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Abstract In this paper, we give the equivalent characterizations of principally quasi-Baer
modules, and show that any direct summand of a principally quasi-Baer module inherits the
property and any finite direct sum of mutually subisomorphic principally quasi-Baer modules
is also principally quasi-Baer. Moreover, we prove that left principally quasi-Baer rings have
Morita invariant property. Connections between Richart modules and principally quasi-Baer
modules are investigated.
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1. Introduction

The concept of principally quasi-Baer rings was first introduced in [1] by Birkenmeier, and
further studied by many authors!>~4. Recall that a ring R is called left (resp. right) principally
quasi-Baer (or simply left (resp. right) p.q.-Baer) if the left (resp. right) annihilator of a principal
left (resp. right) ideal is generated as a left (resp. right) ideal by an idempotent. This definition
is not left-right symmetric. p.q.-Baer rings are the extensions of Baer and quasi-Baer rings!® 1.
The class of p.q.-Baer rings include any domain, any semisimple ring, any Baer and quasi-Baer
ring. Our work has been greatly motivated by these works, as mentioned above, and we try to
extend these investigations to arbitrary modules.

We define principally quasi-Baer modules on the basis of p.q.-Baer rings. For a left R-module
M, we call M a principally quasi-Baer (or simply p.q.-Baer) module if the left annihilator in
M of any principal left ideal of S is generated by an idempotent of S. It is easy to see that,
when M = R, the notion coincides with the existing definition of left p.q.-Baer rings. Thus this
definition is not left-right symmetric, either. Among examples of p.q.-Baer modules, we include
any semisimple module, any Baer and quasi-Baer module, any finitely generated Abelian ring,

any ideal direct summand of a left p.q.-Baer ring (Theorem 2.2), and any finitely generated
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projective left R-module, where R is a left p.q.-Baer ring (Corollary 2.1). Obviously, any left
p-q.-Baer ring R is p.q.-Baer as an R-module.

In Section 2, we introduce the concept of a p.q.-Baer module, and show the equivalent
characterizations of p.q.-Baer modules (Theorem 2.1). We prove that any finite direct sum of
mutually subisomorphic p.q.-Baer modules is also p.q.-Baer. A natural question arises: for any
algebraic property of modules, is the property inherited by direct summands of such a module?
We give a positive answer to this question for the case of p.q.-Baer modules (Theorem 2.2).
Among other results, we also include results on when direct sums of p.q.-Baer modules are p.q.-
Baer (Theorem 2.3) and provide a characterization of p.q.-Baer modules in terms of the FI-strong
summand intersection property.

In Section 3, our focus is on the endomorphism rings of p.q.-Baer modules and the connections
between p.q.-Baer modules and Richart modules. We show that the endomorphism ring of a p.q.-
Baer module is always left p.q.-Baer (Theorem 3.1) and that left p.q.-Baer rings have Morita
invariant property. Various conditions on the equivalence of Richart modules and p.q.-Baer
modules are discussed.

Throughout this paper, R denotes a ring with unity. For notation we use S,.(R) (resp. S;(R)),
Cen(R), M, (R) for the right (resp. left) semicentral idempotents of R, the center of R, and the
ring of n X n matrices over R, respectively. M is a left R-module and S = Endg(M) is the ring
of R-endomorphisms of M. Submodules of M will be left R-modules. Recall that a submodule
X of M is called fully invariant if for every h € S, h(X) C X. So fully invariant submodules
will be an R-S-bimodule. The notations lg(-) and 73;(-) denote the left annihilator of a subset
of M with elements from R and the right annihilator of a subset of R with elements from M,
respectively; while rg(-) and I5/(+) stand for the right annihilator of a subset of M with elements
from S and the left annihilator of a subset of S with elements from M, respectively. Let N C M.
Then we use N < M, N <® M, NaM, N<® M, N <¢ M to denote that N is a submodule,
direct summand, fully invariant submodule, fully invariant direct summand, essential submodule
of M, respectively.

