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Abstract In this paper, we give the equivalent characterizations of principally quasi-Baer

modules, and show that any direct summand of a principally quasi-Baer module inherits the

property and any finite direct sum of mutually subisomorphic principally quasi-Baer modules

is also principally quasi-Baer. Moreover, we prove that left principally quasi-Baer rings have

Morita invariant property. Connections between Richart modules and principally quasi-Baer

modules are investigated.
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1. Introduction

The concept of principally quasi-Baer rings was first introduced in [1] by Birkenmeier, and

further studied by many authors[2−4]. Recall that a ring R is called left (resp. right) principally

quasi-Baer (or simply left (resp. right) p.q.-Baer) if the left (resp. right) annihilator of a principal

left (resp. right) ideal is generated as a left (resp. right) ideal by an idempotent. This definition

is not left-right symmetric. p.q.-Baer rings are the extensions of Baer and quasi-Baer rings[5−11].

The class of p.q.-Baer rings include any domain, any semisimple ring, any Baer and quasi-Baer

ring. Our work has been greatly motivated by these works, as mentioned above, and we try to

extend these investigations to arbitrary modules.

We define principally quasi-Baer modules on the basis of p.q.-Baer rings. For a left R-module

M , we call M a principally quasi-Baer (or simply p.q.-Baer) module if the left annihilator in

M of any principal left ideal of S is generated by an idempotent of S. It is easy to see that,

when M = R, the notion coincides with the existing definition of left p.q.-Baer rings. Thus this

definition is not left-right symmetric, either. Among examples of p.q.-Baer modules, we include

any semisimple module, any Baer and quasi-Baer module, any finitely generated Abelian ring,

any ideal direct summand of a left p.q.-Baer ring (Theorem 2.2), and any finitely generated
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projective left R-module, where R is a left p.q.-Baer ring (Corollary 2.1). Obviously, any left

p.q.-Baer ring R is p.q.-Baer as an R-module.

In Section 2, we introduce the concept of a p.q.-Baer module, and show the equivalent

characterizations of p.q.-Baer modules (Theorem 2.1). We prove that any finite direct sum of

mutually subisomorphic p.q.-Baer modules is also p.q.-Baer. A natural question arises: for any

algebraic property of modules, is the property inherited by direct summands of such a module?

We give a positive answer to this question for the case of p.q.-Baer modules (Theorem 2.2).

Among other results, we also include results on when direct sums of p.q.-Baer modules are p.q.-

Baer (Theorem 2.3) and provide a characterization of p.q.-Baer modules in terms of the FI-strong

summand intersection property.

In Section 3, our focus is on the endomorphism rings of p.q.-Baer modules and the connections

between p.q.-Baer modules and Richart modules. We show that the endomorphism ring of a p.q.-

Baer module is always left p.q.-Baer (Theorem 3.1) and that left p.q.-Baer rings have Morita

invariant property. Various conditions on the equivalence of Richart modules and p.q.-Baer

modules are discussed.

Throughout this paper, R denotes a ring with unity. For notation we use Sr(R) (resp. Sl(R)),

Cen(R), Mn(R) for the right (resp. left) semicentral idempotents of R, the center of R, and the

ring of n× n matrices over R, respectively. M is a left R-module and S = EndR(M) is the ring

of R-endomorphisms of M . Submodules of M will be left R-modules. Recall that a submodule

X of M is called fully invariant if for every h ∈ S, h(X) ⊆ X . So fully invariant submodules

will be an R-S-bimodule. The notations lR(·) and rM (·) denote the left annihilator of a subset

of M with elements from R and the right annihilator of a subset of R with elements from M ,

respectively; while rS(·) and lM (·) stand for the right annihilator of a subset of M with elements

from S and the left annihilator of a subset of S with elements from M , respectively. Let N ⊆M .

Then we use N ≤ M , N ≤⊕ M , N ⊳ M , N ⊳⊕ M , N ≤e M to denote that N is a submodule,

direct summand, fully invariant submodule, fully invariant direct summand, essential submodule

of M , respectively.

Before we discuss the properties of p.q.-Baer modules in Section 2, let us recall some related

concepts.

Definition 1.1[12] A left R-module M is called a (quasi-) Baer module if for all I ≤ SS (I ≤ SS),

lM (I) = Me where e2 = e ∈ S.

Definition 1.2[14] A ring R is called a left Richart ring if for any element a ∈ R, lR(a) = Re

where e2 = e ∈ R.

