Weighted Composition Operators between Bergman-Type Spaces

LIU Jing Cheng, ZHANG Xue Jun, LI Ju Xiang (College of Mathematics and Computer Science, Hunan Normal University, Hunan 410081, China) (E-mail: liujingcheng11@126.com)

Abstract Let g_1, g_2 be normal functions. For all $0 < p, q < \infty$, the necessary and sufficient conditions for weighted composition operators $T_{\psi,\varphi}: A^p_{g_1} \to A^q_{g_2}$ to be bounded or compact between Bergman type spaces on the unit ball of C^n are given.

Keywords weighted composition operator; Boundedness; compactness; Bergman type spaces.

Document code A MR(2000) Subject Classification 47B38; 32A37 Chinese Library Classification O174.56

1. Introduction

Let B_n denote the unit ball of C^n , dv be the Lebesgue measure on the unit ball B_n normalized so that $v(B_n) = 1$, and $d\sigma$ be the normalized rotation invariant measure on the boundary ∂B_n of B_n so that $\sigma(\partial B_n) = 1$. The class of all holomorphic functions on B_n is denoted by $H(B_n)$ and H^{∞} denotes the class of all bounded holomorphic function on B_n .

A positive continuous function g on [0,1) is normal, if there are constants 0 < a < b such that

$$\frac{g(r)}{(1-r)^a}$$
 is decreasing for $r \in [0,1)$ and $\lim_{r \to 1^-} \frac{g(r)}{(1-r)^a} = 0$;

$$\frac{g(r)}{(1-r)^b}$$
 is increasing for $r \in [0,1)$ and $\lim_{r \to 1^-} \frac{g(r)}{(1-r)^b} = \infty$.

For $0 , let g be normal on [0,1). The Bergman type space <math>A_g^p$ is the space of functions f that are holomorphic on B_n and satisfy

$$||f||_{g,p}^p = \int_{B_n} |f(z)|^p g(|z|)^p (1-|z|)^{-1} dv(z) < \infty.$$

For $z = (z_1, \ldots, z_n)$, $w = (w_1, \ldots, w_n)$ in C^n , let $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$. Let $\beta(\cdot, \cdot)$ denote the Bergman metric on B_n . The Bergman ball E(z, r) with center $z \in B_n$ and radius r > 0 is defined as $E(z, r) = \{w \in B_n : \beta(z, w) < r\}$.

Received date: 2007-08-29; Accepted date: 2008-01-04

Foundation item: the National Natural Science Foundation of China (No. 10571049); the Natural Foundation of Hunan Province (No. 06JJ50010).

Let $\varphi: B_n \to B_n$ be holomorphic and $\psi \in H(B_n)$. The weighted composition operators $T_{\psi,\varphi}$ on $H(B_n)$ is defined as

$$T_{\psi,\varphi}(f) = \psi(f \circ \varphi) \ (f \in H(B_n)).$$

Recently several authors have studied the boundedness and compactness of composition operator $T_{1,\varphi}$ or weighted composition operators $T_{\psi,\varphi}$ on Hardy spaces, Beraman spaces and Bloch spaces. For example, in [1], Lou and Shi considered the composition operators from Bergman space A^p_{α} to A^q_{β} on the bounded symmetric domains in C^n , and characterized the boundedness and compactness of $T_{1,\varphi}$ in terms of Carleson measures for $0 . In [2], Xu and Liu characterized the boundedness and compactness of <math>T_{\psi,\varphi}$ from H^p to H^q (0 < $p \le q < \infty$). This paper will give the necessary and sufficient conditions for $T_{\psi,\varphi}: A^p_{g_1} \to A^q_{g_2}$ to be bounded or compact between Bergman type spaces on the unit ball of C^n for all p > 0, q > 0 and normal functions g_1, g_2 .

We will use the symbol C or C' to denote a positive constant which does not depend on variables z, w and maybe depend on some parameters, not necessarily the same at each occurrence.