Before we discuss the properties of p.q.-Baer modules in Section 2, let us recall some related

concepts.

Definition 1.12 A left R-module M is called a (quasi-) Baer module if for all I < Sg (I < Sg),
Ip(I) = Me where e2 = e € S.

Definition 1.20'*! A ring R is called a left Richart ring if for any element a € R, Ir(a) = Re

where 2 = e € R.

Definition 1.3['3] A left R-module M is called a Richart module if for any element ¢ € S,
Iv(p) = Me where e> = e € S.

Definition 1.4/2) An idempotent e of a ring R is called left (vesp. right) semicentral if xe = exe
(resp. ex = exe) for all z € R.
By [11, Proposition 9 | and [1, Example 1.6], we can see that p.q.-Baer rings and Richart
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rings do not include each other. This is the same as p.q.-Baer modules and Richart modules.

Lemma 1.12 For an idempotent e € R, the following conditions are equivalent:

(i) e €S (R);

(ii) 1—e € Si(R);

(iii) Re is an ideal of R;

(iv) (1 —e)R is an ideal of R.

2. Principally quasi-Baer modules

In this section, we begin our investigations by first providing the equivalent characterizations

of p.q.-Baer modules and give some properties of them.

Theorem 2.1 If M is a left R-module, then the following conditions are equivalent:

(i) M is p.q.-Baer;

(ii) The left annihilator in M of every finitely generated left ideal of S is generated by an
idempotent of S;

(iii) The left annihilator in M of every principal ideal of S is generated by an idempotent of
S;

(iv) The left annihilator in M of every finitely generated ideal of S is generated by an
idempotent of S.

Proof We only have to prove (i)=-(ii) and the rest is clear.

Let I = >, Sz; (n € N) be any finitely generated left ideal of S. Then ly(I) =
Ni_y ln(Sz;). By hypothesis, we have ly(Sz;) = Me; and €7 = ¢; € S.(S) (i = 1,2...,n).
Thus Iy (1) = (), Me;. Then we assert that Me; N Mey = Mejes and eres € S,(S).

First let x+ € Mey N Mes. It is easy to check that x = ze; = xes = xejes € Mejes.
Since e; € S,.(S), we have Mejes = (Mejes)e; and Mejea C Mey N Mey. Tt follows that
Mejea = Mey N Mey. Next, we have (e1e2)? = (e1e2)ea = ejeq, and ejear = eq(eat)es =
ereazerey (Vo € S) since e; € S,.(S) (i = 1,2). Thus ejez € S,.(9).

Similarly, we have ();_, Me; = M(ejez---ey,) and (e1e2---e,) € Sp(S). This completes the
proof. O

Theorem 2.2 Let M be a p.q.-Baer module. Then every direct summand N of M is also a
p.q.-Baer module.

Proof Let N = Me where ¢? = ¢ € S. Then Endg(N) = Endr(Me) = eSe. For any element
x € Endg(N), we conclude that [y (eSe-x) <® N.

First we have z = exe, and y = ye for any element y € Inx(eSe - x). Then In(eSe - z) C
Ip(Sz) NN since 0 =y - Sz = ye- S - exe = y(eSe)r = 0. Secondly, let z € Ip/(Sz) N N. We
have z € Iy(eSe - ) since z = ze € N and z - eSe-x = (ze)S(exe) = z- Sz = 0. This implies
In(eSe-z) =1y (Sz)NN.

By assumption, we have lp/(Sz) = Mf where f2 = f € S.(S). Then Iy (Sz) NN =
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Mf N Me = Me(efe), and efe is an idempotent of eSe since f2 = f € S,(S). Therefore,
In(eSe-x) = Me(efe) <® Me. O

Example 2.1 Let R be a left p.q.-Baer ring and let e = ¢ € R be any idempotent of R. Then
M = Re is a left R-module which is p.q.-Baer.

