Principally Quasi-Baer Modules

LIU Qiong ${ }^{1,2}$, OUYANG Bai Yu ${ }^{3}$, WU Tong Suo ${ }^{2}$
(1. Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China;
2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China;
3. Department of Mathematics, Hunan Normal University, Hunan 410081, China)

(E-mail: sky200547@126.com)

Abstract

In this paper, we give the equivalent characterizations of principally quasi-Baer modules, and show that any direct summand of a principally quasi-Baer module inherits the property and any finite direct sum of mutually subisomorphic principally quasi-Baer modules is also principally quasi-Baer. Moreover, we prove that left principally quasi-Baer rings have Morita invariant property. Connections between Richart modules and principally quasi-Baer modules are investigated.

Keywords principally quasi-Baer rings (modules); endomorphism rings; annihilators; semicentral idempotents.

Document code A
MR(2000) Subject Classification 03C50; 03C95
Chinese Library Classification O153.3

1. Introduction

The concept of principally quasi-Baer rings was first introduced in [1] by Birkenmeier, and further studied by many authors ${ }^{[2-4]}$. Recall that a ring R is called left (resp. right) principally quasi-Baer (or simply left (resp. right) p.q.-Baer) if the left (resp. right) annihilator of a principal left (resp. right) ideal is generated as a left (resp. right) ideal by an idempotent. This definition is not left-right symmetric. p.q.-Baer rings are the extensions of Baer and quasi-Baer rings ${ }^{[5-11]}$. The class of p.q.-Baer rings include any domain, any semisimple ring, any Baer and quasi-Baer ring. Our work has been greatly motivated by these works, as mentioned above, and we try to extend these investigations to arbitrary modules.

We define principally quasi-Baer modules on the basis of p.q.-Baer rings. For a left R-module M, we call M a principally quasi-Baer (or simply p.q.-Baer) module if the left annihilator in M of any principal left ideal of S is generated by an idempotent of S. It is easy to see that, when $M=R$, the notion coincides with the existing definition of left p.q.-Baer rings. Thus this definition is not left-right symmetric, either. Among examples of p.q.-Baer modules, we include any semisimple module, any Baer and quasi-Baer module, any finitely generated Abelian ring, any ideal direct summand of a left p.q.-Baer ring (Theorem 2.2), and any finitely generated

Received date: 2007-10-22; Accepted date: 2008-03-08
Foundation item: the National Natural Science Foundation of China (No. 10671122).
projective left R-module, where R is a left p.q.-Baer ring (Corollary 2.1). Obviously, any left p.q.-Baer ring R is p.q.-Baer as an R-module.

In Section 2, we introduce the concept of a p.q.-Baer module, and show the equivalent characterizations of p.q.-Baer modules (Theorem 2.1). We prove that any finite direct sum of mutually subisomorphic p.q.-Baer modules is also p.q.-Baer. A natural question arises: for any algebraic property of modules, is the property inherited by direct summands of such a module? We give a positive answer to this question for the case of p.q.-Baer modules (Theorem 2.2). Among other results, we also include results on when direct sums of p.q.-Baer modules are p.q.Baer (Theorem 2.3) and provide a characterization of p.q.-Baer modules in terms of the FI-strong summand intersection property.

In Section 3, our focus is on the endomorphism rings of p.q.-Baer modules and the connections between p.q.-Baer modules and Richart modules. We show that the endomorphism ring of a p.q.Baer module is always left p.q.-Baer (Theorem 3.1) and that left p.q.-Baer rings have Morita invariant property. Various conditions on the equivalence of Richart modules and p.q.-Baer modules are discussed.