Definition 1.3[13] A left R-module M is called a Richart module if for any element ϕ ∈ S,

lM (ϕ) = Me where e2 = e ∈ S.

Definition 1.4[2] An idempotent e of a ring R is called left (resp. right) semicentral if xe = exe

(resp. ex = exe) for all x ∈ R.

By [11, Proposition 9 ] and [1, Example 1.6], we can see that p.q.-Baer rings and Richart
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rings do not include each other. This is the same as p.q.-Baer modules and Richart modules.

Lemma 1.1[2] For an idempotent e ∈ R, the following conditions are equivalent:

(i) e ∈ Sr(R);

(ii) 1 − e ∈ Sl(R);

(iii) Re is an ideal of R;

(iv) (1 − e)R is an ideal of R.

2. Principally quasi-Baer modules

In this section, we begin our investigations by first providing the equivalent characterizations

of p.q.-Baer modules and give some properties of them.

Theorem 2.1 If M is a left R-module, then the following conditions are equivalent:

(i) M is p.q.-Baer;

(ii) The left annihilator in M of every finitely generated left ideal of S is generated by an

idempotent of S;

(iii) The left annihilator in M of every principal ideal of S is generated by an idempotent of

S;

(iv) The left annihilator in M of every finitely generated ideal of S is generated by an

idempotent of S.

Proof We only have to prove (i)⇒(ii) and the rest is clear.

Let I =
∑n

i=1 Sxi (n ∈ N) be any finitely generated left ideal of S. Then lM (I) =
⋂n

i=1 lM (Sxi). By hypothesis, we have lM (Sxi) = Mei and e2i = ei ∈ Sr(S) (i = 1, 2 . . . , n).

Thus lM (I) =
⋂n

i=1Mei. Then we assert that Me1 ∩Me2 = Me1e2 and e1e2 ∈ Sr(S).

First let x ∈ Me1 ∩ Me2. It is easy to check that x = xe1 = xe2 = xe1e2 ∈ Me1e2.

Since e1 ∈ Sr(S), we have Me1e2 = (Me1e2)e1 and Me1e2 ⊆ Me1 ∩ Me2. It follows that

Me1e2 = Me1 ∩ Me2. Next, we have (e1e2)
2 = (e1e2)e2 = e1e2, and e1e2x = e1(e2x)e2 =

e1e2xe1e2 (∀x ∈ S) since ei ∈ Sr(S) (i = 1, 2). Thus e1e2 ∈ Sr(S).

Similarly, we have
⋂n

i=1Mei = M(e1e2 · · · en) and (e1e2 · · · en) ∈ Sr(S). This completes the

proof. 2

Theorem 2.2 Let M be a p.q.-Baer module. Then every direct summand N of M is also a

p.q.-Baer module.

Proof Let N = Me where e2 = e ∈ S. Then EndR(N) = EndR(Me) ∼= eSe. For any element

x ∈ EndR(N), we conclude that lN(eSe · x) ≤⊕ N .

First we have x = exe, and y = ye for any element y ∈ lN(eSe · x). Then lN(eSe · x) ⊆

lM (Sx) ∩ N since 0 = y · Sx = ye · S · exe = y(eSe)x = 0. Secondly, let z ∈ lM (Sx) ∩ N . We

have z ∈ lN (eSe · x) since z = ze ∈ N and z · eSe · x = (ze)S(exe) = z · Sx = 0. This implies

lN (eSe · x) = lM (Sx) ∩N .

By assumption, we have lM (Sx) = Mf where f2 = f ∈ Sr(S). Then lM (Sx) ∩ N =
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Mf ∩ Me = Me(efe), and efe is an idempotent of eSe since f2 = f ∈ Sr(S). Therefore,

lN (eSe · x) = Me(efe) ≤⊕ Me. 2

Example 2.1 Let R be a left p.q.-Baer ring and let e2 = e ∈ R be any idempotent of R. Then

M = Re is a left R-module which is p.q.-Baer.

Theorem 2.3 If M1 and M2 are p.q.-Baer modules, and have the property that for any ψ ∈

HomR(Mi,Mj), ψ(x) = 0 implies x = 0 (i 6= j, i, j = 1, 2). Then M1⊕M2 is a p.q.-Baer module.