Theorem 2.3 If My and M are p.q.-Baer modules, and have the property that for any ¢ €
Hompg(M;, M;), ¥(x) = 0 implies x =0 (¢ # j,4,5 = 1,2). Then M, & M, is a p.q.-Baer module.

Proof Let S = Endr(M; @ Mz) and I be any finitely generated ideal of S. By [12, Lemma 1.10],
we have Iy, o, (I) <M1 @ Ms, and there exists N;<M; (i = 1,2) such that Iy, g, (1) = N1 @ Na,
where N; = Iy o, (I) N M; (1 =1,2).

As mentioned, S = S; @ Hompg(M7, M3) ® Hompg(Ms, M) @ Sz, where S; = Endg(M;) (i =
1,2). Since I is a finitely generated ideal of S, we have I = I} ® [12® o1 ® Iz, where [ 157, I2<1Ss,
Iy = {p € Homp(Ms, Mi1)|p = &12 with (&5)i =12 € I}, o1 = {¢ € Homg(M1, Ma)|p = &n
with (&;5)i j=1,2 € I}. It is easy to see that I; is a finitely generated ideal of S; (i = 1,2).

Let us define ln,(1;) = N; (i = 1,2). It is easy to check that N1 = Ny N (N,p,,
Then we conclude that N3 = Nj. For any element 112 € Hompg(Ms, M), ¢ € Is1, we have
Ni(pt12) = 0. Thus Njp =0 = Ny C ¢y,
Ny = NJ. Since My, Ms are p.q.-Baer modules and I; is a finitely generated ideal of S;, we have
N} =1y, (I;) <® M; (i = 1,2). Therefore Iy, g, (I) = N{ & Nj <® M; & M,. This completes
the proof. O

ker ).

ker . It follows that Ny = N{. Similarly, we have

The proof of Theorem 2.3 is similar to [12, Theorem 3.18]. For the completion of this paper,
we write down the whole process.
By Theorems 2.2 and 2.3, we have the following result, which provides another source of

examples for p.q.-Baer modules.

Proposition 2.1 Let M = @?:1 M. If M; is subisomorphic to (i,e., isomorphic to a submodule
of) Mj;, ¥Yi # j; i,j = 1,2,...,n. Then M is p.q.-Baer if and only if M; is p.q.-Baer (i =
1,2,...,n).

It is easy to see that Proposition 2.1 also holds true when M = [, M;. From Proposition

2.1 and Theorem 2.2, we have

Corollary 2.1 A finitely generated projective module over a left p.q.-Baer ring is a p.q.-Baer
module.

We know that Baer and quasi-Baer modules are p.q.-Baer modules. A natural question
arises, is the p.q.-Baer module also a Baer or a quasi-Baer module? The n x n (n > 1) upper
triangular matrix ring over a domain, which is not a division ring, is a p.q.-Baer ring but not
Baerl> P10l Let R = {(a,)5%; € [[02; My (W)|ay, is eventually constant}, where W is the Kth
(K > 1) Weyl algebra over a field of characteristic Zeroll: Example3.13] ' Then R is p.q.-Baer but
not quasi-Baer. So p.q.-Baer modules might be neither Baer nor quasi-Baer. We will ask: under

what conditions might p.q.-Baer modules and quasi-Baer modules be equivalent? The following
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Proposition answers this question. We define the FI-(strong) summand intersection property on

the basis of (strong) summand intersection property('2].

Definition 2.2 A module M is said to have the FI-summand intersection property (FI-SIP) if
the intersection of two fully invariant direct summands is again a direct summand. M has the
FI-strong summand intersection property (FI-SSIP) if the intersection of any number of fully

invariant direct summands is again a direct summand.

Proposition 2.2 A module M is quasi-Baer if and only if M is p.q.-Baer and has the Fl-strong
summand intersection property (FI-SSIP).

Proof The first assertion of the necessary condition is clear.