Throughout this paper, R denotes a ring with unity. For notation we use $S_{r}(R)$ (resp. $S_{l}(R)$), $\operatorname{Cen}(R), M_{n}(R)$ for the right (resp. left) semicentral idempotents of R, the center of R, and the ring of $n \times n$ matrices over R, respectively. M is a left R-module and $S=\operatorname{End}_{R}(M)$ is the ring of R-endomorphisms of M. Submodules of M will be left R-modules. Recall that a submodule X of M is called fully invariant if for every $h \in S, h(X) \subseteq X$. So fully invariant submodules will be an R-S-bimodule. The notations $l_{R}(\cdot)$ and $r_{M}(\cdot)$ denote the left annihilator of a subset of M with elements from R and the right annihilator of a subset of R with elements from M, respectively; while $r_{S}(\cdot)$ and $l_{M}(\cdot)$ stand for the right annihilator of a subset of M with elements from S and the left annihilator of a subset of S with elements from M, respectively. Let $N \subseteq M$. Then we use $N \leq M, N \leq{ }^{\oplus} M, N \triangleleft M, N \triangleleft \oplus M, N \leq^{e} M$ to denote that N is a submodule, direct summand, fully invariant submodule, fully invariant direct summand, essential submodule of M, respectively.

Before we discuss the properties of p.q.-Baer modules in Section 2, let us recall some related concepts.

Definition 1.1 ${ }^{[12]}$ A left R-module M is called a (quasi-) Baer module if for all $I \leq S_{S}\left(I \leq S_{S}\right)$, $l_{M}(I)=M e$ where $e^{2}=e \in S$.

Definition 1.2 ${ }^{[14]} A$ ring R is called a left Richart ring if for any element $a \in R, l_{R}(a)=R e$ where $e^{2}=e \in R$.

Definition 1.3 ${ }^{[13]} A$ left R-module M is called a Richart module if for any element $\varphi \in S$, $l_{M}(\varphi)=M e$ where $e^{2}=e \in S$.

Definition 1.4 ${ }^{[2]}$ An idempotent e of a ring R is called left (resp. right) semicentral if $x e=e x e$ (resp. ex $=$ exe) for all $x \in R$.

By [11, Proposition 9] and [1, Example 1.6], we can see that p.q.-Baer rings and Richart
rings do not include each other. This is the same as p.q.-Baer modules and Richart modules.
Lemma 1.1 ${ }^{[2]}$ For an idempotent $e \in R$, the following conditions are equivalent:
(i) $e \in \mathrm{~S}_{r}(R)$;
(ii) $1-e \in \mathrm{~S}_{l}(R)$;
(iii) $R e$ is an ideal of R;
(iv) $(1-e) R$ is an ideal of R.

2. Principally quasi-Baer modules

In this section, we begin our investigations by first providing the equivalent characterizations of p.q.-Baer modules and give some properties of them.

Theorem 2.1 If M is a left R-module, then the following conditions are equivalent:
(i) M is p.q.-Baer;
(ii) The left annihilator in M of every finitely generated left ideal of S is generated by an idempotent of S;
(iii) The left annihilator in M of every principal ideal of S is generated by an idempotent of S;
(iv) The left annihilator in M of every finitely generated ideal of S is generated by an idempotent of S.

Proof We only have to prove (i) \Rightarrow (ii) and the rest is clear.
Let $I=\sum_{i=1}^{n} S x_{i}(n \in N)$ be any finitely generated left ideal of S. Then $l_{M}(I)=$ $\bigcap_{i=1}^{n} l_{M}\left(S x_{i}\right)$. By hypothesis, we have $l_{M}\left(S x_{i}\right)=M e_{i}$ and $e_{i}^{2}=e_{i} \in S_{r}(S)(i=1,2 \ldots, n)$. Thus $l_{M}(I)=\bigcap_{i=1}^{n} M e_{i}$. Then we assert that $M e_{1} \cap M e_{2}=M e_{1} e_{2}$ and $e_{1} e_{2} \in S_{r}(S)$.

First let $x \in M e_{1} \cap M e_{2}$. It is easy to check that $x=x e_{1}=x e_{2}=x e_{1} e_{2} \in M e_{1} e_{2}$. Since $e_{1} \in S_{r}(S)$, we have $M e_{1} e_{2}=\left(M e_{1} e_{2}\right) e_{1}$ and $M e_{1} e_{2} \subseteq M e_{1} \cap M e_{2}$. It follows that $M e_{1} e_{2}=M e_{1} \cap M e_{2}$. Next, we have $\left(e_{1} e_{2}\right)^{2}=\left(e_{1} e_{2}\right) e_{2}=e_{1} e_{2}$, and $e_{1} e_{2} x=e_{1}\left(e_{2} x\right) e_{2}=$ $e_{1} e_{2} x e_{1} e_{2}(\forall x \in S)$ since $e_{i} \in S_{r}(S)(i=1,2)$. Thus $e_{1} e_{2} \in S_{r}(S)$.