Proof Let S = EndR(M1⊕M2) and I be any finitely generated ideal of S. By [12, Lemma 1.10],

we have lM1⊕M2
(I)⊳M1⊕M2, and there exists Ni⊳Mi (i = 1, 2) such that lM1⊕M2

(I) = N1⊕N2,

where Ni = lM1⊕M2
(I) ∩Mi (i = 1, 2).

As mentioned, S = S1 ⊕HomR(M1,M2)⊕HomR(M2,M1)⊕ S2, where Si = EndR(Mi) (i =

1, 2). Since I is a finitely generated ideal of S, we have I = I1⊕I12⊕I21⊕I2, where I1⊳S1, I2⊳S2,

I12 = {ϕ ∈ HomR(M2,M1)|ϕ = ξ12 with (ξij)i,j=1,2 ∈ I}, I21 = {ϕ ∈ HomR(M1,M2)|ϕ = ξ21

with (ξij)i,j=1,2 ∈ I}. It is easy to see that Ii is a finitely generated ideal of Si (i = 1, 2).

Let us define lMi
(Ii) = N ′

i (i = 1, 2). It is easy to check that N1 = N ′
1 ∩ (

⋂
ϕ∈I21

kerϕ).

Then we conclude that N1 = N ′
1. For any element ψ12 ∈ HomR(M2,M1), ϕ ∈ I21, we have

N ′
1(ϕψ12) = 0. Thus N ′

1ϕ = 0 ⇒ N ′
1 ⊆

⋂
ϕ∈I21

kerϕ. It follows that N1 = N ′
1. Similarly, we have

N2 = N ′
2. Since M1, M2 are p.q.-Baer modules and Ii is a finitely generated ideal of Si, we have

N ′
i = lMi

(Ii) ≤
⊕ Mi (i = 1, 2). Therefore lM1⊕M2

(I) = N ′
1 ⊕N ′

2 ≤⊕ M1 ⊕M2. This completes

the proof. 2

The proof of Theorem 2.3 is similar to [12, Theorem 3.18]. For the completion of this paper,

we write down the whole process.

By Theorems 2.2 and 2.3, we have the following result, which provides another source of

examples for p.q.-Baer modules.

Proposition 2.1 Let M =
⊕n

i=1Mi. If Mi is subisomorphic to (i,e., isomorphic to a submodule

of) Mj , ∀i 6= j; i, j = 1, 2, . . . , n. Then M is p.q.-Baer if and only if Mi is p.q.-Baer (i =

1, 2, . . . , n).

It is easy to see that Proposition 2.1 also holds true when M =
∏n

i=1Mi. From Proposition

2.1 and Theorem 2.2, we have

Corollary 2.1 A finitely generated projective module over a left p.q.-Baer ring is a p.q.-Baer

module.

We know that Baer and quasi-Baer modules are p.q.-Baer modules. A natural question

arises, is the p.q.-Baer module also a Baer or a quasi-Baer module? The n × n (n > 1) upper

triangular matrix ring over a domain, which is not a division ring, is a p.q.-Baer ring but not

Baer[3,p16]. Let R = {(an)∞n=1 ∈
∏∞

n=1Mn′(W )| an is eventually constant}, where W is the Kth

(K > 1) Weyl algebra over a field of characteristic Zero[1,Example 3.13]. Then R is p.q.-Baer but

not quasi-Baer. So p.q.-Baer modules might be neither Baer nor quasi-Baer. We will ask: under

what conditions might p.q.-Baer modules and quasi-Baer modules be equivalent? The following
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Proposition answers this question. We define the FI-(strong) summand intersection property on

the basis of (strong) summand intersection property[12].

Definition 2.2 A module M is said to have the FI-summand intersection property (FI-SIP) if

the intersection of two fully invariant direct summands is again a direct summand. M has the

FI-strong summand intersection property (FI-SSIP) if the intersection of any number of fully

invariant direct summands is again a direct summand.

Proposition 2.2 A module M is quasi-Baer if and only if M is p.q.-Baer and has the FI-strong

summand intersection property (FI-SSIP).

Proof The first assertion of the necessary condition is clear.

For the second, let Mei ⊳ M , e2i = ei ∈ S, i ∈ Λ (Λ is an index set). Then ei ∈ Sr(S),

(1−ei)S⊳S (i ∈ Λ). Let us define I =
∑

i∈Λ(1−ei)S. Then I⊳S and lM (I) =
⋂

i∈Λ lM [(1−ei)S] =
⋂

i∈ΛMei ≤
⊕ M . Thus, M satisfies the FI-SSIP.