For the second, let Me; <M, €? = ¢; € S, i € A (A is an index set). Then e; € S.(5),
(1—e;)SaS (i € A). Let usdefine I =3, (1—e;)S. Then I<S and Iy (1) = (;cp In[(1—€4)S] =
Nien Me; <® M. Thus, M satisfies the FI-SSIP.

Conversely, let I be any ideal of S. Then we can write I = >, ., Sx;S (x; € I,i € A). So
(1) = 1l (3,en STiS) = Niea I (Sz:S). Since M is p.q.-Baer, we have I3 (Sz;S) = Me;<«® M
where €7 = ¢; € 5,(S) (Vi € A). By assumption, Ins(I) = ();cp Me; = Me <® M. Hence M is
quasi-Baer. O

Recall from [12] that a module M is called K-nonsingular if, for all ¢ € S, Iy (p) = ker p <°
M implies ¢ = 0.

By [12, Lemma 2.15] and [13, Theorem 2.4], we know that both Baer and Richart modules
are K-nonsingular. The following theorem shows that under a certain condition, a p.q.-Baer

module is also K-nonsingular.

Proposition 2.3 Let M be a p.q.-Baer module. If every essential submodule of M is an essential

extension of a fully invariant submodule of M, then M is K-nonsingular.

Proof Let 0 # ¢ € S and I () = kerp <¢ M. By hypothesis, there exists a fully invariant
submodule N < M such that N <€ Iy (p). Then N C Iy (Sp) = Me (e2 = e € S) since
NSy =Ny =0 and M is p.q.-Baer. It follows that Me <¢ M. This implies that e =1, ¢ = 0,

contradicting our assumption that ¢ # 0. Thus M is K-nonsingular. O

3. Endomorphism rings, connections between p.q.-Baer and Richart
modules

In [12, 13] we can see that the endomorphism rings of any Baer, quasi-Baer and Richart
modules are Baer, quasi-Baer and left Richart rings, respectively. This suggests that these
modules property may be carried over to their endomorphism rings. In this section, we study
the endomorphism rings of p.q.-Baer modules and the connections between p.q.-Baer modules

and Richart modules.

Theorem 3.1 If M is a p.q.-Baer module with S = Endg(M). Then S is a left p.q.-Baer ring.
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Proof Let I be any principal left ideal of S. We have l3/(I) = Me where e? = ¢ € S. Then we
conclude that Ig(I) = Se.

First, Se C lg(I) since M Sel = Mel = 0. Next, for any 0 # ¢ € ls(I), we have Mo C Iy (I).
Thus ¢ = pe. This implies that Is(I) C Se = ls(I) = Se. This completes the proof. O

Corollary 3.1 Let R be a left p.q.-Baer ring and e is an idempotent of R. Then eRe is also a
left p.q.-Baer ring.

Theorem 3.2 The left p.q.-Baer condition is a Morita invariant property.

Proof Let R be a left p.q.-Baer ring. By Proposition 2.1, we have R("™ is left p.q.-Baer. Since
M,(R) = Endp(R™), we know that M, (R) is also left p.q.-Baer. O

Proposition 3.1 Let R be a commutative ring. Then the following conditions are equivalent:
(i) R is left p.q.-Baer;
(ii)) R is left Richart;
(iii) R is VN-regular.

Proof It is easy to see that when R is commutative, left p.q.-Baer rings and left Richart rings

are equivalent, and the rest is immediate from [13, Theorem 3.2]. O
Corollary 3.2 Let M be a left p.q.-Baer module. Then Cen(S) is VN-regular.

Definition 3.1 A module M is called quasi-retractable if Homp(M, N) # 0, where N = Rm,
Y0 # m € M (or, equivalently, 30 # ¢ € S with M C N = Rm).

Proposition 3.2 Let M be quasi-retractable. Then M is p.q.-Baer if and only if S is a left
p.q.-Baer ring.

Proof We only have to prove the sufficient condition. Let I be any principal left ideal of S. we
assert that Iy (1) = Me.