2. Some lemmas

Lemma 2.1^[3] For each r > 0, there exists a positive constant C such that

$$C^{-1} \le \frac{1 - |z|^2}{1 - |w|^2} \le C \text{ and } C^{-1} \le \frac{1 - |z|^2}{|1 - \langle z, w \rangle|} \le C$$

for all z and w in B_n with $\beta(z, w) < r$.

Lemma 2.2^[3] Suppose $r_1 > 0$, $r_2 > 0$ and $r_3 > 0$. Then there exists a constant C > 0 such that

$$C^{-1} \le \frac{v(E(z, r_1))}{v(E(w, r_2))} \le C$$

for all $z, w \in B_n$ with $\beta(z, w) < r_3$.

Lemma 2.3^[3] Suppose r > 0, 0 . Then there exists a constant <math>C > 0 such that

$$|f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1}} \int_{E(z,r)} |f(w)|^p dv(w)$$

for all $f \in H(B_n)$ and all $z \in B_n$.

Lemma 2.4^[1] There exists a postive integer N such that for any r > 0, there are sequences $\{w_j\}$ in B_n with the following properties:

- (i) $B_n = \bigcup_{j=1}^{\infty} E(w_j, r);$
- (ii) Each point $z \in B_n$ belongs to at most N of the sets $E(w_i, 2r)$;
- (iii) Specially, some sequence $\{w_j\}$ exists such that $w_j \to \partial B_n \ (j \to \infty)$ and satisfies (i) and (ii).

Lemma 2.5 Let r > 0, 0 , and g be normal on <math>[0,1). Then there exists a constant

C > 0 such that

$$|f(z)|^p \le \frac{C}{(1-|z|^2)^n g^p(|z|)} \int_{E(z,r)} |f(w)|^p g^p(|w|) (1-|w|)^{-1} dv(w)$$

for all $f \in H(B_n)$ and all $z \in B_n$.

Proof For $w \in E(z,r)$, by the definition of normal function, we have

$$(\frac{1-|z|}{1-|w|})^a \le \frac{g(|z|)}{g(|w|)} \le (\frac{1-|z|}{1-|w|})^b \quad (|z| \le |w|),$$

$$(\frac{1-|z|}{1-|w|})^b \le \frac{g(|z|)}{g(|w|)} \le (\frac{1-|z|}{1-|w|})^a \quad (|z| > |w|).$$

By Lemma 2.1, there exists a constant C'>0 such that $C'^{-1}g(|z|) \leq g(|w|) \leq C'g(|z|)$ for $w \in E(z,r)$. Then the desired results can be obtained by using Lemma 2.3.

Lemma 2.6^[4] Let $0 < q < p < \infty$, r > 0. If μ is a positive Borel measure on B_n , and g is normal on [0,1), then the following conditions are equivalent:

- (i) $\int_{B_n} \hat{\mu}^s(|z|) (1-|z|)^{-1} g^p(|z|) \mathrm{d}v(z) < \infty$ where $s = \frac{p}{p-q}, \ \hat{\mu} = \frac{\mu(E(z,r))}{(1-|z|^2)^n g^p(z)};$
- (ii) There exists a constant C > 0 such that

$$\left\{ \int_{B_n} |f(z)|^q \mathrm{d}\mu(z) \right\}^{\frac{1}{q}} \le C \left\{ \int_{B_n} |f(z)|^p g^p(|z|) (1 - |z|)^{-1} \mathrm{d}v(z) \right\}^{\frac{1}{p}}$$

for all $f \in A_q^p$.

Lemma 2.7 Let $0 , <math>\psi \in A_g^p$, φ be a holomorphic self-map of B_n . If f is a nonegative Lebesgue measurable function on B_n , then

$$\int_{B_n} f(z) d\mu_{\varphi,\psi,g,p}(z) = \int_{B_n} f(\varphi(z)) |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z)$$

where $\mu_{\varphi,\psi,g,p}(A) = \int_{\varphi^{-1}(A)} |\psi(z)|^p g^p(|z|) (1-|z|)^{-1} dv(z)$ for a given Borel set $A \subset B_n$.