Similarly, we have $\bigcap_{i=1}^{n} M e_{i}=M\left(e_{1} e_{2} \cdots e_{n}\right)$ and $\left(e_{1} e_{2} \cdots e_{n}\right) \in S_{r}(S)$. This completes the proof.

Theorem 2.2 Let M be a p.q.-Baer module. Then every direct summand N of M is also a p.q.-Baer module.

Proof Let $N=M e$ where $e^{2}=e \in S$. Then $\operatorname{End}_{R}(N)=\operatorname{End}_{R}(M e) \cong e S e$. For any element $x \in \operatorname{End}_{R}(N)$, we conclude that $l_{N}(e S e \cdot x) \leq{ }^{\oplus} N$.

First we have $x=e x e$, and $y=y e$ for any element $y \in l_{N}(e S e \cdot x)$. Then $l_{N}(e S e \cdot x) \subseteq$ $l_{M}(S x) \cap N$ since $0=y \cdot S x=y e \cdot S \cdot e x e=y(e S e) x=0$. Secondly, let $z \in l_{M}(S x) \cap N$. We have $z \in l_{N}(e S e \cdot x)$ since $z=z e \in N$ and $z \cdot e S e \cdot x=(z e) S(e x e)=z \cdot S x=0$. This implies $l_{N}(e S e \cdot x)=l_{M}(S x) \cap N$.

By assumption, we have $l_{M}(S x)=M f$ where $f^{2}=f \in S_{r}(S)$. Then $l_{M}(S x) \cap N=$
$M f \cap M e=M e(e f e)$, and efe is an idempotent of $e S e$ since $f^{2}=f \in S_{r}(S)$. Therefore, $l_{N}(e S e \cdot x)=M e(e f e) \leq{ }^{\oplus} M e$.

Example 2.1 Let R be a left p.q.-Baer ring and let $e^{2}=e \in R$ be any idempotent of R. Then $M=R e$ is a left R-module which is p.q.-Baer.

Theorem 2.3 If M_{1} and M_{2} are p.q.-Baer modules, and have the property that for any $\psi \in$ $\operatorname{Hom}_{R}\left(M_{i}, M_{j}\right), \psi(x)=0$ implies $x=0(i \neq j, i, j=1,2)$. Then $M_{1} \oplus M_{2}$ is a p.q.-Baer module.

Proof Let $S=\operatorname{End}_{R}\left(M_{1} \oplus M_{2}\right)$ and I be any finitely generated ideal of S. By [12, Lemma 1.10], we have $l_{M_{1} \oplus M_{2}}(I) \triangleleft M_{1} \oplus M_{2}$, and there exists $N_{i} \triangleleft M_{i}(i=1,2)$ such that $l_{M_{1} \oplus M_{2}}(I)=N_{1} \oplus N_{2}$, where $N_{i}=l_{M_{1} \oplus M_{2}}(I) \cap M_{i}(i=1,2)$.

As mentioned, $S=S_{1} \oplus \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right) \oplus \operatorname{Hom}_{R}\left(M_{2}, M_{1}\right) \oplus S_{2}$, where $S_{i}=\operatorname{End}_{R}\left(M_{i}\right)(i=$ $1,2)$. Since I is a finitely generated ideal of S, we have $I=I_{1} \oplus I_{12} \oplus I_{21} \oplus I_{2}$, where $I_{1} \triangleleft S_{1}, I_{2} \triangleleft S_{2}$, $I_{12}=\left\{\varphi \in \operatorname{Hom}_{R}\left(M_{2}, M_{1}\right) \mid \varphi=\xi_{12}\right.$ with $\left.\left(\xi_{i j}\right)_{i, j=1,2} \in I\right\}, I_{21}=\left\{\varphi \in \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right) \mid \varphi=\xi_{21}\right.$ with $\left.\left(\xi_{i j}\right)_{i, j=1,2} \in I\right\}$. It is easy to see that I_{i} is a finitely generated ideal of $S_{i}(i=1,2)$.

