) [resp. d′n−1(12, 12)] even-signed [resp.

odd-signed] permutations. Otherwise πj = n, it is easy to see that π ∈ Dn(12, 12) [resp.

π ∈ D′
n(12, 12)] if and only if (π1, . . . , πj−1, πj+1, . . . , πn) in D′

n−1(12, 12) [resp. Dn−1(12, 12)].

So in this case there are nd′n−1(12, 12) [resp. ndn−1(12, 12)] even-signed [resp. odd-signed]

permutations. Hence, if adding the above two cases, we get that for all n ≥ 1,






dn(12, 12) = dn−1(12, 12) + nd′n−1(12, 12),

d′n(12, 12) = d′n−1(12, 12) + ndn−1(12, 12).

Besides, d0(12, 12) = d′0(12, 12) = 1, hence, by induction on n, we get the desired result. 2

3.2 The pair {12, 12} or {12, 21}

Theorem 3.2 For any integer n ≥ 0,

d2n+1(12, τ) =
1

2

(

4n + 2

2n + 1

)

, d2n(12, τ) =
1

2

(

4n

2n

)

+
(−1)n

2

(

2n

n

)

,

d′2n+1(12, τ) =
1

2

(

4n + 2

2n + 1

)

, d′2n(12, τ) =
1

2

(

4n

2n

)

−
(−1)n

2

(

2n

n

)

,

where τ = 12 or τ = 21.

Proof Let π ∈ Bn(12, 12). Since π avoids 12 [resp. 12], we have the subsequence of all the

symbols which are unbarred [resp. barred] in π is decreasing. Let j be the number of the symbols

in π which are barred. So

dn(12, 12) =

[n/2]
∑

j=0

(

n

2j

)2

and d′n(12, 12) =

[(n−1)/2]
∑

j=0

(

n

2j + 1

)2

.

Hence, the theorem holds for τ = 12.

Now let us construct a bijection f between the set Dn(12, 12) and the set Dn(12, 21) as follows.

Let π ∈ Dn(12, 12) such that πi1 , πi2 , . . . , πim
are all the symbols of π which are barred. We

define f(π) by π′ where π′
j = πj if j 6∈ {i1, i2, . . . , im}, and π′

ij
= πim+1−j

for all j = 1, 2, . . . , m.

For example, f(312) = 321. It is easy to see that f is a bijection, which completes the proof. 2

3.3 The pair {12, 21}

Theorem 3.3 For any integer n ≥ 0, we have

d2n+1(12, 21) = (2n + 1)(2n + 1)!, d2n(12, 21) = (2n)!,

d′2n+1(12, 21) = (2n + 1)!, d′2n(12, 21) = 2n(2n)!.

Proof Let π ∈ Dn(12, 21). Since π avoids 12 and 21, we have that either π contains exactly one

symbol unbarred, or all the symbols of π barred. In the first case, we can choose π by choosing the

unbarred symbol, the position of this symbol, and in the other positions we put any order for the

other symbols which are barred. So there are n2(n − 1)! (1+(−1)n)
2 even-signed permutations. In

the second case, since all the symbols are barred, there are n! (1+(−1)n)
2 even-signed permutations.
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Therefore, for all n ≥ 1, we have

dn(12, 21) = n2(n − 1)!
(1 + (−1)n−1)

2
+ n!

(1 + (−1)n)

2
.

Similar arguments give that for all n ≥ 1,

d′n(12, 21) = n2(n − 1)!
(1 − (−1)n−1)

2
+ n!

(1 − (−1)n)

2
,

as claimed. 2

3.4 The pair {12, 21}

Theorem 3.4 For any integer n ≥ 1, we get

dn(12, 21) = n! + n!

n−2
∑

j=0

1

(n − j)!

[(n−1−j)/2]
∑

d=0

(

n − 1 − j

2d + (j mod 2)

)

(2d + (j mod 2))!,

d′n(12, 21) = n! + n!

n−2
∑

j=1

1

(n − j)!

[(n−1−j)/2]
∑

d=0

(

n − 1 − j

2d + (j mod 2)

)

(2d + (j mod 2))!.

Moreover, M12,21(x) = 1
x+1 (1 +

∫ x

0
et

1+tdt).