First, by assumption, we have lg(I) = Se where ¢> = ¢ € S. Thus Me C Iy/(I) since
Mel C MSel =0. Next, if 30 # m € Iy (I)\ Me, by quasi-retractability, there exists 0 # 5 € S
such that M3 C Rm. It follows that § = (1 —e) € S(1 —e). Also, we have 8 € lg(I) = Se
since MBI C RmI = 0. This implies that 8 = 0, a contradiction. Therefore, Iy;(I) = Me. O

In the rest, we will consider the connections between p.q.-Baer modules and Richart modules.
Similarly to the definitions of the insertion of factors property (IFP)!*l and strongly bounded
property [1] of rings, we give the following definitions.

Definition 3.2 A left R-module M is said to satisfy the IFP (insertion of factors property)
if Ipr(p) is a fully invariant submodule of M for all ¢ € S (or, equivalently, rs(m) < .S for all
me M)

Definition 3.3 A left R-module M is strongly bounded if every nonzero submodule of M

contains a nonzero fully invariant submodule.
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Proposition 3.3 Let M be p.q.-Baer and strongly bounded. Then M is Richart and satisfies
the IFP.

Proof Let ¢ € S. We have Me = I5;(SpS) C ly(p) (e = e € S). Hence, Iy (p) = Me® A
for some A < M. If A # 0, by assumption, there exists a fully invariant submodule 0 # B C A.
Then, B C lp(p) = BS Clp(p) = BSp =0= BSpS =0. Thus B C Me, this is impossible.
Therefore, Iy () = lar(SpS) <® M. M is Richart and satisfies the IFP. O

Proposition 3.4 Let M be a left R-module that satisfies the IFP. Then
(i) M is Richart if and only if M is p.q.-Baer;
(ii) S is Abelian.

Proof (i) First, for any ¢ € S, we have {51(S¢) C lap(p). Next, for any element m € Iy (p),
we have ¢ € rg(m). It follows that m € Iy (S¢p) since rg(m) < M and S¢ C rg(m). Thus
Im(S¢) =l (p), Richart and p.q.-Baer modules are equivalent;

(ii) The proof is routine. O

Theorem 3.3 Let M be a left R-module, S = Endg(M). Then the following conditions are
equivalent:

(i) M is a Richart modules and S is Ablian;

(ii) M is a p.q.-Baer module which satisfies the IFP.

Proof (i)=-(ii). First, for any ¢ € S, we have I/ (Sp) C ln(p) and Iy (p) = Me (e = e €
Cen(S)). Then, eS¢ = 0 since eSp = Sep and ep C Mep = 0. It follows that Me C I (Sy).
Thus 1) (Se) = Me. Since S is Ablian, we have Iy (Sy) = Me < M;

(ii)=-(i). This is immediate from Proposition 3.4. O

Proposition 3.5 Let M be a left R-module, S = Endg(M). Consider the following conditions:
(a) M satisfies the IFP;
(b) S is reduced;
(c) S satisfies the IFP;
(d) S is Ablian.
The following statements hold true:
(i) If S is a left Richart ring, then (b) through (d) are equivalent;
(ii)) If M is a Richart module, then (a) through (d) are equivalent;
(iii) If S is a VN-regular ring, then (a) through (d) are equivalent.

Proof (i) For any ring S, it is easy to get (b)=-(c)=-(d). Now, we only have to prove (d)=
(b). Let 2> = 0. Then rr(z) = eS where ¢ = e € Cen(S). Thus z = ex = ze = 0 since
x € rr(z) = eS;

(ii) By [13, Theorem 3.1}, we know that S is left Richart. Thus, we only have to prove that
(a)<(d). By Proposition 3.4 and Theorem 3.3, we know that (a)<(d);

(iii) We only have to prove that if S is VN-regular, then M is Richart.
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For any ¢ € S, there exists ¥ € S such that ¢ = Y. Let us define m = b € S. Then

72 = 1 and ¢ = mp. This implies that ker p = kerm = M (1 —7) <® M. O
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