Let us define $l_{M_{i}}\left(I_{i}\right)=N_{i}^{\prime}(i=1,2)$. It is easy to check that $N_{1}=N_{1}^{\prime} \cap\left(\bigcap_{\varphi \in I_{21}} \operatorname{ker} \varphi\right)$. Then we conclude that $N_{1}=N_{1}^{\prime}$. For any element $\psi_{12} \in \operatorname{Hom}_{R}\left(M_{2}, M_{1}\right), \varphi \in I_{21}$, we have $N_{1}^{\prime}\left(\varphi \psi_{12}\right)=0$. Thus $N_{1}^{\prime} \varphi=0 \Rightarrow N_{1}^{\prime} \subseteq \bigcap_{\varphi \in I_{21}} \operatorname{ker} \varphi$. It follows that $N_{1}=N_{1}^{\prime}$. Similarly, we have $N_{2}=N_{2}^{\prime}$. Since M_{1}, M_{2} are p.q.-Baer modules and I_{i} is a finitely generated ideal of S_{i}, we have $N_{i}^{\prime}=l_{M_{i}}\left(I_{i}\right) \leq{ }^{\oplus} M_{i}(i=1,2)$. Therefore $l_{M_{1} \oplus M_{2}}(I)=N_{1}^{\prime} \oplus N_{2}^{\prime} \leq{ }^{\oplus} M_{1} \oplus M_{2}$. This completes the proof.

The proof of Theorem 2.3 is similar to [12, Theorem 3.18]. For the completion of this paper, we write down the whole process.

By Theorems 2.2 and 2.3, we have the following result, which provides another source of examples for p.q.-Baer modules.

Proposition 2.1 Let $M=\bigoplus_{i=1}^{n} M_{i}$. If M_{i} is subisomorphic to (i,e., isomorphic to a submodule of) $M_{j}, \forall i \neq j ; i, j=1,2, \ldots, n$. Then M is p.q.-Baer if and only if M_{i} is p.q.-Baer $(i=$ $1,2, \ldots, n)$.

It is easy to see that Proposition 2.1 also holds true when $M=\prod_{i=1}^{n} M_{i}$. From Proposition 2.1 and Theorem 2.2, we have

Corollary 2.1 A finitely generated projective module over a left p.q.-Baer ring is a p.q.-Baer module.

We know that Baer and quasi-Baer modules are p.q.-Baer modules. A natural question arises, is the p.q.-Baer module also a Baer or a quasi-Baer module? The $n \times n(n>1)$ upper triangular matrix ring over a domain, which is not a division ring, is a p.q.-Baer ring but not Baer ${ }^{[3, \mathrm{p} 16]}$. Let $R=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} M_{n^{\prime}}(W) \mid a_{n}\right.$ is eventually constant $\}$, where W is the K th $(K>1)$ Weyl algebra over a field of characteristic Zero ${ }^{[1, \text { Example } 3.13]}$. Then R is p.q.-Baer but not quasi-Baer. So p.q.-Baer modules might be neither Baer nor quasi-Baer. We will ask: under what conditions might p.q.-Baer modules and quasi-Baer modules be equivalent? The following

Proposition answers this question. We define the FI-(strong) summand intersection property on the basis of (strong) summand intersection property ${ }^{[12]}$.

Definition 2.2 A module M is said to have the FI-summand intersection property (FI-SIP) if the intersection of two fully invariant direct summands is again a direct summand. M has the FI-strong summand intersection property (FI-SSIP) if the intersection of any number of fully invariant direct summands is again a direct summand.

Proposition 2.2 A module M is quasi-Baer if and only if M is p.q.-Baer and has the FI-strong summand intersection property (FI-SSIP).

Proof The first assertion of the necessary condition is clear.
For the second, let $M e_{i} \triangleleft M, e_{i}^{2}=e_{i} \in S, i \in \Lambda$ (Λ is an index set). Then $e_{i} \in S_{r}(S)$, $\left(1-e_{i}\right) S \triangleleft S(i \in \Lambda)$. Let us define $I=\sum_{i \in \Lambda}\left(1-e_{i}\right) S$. Then $I \triangleleft S$ and $l_{M}(I)=\bigcap_{i \in \Lambda} l_{M}\left[\left(1-e_{i}\right) S\right]=$ $\bigcap_{i \in \Lambda} M e_{i} \leq{ }^{\oplus} M$. Thus, M satisfies the FI-SSIP.