Proof Let π ∈ Dn(12, 21) such that |πj | = n. If πj = n, then all the symbols πi where i < j are

barred and all the symbols πi where i > j are unbarred and decreasing. And since π is even-signed

permutations, we get that j is odd number. So, in this case there are
∑n

j=1

(

n−1
j−1

)

(j − 1)! even-

signed permutation. If πj = n, then π ∈ Dn(12, 21) if and only if (π1, . . . , πj−1, πj+1, . . . , πn) ∈

D′
n−1(12, 21). So in this case there are nd′n−1(12, 21) even-signed permutations. Therefore, by

using the above two cases we get that for all n ≥ 1,

dn(12, 21) =
∑

j=0,2,4,...

(

n − 1

n − 1 − j

)

j! + nd′n−1(12, 21).

Similarly, for all n ≥ 1, we have

d′n(12, 21) =
∑

j=1,3,...

(

n − 1

n − 1 − j

)

j! + ndn−1(12, 21).

Therefore, using induction on n, we obtain the formulae for dn(12, 21) and d′n(12, 21). Moreover,

by Lemma 2.3, we obtain that






d
dxD12,21(x) = ex

1−x2 + x(xD′
12,21(x))′,

d
dxD′

12,21(x) = xex

1−x2 + x(xD12,21(x))′.

Hence d
dx((1 + x)M12,21(x)) = ex

1+x , which completes the proof. 2

3.5 The pair {12, 12}

A split permutation is a permutation π = (π′, π′′) ∈ Sn, where π′ and π′′ are nonempty such

that every entry of π′ is greater than every entry of π′′. For example, 231, 312, and 321 are the

split permutations in S3. A d-split permutation is a permutation π = (π1, π2, . . . , πd), where
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πj is nonempty for all j such that every entry of πj is greater than every entry of πj+1 for all

j = 1, 2, . . . , d− 1. For example, 312 is a 2-split permutation in S3, namely π1 = 3 and π2 = 12.

Let ln be the number of all the non-split permutations in Sn, and let L(x) be the corresponding

generating function, that is, L(x) =
∑

n≥0 lnxn.

Lemma 3.5 We have

L(x) = 2 −
1

∑

k≥0 k!xk
.

Proof By definitions, for every permutation π ∈ Sn there exists a unique d such that π is a

d-split. Hence, for all n ≥ 0,

n! =
∑

d≥1

∑

i1+i2+···+id=n, i1,...,id≥1

d
∏

j=1

lij
.

If multiplying by xn and summing over all n ≥ 0, we get
∑

n≥0

n!xn = 1 +
∑

d≥1

(L(x) − 1)d =
1

2 − L(x)
,

which is equivalent to L(x) = 2 −
1

∑

k≥0 k!xk
. 2

We say π is a signed-split permutation if there exists πj such that π = (π1, π2, . . . , πd) where

every absolute symbol of πj is greater than every absolute symbol of πj+1, and either all the

symbols of πj are barred, or unbarred. Clearly, the generating function for number of non-signed-

split permutations in Bn is given by L(2x).

Theorem 3.6 For any integer n ≥ 1, we have

dn(12, 12) =

n
∑

m=1

∑

i1+···+im=n; ij≥1

ni1,...,im

m
∏

j=1

lij
,

d′n(12, 12) =

n
∑

m=1

∑

i1+···+im=n; ij≥1

(2m − ni1,...,im
)

m
∏

j=1

lij
,

where ni1,...,im
= |{{b1, . . . , bj} ⊆ {i1, . . . , im}|(b1 + · · · + bj)mod 2 = 0}|.

Proof Note that π is a signed-split permutation in Bn if and only if π ∈ Bn(12, 12) (by

induction and considering the maximal s such that π1, π2, . . . , πs are either unbarred symbols

or barred symbols). Therefore, the number of even-signed permutations π ∈ Dn(12, 12) such

that π = (π1, . . . , πm), where πj is a non-split permutation of either barred symbols or unbarred

symbols, is given by
∑

i1+···+im=n; ij≥1

ni1,...,im

m
∏

j=1

lij
,

and the number of odd signed permutations π ∈ D′
n(12, 12) such that π = (π1, . . . , πm), where

πj is non-split permutation of either barred symbols or unbarred symbols, is given by

∑

i1+···+im=n; ij≥1

(2m − ni1,...,im
)

m
∏

j=1

lij
.
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If summing over all possibilities of m, we get the desired result. 2

3.6 The pair {12, 21}

Theorem 3.7 For any integer n ≥ 1, we have

d2n+1(12, 21) =
1

2
(2n + 2)!, d2n(12, 21) = (n + 1)(2n)!,

d′2n+1(12, 21) =
1

2
(2n + 2)!, d′2n(12, 21) = n(2n)!.