Proof First assume that f is a nonegative simple Lebesgue measureable function. Let $f(z) = \sum_{i=1}^{m} a_i \chi_{A_i}$. Then

$$\int_{B_n} f(z) d\mu_{\varphi,\psi,g,p}(z) = \sum_{i=1}^m a_i \mu_{\varphi,\psi,g,p}(A_i) = \sum_{i=1}^m a_i \int_{A_i} d\mu_{\varphi,\psi,g,p}(z)
= \sum_{i=1}^m a_i \int_{\varphi^{-1}(A_i)} |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z)
= \int_{B_n} |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} (\sum_{i=1}^m a_i \chi_{\varphi^{-1}(A_i) \cap B_n}) dv(z)
= \int_{B_n} (f(\varphi(z)) |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z).$$

If f is a nonegative Lebesgue measurable function, then there exists a monotone increasing simple measurable function sequence $\{f_j\}$, such that $f_j(z) \to f(z)$ $(j \to \infty)$, $z \in B_n$. Therefore,

$$\int_{B_n} f_j(z) d\mu_{\varphi,\psi,g,p}(z) \to \int_{B_n} f(z) d\mu_{\varphi,\psi,g,p}(z) \quad (j \to \infty),$$

and $\{f_j(\varphi(z))|\psi(z)|^pg^p(|z|)(1-|z|)^{-1}\}$ is a monotone increasing simple measurable function sequence. Moreover

$$\{f_j(\varphi(z))|\psi(z)|^p g^p(|z|)(1-|z|)^{-1}\} \to \{f(\varphi(z)|\psi(z)|^p g^p(|z|)(1-|z|)^{-1}\}\ (j\to\infty),\ z\in B_n.$$

We have

$$\begin{split} \int_{B_n} f(z) \mathrm{d}\mu_{\varphi,\psi,g,p}(z) &= \lim_{j \to \infty} \int_{B_n} f_j(z) \mathrm{d}\mu_{\varphi,\psi,g,p}(z) \\ &= \lim_{j \to \infty} \int_{B_n} f_j(\varphi(z)) |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} \mathrm{d}v(z) \\ &= \int_{B_n} f(\varphi(z)) |\psi(z)|^p g^p(|z|) (1 - |z|)^{-1} \mathrm{d}v(z). \end{split}$$

This completes the proof of the lemma.

3. Boundedness

Theorem 3.1 Let 0 , <math>r > 0, $1 \le \eta < \infty$. If μ is a positive Borel measure on B_n , and g is normal on [0,1), then the following conditions are equivalent:

- (i) $\sup_{z \in B_n} \frac{\mu^{\frac{1}{\eta}}(E(z,r))}{(1-|z|^2)^n g^p(|z|)} < \infty;$
- (ii) There exists a constant C > 0 such that

$$\left\{ \int_{B_n} |f(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \le C \int_{B_n} |f(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z)$$

for all $f \in A_a^p$.

Proof (i) \Longrightarrow (ii). Suppose $\sup_{z \in B_n} \frac{\mu^{\frac{1}{\eta}}(E(z,r))}{(1-|z|^2)^n g^p(|z|)} = M$. Then choosing the sequence $\{w_j\}$ in Lemma 2.4 gives

$$\left\{ \int_{B_n} |f(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \leq \left\{ \sum_{j=1}^{\infty} \int_{E(w_j, r)} |f(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \\
\leq \left\{ \sum_{j=1}^{\infty} \sup\{|f(z)|^{\eta p} : z \in E(w_j, r)\} \mu(E(w_j, r)) \right\}^{\frac{1}{\eta}},$$

by Lemmas 2.1, 2.5 and the normality of g we get

$$\sup\{|f(z)|^{\eta p}: z \in E(w_j, r)\} \le \left\{\frac{C}{(1 - |w_j|^2)^n g^p(|w_j|)} \int_{E(w_j, 2r)} |f(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z)\right\}^{\eta}.$$

Thus, by Lemma 2.4 we have

$$\left\{ \int_{B_n} |f(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \leq \sum_{j=1}^{\infty} \frac{C\mu^{\frac{1}{\eta}}(E(w_j, r))}{(1 - |w_j|^2)^n g^p(|w_j|)} \int_{E(w_j, 2r)} |f(z)|^p g^p(|z|) (1 - |z|)^{-1} dv(z)
\leq MNC \int_{B_n} |f(z)|^p \frac{g^p(|z|)}{1 - |z|} dv(z).$$