Conversely, let I be any ideal of S. Then we can write $I=\sum_{i \in \Lambda} S x_{i} S\left(x_{i} \in I, i \in \Lambda\right)$. So $l_{M}(I)=l_{M}\left(\sum_{i \in \Lambda} S x_{i} S\right)=\bigcap_{i \in \Lambda} l_{M}\left(S x_{i} S\right)$. Since M is p.q.-Baer, we have $l_{M}\left(S x_{i} S\right)=M e_{i} \triangleleft^{\oplus} M$ where $e_{i}^{2}=e_{i} \in S_{r}(S)(\forall i \in \Lambda)$. By assumption, $l_{M}(I)=\bigcap_{i \in \Lambda} M e_{i}=M e \leq{ }^{\oplus} M$. Hence M is quasi-Baer.

Recall from [12] that a module M is called \mathcal{K}-nonsingular if, for all $\varphi \in S, l_{M}(\varphi)=\operatorname{ker} \varphi \leq^{e}$ M implies $\varphi=0$.

By [12, Lemma 2.15] and [13, Theorem 2.4], we know that both Baer and Richart modules are \mathcal{K}-nonsingular. The following theorem shows that under a certain condition, a p.q.-Baer module is also \mathcal{K}-nonsingular.

Proposition 2.3 Let M be a p.q.-Baer module. If every essential submodule of M is an essential extension of a fully invariant submodule of M, then M is \mathcal{K}-nonsingular.

Proof Let $0 \neq \varphi \in S$ and $l_{M}(\varphi)=\operatorname{ker} \varphi \leq^{e} M$. By hypothesis, there exists a fully invariant submodule $N \triangleleft M$ such that $N \leq^{e} l_{M}(\varphi)$. Then $N \subseteq l_{M}(S \varphi)=M e\left(e^{2}=e \in S\right)$ since $N S \varphi=N \varphi=0$ and M is p.q.-Baer. It follows that $M e \leq^{e} M$. This implies that $e=1, \varphi=0$, contradicting our assumption that $\varphi \neq 0$. Thus M is \mathcal{K}-nonsingular.

3. Endomorphism rings, connections between p.q.-Baer and Richart modules

In $[12,13]$ we can see that the endomorphism rings of any Baer, quasi-Baer and Richart modules are Baer, quasi-Baer and left Richart rings, respectively. This suggests that these modules property may be carried over to their endomorphism rings. In this section, we study the endomorphism rings of p.q.-Baer modules and the connections between p.q.-Baer modules and Richart modules.

Theorem 3.1 If M is a p.q.-Baer module with $S=\operatorname{End}_{R}(M)$. Then S is a left p.q.-Baer ring.

Proof Let I be any principal left ideal of S. We have $l_{M}(I)=M e$ where $e^{2}=e \in S$. Then we conclude that $l_{S}(I)=S e$.

First, $S e \subseteq l_{S}(I)$ since $M S e I=M e I=0$. Next, for any $0 \neq \varphi \in l_{S}(I)$, we have $M \varphi \subseteq l_{M}(I)$. Thus $\varphi=\varphi e$. This implies that $l_{S}(I) \subseteq S e \Rightarrow l_{S}(I)=S e$. This completes the proof.

Corollary 3.1 Let R be a left p.q.-Baer ring and e is an idempotent of R. Then $e R e$ is also a left p.q.-Baer ring.

Theorem 3.2 The left p.q.-Baer condition is a Morita invariant property.
Proof Let R be a left p.q.-Baer ring. By Proposition 2.1, we have $R^{(n)}$ is left p.q.-Baer. Since $M_{n}(R) \cong \operatorname{End}_{R}\left(R^{(n)}\right)$, we know that $M_{n}(R)$ is also left p.q.-Baer.

Proposition 3.1 Let R be a commutative ring. Then the following conditions are equivalent:
(i) R is left p.q.-Baer;
(ii) R is left Richart;
(iii) R is $V N$-regular.

Proof It is easy to see that when R is commutative, left p.q.-Baer rings and left Richart rings are equivalent, and the rest is immediate from [13, Theorem 3.2].