Proof Let π ∈ Dn(12, 21) such that |πj | = n. If πj = n, then π ∈ Dn(12, 21) if and only if

(π1, . . . , πj−1, πj+1, . . . , πn) ∈ Dn−1(12, 21). So in this case there are ndn−1(12, 21) even-signed

permutations. If πj = n, then all the symbols of π are barred. So in this case there are n!1+(−1)n

2

even-signed permutations. Therefore, for n ≥ 2,







d2n(12, 21) = (2n)! + 2nd2n−1(12, 21),

d2n+1(12, 21) = (2n + 1)d2n(12, 21).

Similar arguments give for all n ≥ 2,







d′2n+1(12, 21) = (2n + 1)! + (2n + 1)d′2n(12, 21),

d′2n(12, 21) = 2nd′2n−1(12, 21).

Besides d1(12, 21) = 1 and d′1(12, 21) = 0. Hence, by induction on n, we get the desired result.

2

3.7 The pair {12, 21}

Theorem 3.8 For any integer n ≥ 1, we have

d2n+1(12, 21) =
1

2
(2n + 2)!, d2n(12, 21) = (n + 1)(2n)!,

d′2n+1(12, 21) =
1

2
(2n + 2)!, d′2n(12, 21) = n(2n)!.

Proof Let π ∈ Dn(12, 21). If π1 is unbarred, then all the symbols of π are unbarred. So

there are n! even-signed permutations. If π1 is barred, then there are nd′n−1(12, 21) even-signed

permutations. Therefore, by using the above two cases we get that for n ≥ 2,

dn(12, 21) = n! + nd′n−1(12, 21).

Similar arguments give for all n ≥ 2,

d′n(12, 21) = n! + ndn−1(12, 21).

Besides d1(12, 21) = d′1(12, 21) = 1, hence by induction on n, we get the desired result. 2
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For |P | = 3

dn(T ) # sets T

1 2

1 + (n2 − 1)en+1 2

2n − [(n + 2)/2] 4

fn 8
1
2 (Cn+1 + (−1)n/2Cn/2en) 4

n!en +
n
∑

j=1

∑

p+q=n−j even

p!q! 2

n
∑

d=0

∑

i0+...+id=n−d,n−d even

d
∏

j=0

ij! 2

n! 4

n! +
[n/2]
∑

j=1

∑

p+q=n−2j

p!q! 2

[n/2]
∑

d=0

∑

i0+···+id=n−2d

d
∏

j=0

ij! 2

n!
[n/2]
∑

j=0

1
(n−2j)! 8

[n/2]
∑

j=0

(2j)!(n − 2j)! 4

n!
[n/2]
∑

j=0

1
(2j)! 8

n!en + n!en+1

n
∑

j=0

1/j 4

For |P | = 4

dn(T ) # sets T

0 1

1 8

n 2

1 + (n − 1)en+1 4

1 + [n/2]
2

+ [n/2]en+1 2

1 + [n/2]
2

+ 2[n/2]en+1 2

1 +
((

n+1
2

)

− 1
)

en+1 4

2n−1 18
[n/2]
∑

j=0

(2j)! 8

n!en +
n−1
∑

j=0

j!(n − 1 − j)en+1 2

n! 11
[n/2]
∑

j=0

(n − 2j)! 8

For |P | = 5

dn(T ) # sets T

0 4

1 + en+1 2

1 12

1 + (n − 1)en+1 10

[(n + 2)/2] 16

1 + n!en 2

(2[n/2])! 4

n! 6

For |P | = 6

dn(T ) # sets T

0 6

1 16

1 + en 4

n!en 2

For |P | = 7
dn(T ) # sets T

0 4

en 2

1 2

For |P | = 8

dn(T ) # sets T

0 1

Table 2 The cardinality of Dn(P ) for |P | ≥ 3 and n ≥ 2.
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4. More than two patterns

Let P ⊆ B2. With the aid of a computer we have calculated the cardinality of Dn(P ) for

sets P of three or more patterns. We arrive at these results listed in Table 2, where some are

trivially true and some are easy to prove by use of the arguments in the pervious sections. Here,

we denote the n-th Fibonacci number (F0 = F1 = 1, Fn+1 = Fn + Fn−1) by Fn, denote the n-th

Catalan number by Cn = 1
n+1

(

2n
n

)

, and define

en = (1 + (−1)n)/2 and fn =



















1
2 (F6m + (−1)m), if n = 3m

1
2F6m+2, if n = 3m + 1

1
2 (F6m+4 + (−1)m+1), if n = 3m + 2.
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