(ii) \Longrightarrow (i). Assume $f \in A_q^p$ and

$$\left\{ \int_{B_n} |f(z)|^{\eta p} \mathrm{d}\mu(z) \right\}^{\frac{1}{\eta}} \le C \int_{B_n} |f(z)|^p g^p(|z|) (1-|z|)^{-1} \mathrm{d}v(z).$$

Let $f_a(z) = \{\frac{(1-|a|^2)^{\beta+1}}{g^p(|a|)(1-\langle z,a\rangle)^{n+1+\beta}}\}^{\frac{1}{p}}$, where $\beta > pb-1$, $a \in B_n$. By the definition of nomoral function and Lemma 2.1 of [7], we have

$$||f_{a}||_{A_{g}^{p}} = \int_{B_{n}} |f_{a}(z)|^{p} \frac{g^{p}(|z|)}{1 - |z|} dv(z) = \frac{(1 - |a|^{2})^{\beta+1}}{g^{p}(|a|)} \int_{B_{n}} \frac{g^{p}(|z|)}{|1 - \langle z, a \rangle|^{n+1+\beta}(1 - |z|)} dv(z)$$

$$\leq C \frac{(1 - |a|^{2})^{\beta+1}}{g^{p}(|a|)} \int_{0}^{1} \frac{g^{p}(r)}{1 - r} \int_{\partial B} \frac{d\sigma(\xi)}{|1 - \langle r\xi, a \rangle|^{n+1+\beta}} dr$$

$$\leq C' \frac{(1 - |a|^{2})^{\beta+1}}{g^{p}(|a|)} \int_{0}^{1} \frac{g^{p}(r)}{(1 - r)(1 - r|a|)^{1+\beta}} dr$$

$$\leq C' \frac{(1 - |a|^{2})^{\beta+1}}{g^{p}(|a|)} \left\{ \int_{0}^{|a|} + \int_{|a|}^{1} \right\} \frac{g^{p}(r)}{(1 - r)(1 - r|a|)^{1+\beta}} dr$$

$$\leq C' \frac{(1 - |a|^{2})^{\beta+1}}{g^{p}(|a|)} \left\{ \frac{g^{p}(|a|)}{(1 - |a|)^{bp}} \int_{0}^{|a|} \frac{(1 - r)^{bp-1}}{(1 - r|a|)^{1+\beta}} dr + \frac{g^{p}(|a|)}{(1 - |a|)^{ap}} \int_{|a|}^{1} \frac{(1 - r)^{ap-1}}{(1 - r|a|)^{1+\beta}} dr \right\}$$

$$\leq C''.$$

Therefore $f_a \in A_g^p$ and $||f_a||_{A_g^p} \leq C''$ (C'' is independent of a). Thus

$$CC'' \ge C||f_a||_{A_g^p} \ge \left\{ \int_{B_n} \frac{(1-|a|^2)^{(\beta+1)\eta}}{g^{p\eta}(|a|)|1 - \langle z, a \rangle|^{(n+1+\beta)\eta}} \mathrm{d}\mu(z) \right\}^{\frac{1}{\eta}}$$

$$\ge \left\{ \int_{E(a,r)} \frac{(1-|a|^2)^{(\beta+1)\eta}}{g^{p\eta}(|a|)|1 - \langle z, a \rangle|^{(n+1+\beta)\eta}} \mathrm{d}\mu(z) \right\}^{\frac{1}{\eta}}$$

$$\ge \frac{C'}{(1-|a|^2)^n g^p(|a|)} \left\{ \int_{E(a,r)} \mathrm{d}\mu(z) \right\}^{\frac{1}{\eta}} \ge \frac{C'\mu^{\frac{1}{\eta}}(E(a,r))}{(1-|a|^2)^n g^p(|a|)}.$$

Hence $\sup_{z\in B_n} \frac{\mu^{\frac{1}{\eta}}(E(z,r))}{(1-|z|^2)^n g^p(|z|)} < \infty.$

This completes the proof of the theorem.