Conversely, let I be any ideal of S. Then we can write I =
∑

i∈Λ SxiS (xi ∈ I, i ∈ Λ). So

lM (I) = lM (
∑

i∈Λ SxiS) =
⋂

i∈Λ lM (SxiS). SinceM is p.q.-Baer, we have lM (SxiS) = Mei⊳
⊕M

where e2i = ei ∈ Sr(S) (∀i ∈ Λ). By assumption, lM (I) =
⋂

i∈ΛMei = Me ≤⊕ M . Hence M is

quasi-Baer. 2

Recall from [12] that a module M is called K-nonsingular if, for all ϕ ∈ S, lM (ϕ) = kerϕ ≤e

M implies ϕ = 0.

By [12, Lemma 2.15] and [13, Theorem 2.4], we know that both Baer and Richart modules

are K-nonsingular. The following theorem shows that under a certain condition, a p.q.-Baer

module is also K-nonsingular.

Proposition 2.3 LetM be a p.q.-Baer module. If every essential submodule ofM is an essential

extension of a fully invariant submodule of M , then M is K-nonsingular.

Proof Let 0 6= ϕ ∈ S and lM (ϕ) = kerϕ ≤e M . By hypothesis, there exists a fully invariant

submodule N ⊳ M such that N ≤e lM (ϕ). Then N ⊆ lM (Sϕ) = Me (e2 = e ∈ S) since

NSϕ = Nϕ = 0 and M is p.q.-Baer. It follows that Me ≤e M . This implies that e = 1, ϕ = 0,

contradicting our assumption that ϕ 6= 0. Thus M is K-nonsingular. 2

3. Endomorphism rings, connections between p.q.-Baer and Richart

modules

In [12, 13] we can see that the endomorphism rings of any Baer, quasi-Baer and Richart

modules are Baer, quasi-Baer and left Richart rings, respectively. This suggests that these

modules property may be carried over to their endomorphism rings. In this section, we study

the endomorphism rings of p.q.-Baer modules and the connections between p.q.-Baer modules

and Richart modules.

Theorem 3.1 If M is a p.q.-Baer module with S = EndR(M). Then S is a left p.q.-Baer ring.
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Proof Let I be any principal left ideal of S. We have lM (I) = Me where e2 = e ∈ S. Then we

conclude that lS(I) = Se.

First, Se ⊆ lS(I) sinceMSeI = MeI = 0. Next, for any 0 6= ϕ ∈ lS(I), we haveMϕ ⊆ lM (I).

Thus ϕ = ϕe. This implies that lS(I) ⊆ Se⇒ lS(I) = Se. This completes the proof. 2

Corollary 3.1 Let R be a left p.q.-Baer ring and e is an idempotent of R. Then eRe is also a

left p.q.-Baer ring.

Theorem 3.2 The left p.q.-Baer condition is a Morita invariant property.

Proof Let R be a left p.q.-Baer ring. By Proposition 2.1, we have R(n) is left p.q.-Baer. Since

Mn(R) ∼= EndR(R(n)), we know that Mn(R) is also left p.q.-Baer. 2

Proposition 3.1 Let R be a commutative ring. Then the following conditions are equivalent:

(i) R is left p.q.-Baer;

(ii) R is left Richart;

(iii) R is VN-regular.

Proof It is easy to see that when R is commutative, left p.q.-Baer rings and left Richart rings

are equivalent, and the rest is immediate from [13, Theorem 3.2]. 2

Corollary 3.2 Let M be a left p.q.-Baer module. Then Cen(S) is VN-regular.

Definition 3.1[13] A module M is called quasi-retractable if HomR(M,N) 6= 0, where N = Rm,

∀0 6= m ∈M (or, equivalently, ∃0 6= ϕ ∈ S with Mϕ ⊆ N = Rm).

Proposition 3.2 Let M be quasi-retractable. Then M is p.q.-Baer if and only if S is a left

p.q.-Baer ring.

Proof We only have to prove the sufficient condition. Let I be any principal left ideal of S. we

assert that lM (I) = Me.