Corollary 3.2 Let M be a left p.q.-Baer module. Then $\operatorname{Cen}(S)$ is VN-regular.
Definition 3.1 ${ }^{[13]}$ A module M is called quasi-retractable if $\operatorname{Hom}_{R}(M, N) \neq 0$, where $N=R m$, $\forall 0 \neq m \in M$ (or, equivalently, $\exists 0 \neq \varphi \in S$ with $M \varphi \subseteq N=R m$).

Proposition 3.2 Let M be quasi-retractable. Then M is p.q.-Baer if and only if S is a left p.q.-Baer ring.

Proof We only have to prove the sufficient condition. Let I be any principal left ideal of S. we assert that $l_{M}(I)=M e$.

First, by assumption, we have $l_{S}(I)=S e$ where $e^{2}=e \in S$. Thus $M e \subseteq l_{M}(I)$ since $M e I \subseteq M S e I=0$. Next, if $\exists 0 \neq m \in l_{M}(I) \backslash M e$, by quasi-retractability, there exists $0 \neq \beta \in S$ such that $M \beta \subseteq R m$. It follows that $\beta=\beta(1-e) \in S(1-e)$. Also, we have $\beta \in l_{S}(I)=S e$ since $M \beta I \subseteq R m I=0$. This implies that $\beta=0$, a contradiction. Therefore, $l_{M}(I)=M e$.

In the rest, we will consider the connections between p.q.-Baer modules and Richart modules. Similarly to the definitions of the insertion of factors property (IFP) ${ }^{[16]}$ and strongly bounded property [1] of rings, we give the following definitions.

Definition 3.2 A left R-module M is said to satisfy the IFP (insertion of factors property) if $l_{M}(\varphi)$ is a fully invariant submodule of M for all $\varphi \in S$ (or, equivalently, $r_{s}(m) \triangleleft S$ for all $m \in M)$.

Definition 3.3 A left R-module M is strongly bounded if every nonzero submodule of M contains a nonzero fully invariant submodule.

Proposition 3.3 Let M be p.q.-Baer and strongly bounded. Then M is Richart and satisfies the IFP.

Proof Let $\varphi \in S$. We have $M e=l_{M}(S \varphi S) \subseteq l_{M}(\varphi)\left(e^{2}=e \in S\right)$. Hence, $l_{M}(\varphi)=M e \oplus A$ for some $A \leq M$. If $A \neq 0$, by assumption, there exists a fully invariant submodule $0 \neq B \subseteq A$. Then, $B \subseteq l_{M}(\varphi) \Rightarrow B S \subseteq l_{M}(\varphi) \Rightarrow B S \varphi=0 \Rightarrow B S \varphi S=0$. Thus $B \subseteq M e$, this is impossible. Therefore, $l_{M}(\varphi)=l_{M}(S \varphi S) \triangleleft \oplus M . M$ is Richart and satisfies the IFP.

Proposition 3.4 Let M be a left R-module that satisfies the IFP. Then
(i) M is Richart if and only if M is p.q.-Baer;
(ii) S is Abelian.

Proof (i) First, for any $\varphi \in S$, we have $l_{M}(S \varphi) \subseteq l_{M}(\varphi)$. Next, for any element $m \in l_{M}(\varphi)$, we have $\varphi \in r_{S}(m)$. It follows that $m \in l_{M}(S \varphi)$ since $r_{S}(m) \triangleleft M$ and $S \varphi \subseteq r_{S}(m)$. Thus $l_{M}(S \varphi)=l_{M}(\varphi)$, Richart and p.q.-Baer modules are equivalent;
(ii) The proof is routine.

Theorem 3.3 Let M be a left R-module, $S=\operatorname{End}_{R}(M)$. Then the following conditions are equivalent:
(i) M is a Richart modules and S is Ablian;
(ii) M is a p.q.-Baer module which satisfies the IFP.