Theorem 3.2 Let $0 < p, q < \infty$, $\psi \in A_{g_2}^q$, r > 0. If g_1, g_2 are normal on [0, 1), and φ is a holomorphic self-map of B_n , then $T_{\psi,\varphi}$ is a bounded operator from $A_{g_1}^p$ to $A_{g_2}^q$ if and only if:

(i) When 0 ,

$$\sup_{z \in B_n} \frac{\mu_{\psi,\varphi,q,g_2}^{p/q}(E(z,r))}{(1-|z|^2)^n g_1^p(|z|)} < \infty.$$

(ii) When $0 < q < p < \infty$,

$$\int_{B_n} \hat{\mu}^s(|z|) (1-|z|)^{-1} g_1^p(|z|) dv(z) < \infty,$$

where $s = \frac{p}{p-q}$, $\hat{\mu} = \frac{\mu_{\psi,\varphi,q,g_2}(E(z,r))}{(1-|z|^2)^n g_1^p(z)}$, $\mu_{\psi,\varphi,q,g_2}(A) = \int_{\varphi^{-1}(A)} \frac{|\psi(z)|^q g_2^q(|z|)}{1-|z|} dv(z)$, $A \subset B_n$.

Proof (i) When 0 , if

$$\sup_{z \in B_n} \frac{\mu_{\psi,\varphi,q,g_2}^{p/q}(E(z,r))}{(1-|z|^2)^n g_1^p(|z|)} < \infty$$

From Theorem 3.1, we can find a constant C such that

$$\left\{ \int_{B_{-}} |f(z)|^{q} d\mu_{\psi,\varphi,q,g_{2}}(z) \right\}^{\frac{p}{q}} \leq C \int_{B_{-}} |f(z)|^{p} g_{1}^{p}(|z|) (1-|z|)^{-1} dv(z)$$

for all $f \in A_{q_1}^p$.

By the definition of μ_{ψ,φ,q,g_2} and Lemma 2.7, we have

$$\|\psi f \circ \varphi\|_{A_{g_2}^q} = \left\{ \int_{B_n} |\psi(z)|^q |f(\varphi(z))|^q g_2^q(|z|) (1 - |z|)^{-1} dv(z) \right\}^{\frac{1}{q}}$$
$$= \left\{ \int_{B_n} |f(z)|^q d\mu_{\psi,\varphi,q,g_2}(z) \right\}^{\frac{1}{q}} \leq C^{\frac{1}{p}} ||f||_{A_{g_1}^p}.$$

This proves the operator $T_{\psi,\varphi}$ is a bounded operator from $A^p_{g_1}$ to $A^q_{g_2}$.

If $T_{\psi,\varphi}$ is a bounded operator from $A_{q_1}^p$ to $A_{q_2}^q$, then there exists a constant C such that

$$\left\{ \int_{B_n} |\psi(z)|^q |f(\varphi(z))|^q g_2^q(|z|) \mathrm{d}v(z) \right\}^{\frac{p}{q}} \leq C^p \int_{B_n} |f(z)|^p g_1^p(|z|) (1-|z|)^{-1} \mathrm{d}v(z)$$

for all $f \in A_{q_1}^p$. By the definition of μ_{ψ,φ,q,g_2} and Lemma 2.7, we have

$$\left\{ \int_{B_n} |f(z)|^q \mathrm{d}\mu_{\psi,\varphi,q,g_2}(z) \right\}^{\frac{p}{q}} \le C^p \int_{B_n} |f(z)|^p g_1^p(|z|) (1-|z|)^{-1} \mathrm{d}v(z).$$

Using the Theorem 3.1 again, we get

$$\sup_{z \in B_n} \frac{\mu_{\psi,\varphi,q,g_2}^{p/q}(E(z,r))}{(1-|z|^2)^n g_1^p(|z|)} < \infty.$$

(ii) When $0 < q < p < \infty$, we can prove the results similar to the proof of case (i) by using Lemmas 2.6 and 2.7.