First, by assumption, we have lS(I) = Se where e2 = e ∈ S. Thus Me ⊆ lM (I) since

MeI ⊆MSeI = 0. Next, if ∃0 6= m ∈ lM (I)\Me, by quasi-retractability, there exists 0 6= β ∈ S

such that Mβ ⊆ Rm. It follows that β = β(1 − e) ∈ S(1 − e). Also, we have β ∈ lS(I) = Se

since MβI ⊆ RmI = 0. This implies that β = 0, a contradiction. Therefore, lM (I) = Me. 2

In the rest, we will consider the connections between p.q.-Baer modules and Richart modules.

Similarly to the definitions of the insertion of factors property (IFP)[16] and strongly bounded

property [1] of rings, we give the following definitions.

Definition 3.2 A left R-module M is said to satisfy the IFP (insertion of factors property)

if lM (ϕ) is a fully invariant submodule of M for all ϕ ∈ S (or, equivalently, rs(m) ⊳ S for all

m ∈M).

Definition 3.3 A left R-module M is strongly bounded if every nonzero submodule of M

contains a nonzero fully invariant submodule.
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Proposition 3.3 Let M be p.q.-Baer and strongly bounded. Then M is Richart and satisfies

the IFP.

Proof Let ϕ ∈ S. We have Me = lM (SϕS) ⊆ lM (ϕ) (e2 = e ∈ S). Hence, lM (ϕ) = Me ⊕ A

for some A ≤M . If A 6= 0, by assumption, there exists a fully invariant submodule 0 6= B ⊆ A.

Then, B ⊆ lM (ϕ) ⇒ BS ⊆ lM (ϕ) ⇒ BSϕ = 0 ⇒ BSϕS = 0. Thus B ⊆Me, this is impossible.

Therefore, lM (ϕ) = lM (SϕS) ⊳⊕ M . M is Richart and satisfies the IFP. 2

Proposition 3.4 Let M be a left R-module that satisfies the IFP. Then

(i) M is Richart if and only if M is p.q.-Baer;

(ii) S is Abelian.

Proof (i) First, for any ϕ ∈ S, we have lM (Sϕ) ⊆ lM (ϕ). Next, for any element m ∈ lM (ϕ),

we have ϕ ∈ rS(m). It follows that m ∈ lM (Sϕ) since rS(m) ⊳ M and Sϕ ⊆ rS(m). Thus

lM (Sϕ) = lM (ϕ), Richart and p.q.-Baer modules are equivalent;

(ii) The proof is routine. 2

Theorem 3.3 Let M be a left R-module, S = EndR(M). Then the following conditions are

equivalent:

(i) M is a Richart modules and S is Ablian;

(ii) M is a p.q.-Baer module which satisfies the IFP.

Proof (i)⇒(ii). First, for any ϕ ∈ S, we have lM (Sϕ) ⊆ lM (ϕ) and lM (ϕ) = Me (e2 = e ∈

Cen(S)). Then, eSϕ = 0 since eSϕ = Seϕ and eϕ ⊆ Meϕ = 0. It follows that Me ⊆ lM (Sϕ).

Thus lM (Sϕ) = Me. Since S is Ablian, we have lM (Sϕ) = Me ⊳M ;

(ii)⇒(i). This is immediate from Proposition 3.4. 2

Proposition 3.5 Let M be a left R-module, S = EndR(M). Consider the following conditions:

(a) M satisfies the IFP;

(b) S is reduced;

(c) S satisfies the IFP;

(d) S is Ablian.

The following statements hold true:

(i) If S is a left Richart ring, then (b) through (d) are equivalent;

(ii) If M is a Richart module, then (a) through (d) are equivalent;

(iii) If S is a VN-regular ring, then (a) through (d) are equivalent.

Proof (i) For any ring S, it is easy to get (b)⇒(c)⇒(d). Now, we only have to prove (d)⇒

(b). Let x2 = 0. Then rR(x) = eS where e2 = e ∈ Cen(S). Thus x = ex = xe = 0 since

x ∈ rR(x) = eS;

(ii) By [13, Theorem 3.1], we know that S is left Richart. Thus, we only have to prove that

(a)⇔(d). By Proposition 3.4 and Theorem 3.3, we know that (a)⇔(d);

(iii) We only have to prove that if S is VN-regular, then M is Richart.
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For any ϕ ∈ S, there exists ψ ∈ S such that ϕ = ϕψϕ. Let us define π = ϕψ ∈ S. Then

π2 = π and ϕ = πϕ. This implies that kerϕ = kerπ = M(1 − π) ≤⊕ M . 2
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