Proof (i) \Rightarrow (ii). First, for any $\varphi \in S$, we have $l_{M}(S \varphi) \subseteq l_{M}(\varphi)$ and $l_{M}(\varphi)=M e\left(e^{2}=e \in\right.$ $\operatorname{Cen}(S))$. Then, $e S \varphi=0$ since $e S \varphi=S e \varphi$ and $e \varphi \subseteq M e \varphi=0$. It follows that $M e \subseteq l_{M}(S \varphi)$. Thus $l_{M}(S \varphi)=M e$. Since S is Ablian, we have $l_{M}(S \varphi)=M e \triangleleft M$;
$(i i) \Rightarrow($ i). This is immediate from Proposition 3.4.
Proposition 3.5 Let M be a left R-module, $S=\operatorname{End}_{R}(M)$. Consider the following conditions:
(a) M satisfies the IFP;
(b) S is reduced;
(c) S satisfies the IFP;
(d) S is Ablian.

The following statements hold true:
(i) If S is a left Richart ring, then (b) through (d) are equivalent;
(ii) If M is a Richart module, then (a) through (d) are equivalent;
(iii) If S is a VN-regular ring, then (a) through (d) are equivalent.

Proof (i) For any ring S, it is easy to get $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$. Now, we only have to prove $(\mathrm{d}) \Rightarrow$ (b). Let $x^{2}=0$. Then $r_{R}(x)=e S$ where $e^{2}=e \in \operatorname{Cen}(S)$. Thus $x=e x=x e=0$ since $x \in r_{R}(x)=e S$;
(ii) By [13, Theorem 3.1], we know that S is left Richart. Thus, we only have to prove that $(\mathrm{a}) \Leftrightarrow(\mathrm{d})$. By Proposition 3.4 and Theorem 3.3, we know that $(\mathrm{a}) \Leftrightarrow(\mathrm{d})$;
(iii) We only have to prove that if S is VN-regular, then M is Richart.

For any $\varphi \in S$, there exists $\psi \in S$ such that $\varphi=\varphi \psi \varphi$. Let us define $\pi=\varphi \psi \in S$. Then $\pi^{2}=\pi$ and $\varphi=\pi \varphi$. This implies that $\operatorname{ker} \varphi=\operatorname{ker} \pi=M(1-\pi) \leq{ }^{\oplus} M$.

References

[1] BIRKENMEIER G F, KIM J Y, PARK J K. Principally quasi-Baer rings [J]. Comm. Algebra, 2001, 29(2): 639-660.
[2] BIRKENMEIER G F, KIM J Y, PARK J K. A sheaf representation of quasi-Baer rings [J]. J. Pure Appl. Algebra, 2000, 146(3): 209-223.
[3] BIRKENMEIER G F, KIM J Y, PARK J K. On Quasi-Baer Rings [M]. Amer. Math. Soc., Providence, RI, 2000.
[4] BIRKENMEIER G F, KIM J Y, PARK J K. Quasi-Baer ring extensions and biregular rings [J]. Bull. Austral. Math. Soc., 2000, 61(1): 39-52.
[5] CLARK W E. Twisted matrix units semigroup algebras [J]. Duke Math. J., 1967, 34: 417-423.
[6] KAPLANSKY I. Rings of Operators [M]. New York-Amsterdam, 1968.
[7] BERBERIAN S K. Baer*-Rings [M]. Springer-Verlag, New York-Berlin, 1972.
[8] CHATTERS A W, KHURI S M. Endomorphism rings of modules over nonsingular CS rings [J]. J. London Math. Soc. (2), 1980, 21(3): 434-444.
[9] KHURI S M. Nonsingular retractable modules and their endomorphism rings [J]. Bull. Austral. Math. Soc., 1991, 43(1): 63-71.
[10] KIM J Y, PARK J K. When is a regular ring a semisimple Artinian ring [J]. Math. Japon., 1997, 45(2): 311-313.
[11] POLLINGHER A, ZAKS A. On Baer and quasi-Baer rings [J]. Duke Math. J., 1970, 37: 127-138.
[12] RIZVI S T, ROMAN C S. Baer and quasi-Baer modules [J]. Comm. Algebra, 2004, 32(1): 103-123.
[13] LIU Qiong, OUYANG Baiyu. Rickart modules [J]. Nanjing Daxue Xuebao Shuxue Bannian Kan, 2006, 23(1): 157-166. (in Chinese)
[14] LAM T Y. Lectures on Modules and Rings [M]. Springer-Verlag, New York, 1999.