4. Compactness

Theorem 4.1 Let 0 , <math>r > 0, $1 \le \eta < \infty$. If μ is a positive Borel measure on B_n , and g is normal on [0,1), then the following conditions are equivalent:

- (i) $\lim_{|z|\to 1} \frac{\mu^{\frac{1}{\eta}}(E(z,r))}{(1-|z|^2)^n g^p(|z|)} = 0;$ (ii) $\{\int_{B_n} |f_m(z)|^{\eta p} d\mu(z)\}^{\frac{1}{\eta}} \to 0 \ (m \to \infty), \text{ for any bounded sequence } \{f_m\} \text{ of } A_g^p \text{ converge } \{f_m\} \text{ of } A$ to 0 uniformly on compact subsets of B_n .

Proof (i) \Rightarrow (ii). Suppose $\lim_{|z|\to 1} \frac{\mu^{\frac{1}{n}}(E(z,r))}{(1-|z|^2)^n g^p(|z|)} = 0$ for some fixed r > 0. Choosing the sequence $\{w_i\}$ satisfying the case (iii) of Lemma 2.4, we have

$$\lim_{j \to \infty} \frac{\mu^{\frac{1}{\eta}}(E(w_j, r))}{(1 - |w_j|^2)^n g^p(|w_j|)} = 0.$$

Then for any $\epsilon > 0$ there exists a positive integer number $j_0 > 0$, when $j > j_0$, we have

$$\frac{\mu^{\frac{1}{\eta}}(E(w_j, r))}{(1 - |w_j|^2)^n g^p(|w_j|)} < \epsilon. \tag{4.1}$$

Suppose $\{f_m\}$ is a bounded sequence of A_q^p which converges to 0 uniformly on compact subsets

of B_n . Then there exists a constant K > 0 such that

$$\int_{B_n} |f_m(z)|^p g^p(|z|) (1-|z|)^{-1} dv(z) \le K \tag{4.2}$$

for all m.

Using the method similar to that in the proof of Theorem 3.1, we get

$$\left\{ \int_{B_n} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \leq \left\{ \sum_{j=1}^{\infty} \int_{E(w_j, r)} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \\
\leq \sum_{j=1}^{j_0} \left\{ \int_{E(w_j, r)} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} + \sum_{j=j_0+1}^{\infty} \left\{ \int_{E(w_j, r)} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \\
\leq \sum_{j=1}^{j_0} \left\{ \int_{E(w_j, r)} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} + \sum_{j=j_0+1}^{\infty} \frac{C_r \mu^{\frac{1}{\eta}} (E(w_j, r))}{(1 - |w_j|^2)^n g^p(|w_j|)} \\
\int_{E(w_j, 2r)} |f_m(z)|^p g^p(z) (1 - |z|)^{-1} dv(z).$$

By (4.1), (4.2) and Lemma 2.3, we get

$$\left\{ \int_{B_n} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} \le \sum_{j=1}^{j_0} \left\{ \int_{E(w_j, r)} |f_m(z)|^{\eta p} d\mu(z) \right\}^{\frac{1}{\eta}} + \epsilon K N C_r. \tag{4.3}$$

Since f_m converges to 0 uniformly on $\overline{E(w_i, r)}$ for $(m = 1, 2, ..., j_0)$, (4.3) means

$$\left\{ \int_{R} |f_m(z)|^{\eta p} \mathrm{d}\mu(z) \right\}^{\frac{1}{\eta}} \to 0 \ (m \to \infty).$$

(ii) \Rightarrow (i). If $\{\int_{B_n} |f_m(z)|^{\eta p} d\mu(z)\}^{\frac{1}{\eta}} \to 0 \ (m \to \infty)$, for any bounded sequence $\{f_m\}$ of A_g^p which converges to 0 uniformly on compact subsets of B_n . Let $\{a_m\}$ be a sequence in B_n such that $|a_m| \to 1 \ (m \to \infty)$ and let $f_m(z) = \{\frac{(1-|a_m|^2)^{\beta+1}}{g^p(|a_m|)(1-\langle z,a_m\rangle)^{n+1+\beta}}\}^{\frac{1}{p}} \ (\beta > pb-1)$. Then $\{f_m\} \in A_g^p, ||f_m||_{A_g^p} \le C \ (C \ \text{is independent of} \ m)$ and $\{f_m\}$ converges to 0 uniformly on compact subsets of B_n . So

$$\begin{aligned} &0 \leftarrow \Big\{ \int_{B_n} \frac{(1-|a_m|^2)^{(\beta+1)\eta}}{g^{p\eta}(|a_m|)|1 - \langle z, a_m \rangle|^{(n+1+\beta)\eta}} \mathrm{d}\mu(z) \Big\}^{\frac{1}{\eta}} \\ &\geq \Big\{ \int_{E(a_m,r)} \frac{(1-|a_m|^2)^{(\beta+1)\eta}}{g^{p\eta}(|a_m|)|1 - \langle z, a_m \rangle|^{(n+1+\beta)\eta}} \mathrm{d}\mu(z) \Big\}^{\frac{1}{\eta}} \\ &\geq \frac{C_r}{(1-|a_m|^2)^n g^p(|a_m|)} \Big\{ \int_{E(a_m,r)} \mathrm{d}\mu(z) \Big\}^{\frac{1}{\eta}} \geq \frac{C_r \mu^{\frac{1}{\eta}}(E(a_m,r))}{(1-|a_m|^2)^n g^p(|a_m|)}. \end{aligned}$$

This means (i) $\lim_{|z|\to 1} \frac{\mu^{\frac{1}{\eta}}(E(z,r))}{(1-|z|^2)^n q^p(|z|)} = 0.$

Theorem 4.2 Let $0 < p, q < \infty$, $\psi \in A_{g_2}^q$, r > 0. If g_1, g_2 are normal on [0, 1), and φ is a holomorphic self-map of B_n , then $T_{\psi,\varphi}$ is a compet operator from $A_{g_1}^p$ to $A_{g_2}^q$ if and only if:

(i) When 0

$$\lim_{|z| \to 1} \frac{\mu_{\psi,\varphi,q,g_2}^{p/q}(E(z,r))}{(1-|z|^2)^n g_1^p(|z|)} = 0.$$

(ii) When $0 < q < p < \infty$

$$\int_{B_n} \hat{\mu}^s(|z|) (1 - |z|)^{-1} g_1^p(|z|) dv(z) < \infty,$$

where
$$s = \frac{p}{p-q}$$
, $\hat{\mu} = \frac{\mu_{\psi,\varphi,q,g_2}(E(z,r))}{(1-|z|^2)^n g_1^p(|z|)}$, $\mu_{\psi,\varphi,q,g_2}(A) = \int_{\varphi^{-1}(A)} \frac{|\psi(z)|^q g_2^q(|z|)}{1-|z|} dv(z)$, $A \in B_n$.

Proof Case (i) can be easily obtained by the definition of μ_{ψ,φ,q,g_2} and Theorem 4.1, and we omite the details here.

(ii) Suppose $\int_{B_n} \hat{\mu}^s(|z|) (1-|z|)^{-1} g_1^p(|z|) dv(z) < \infty$ as $0 < q < p < \infty$. Let $\{f_k\}$ be a bounded sequence of $A_{g_1}^p$ which converges to 0 uniformly on compact subsets of B_n . By Lemmas 2.5 and 2.7, we have

$$||T_{\psi,\varphi}(f_k)||_{A_{g_2}^q}^q = \int_{B_n} |\psi(z)|^q |f_k(\varphi(z))|^q g_2^q(|z|) (1 - |z|)^{-1} dv(z)$$

$$= \int_{B_n} |f_k(z)|^q d\mu_{\psi,\varphi,q,g_2}(z)$$

$$\leq C \int_{B_n} \left\{ \frac{1}{(1 - |z|^2)^n g_1^q(|z|)} \int_{E(z,r)} \frac{|f_k(w)|^q g_1^q(|w|)}{(1 - |w|)} dv(w) \right\} d\mu_{\psi,\varphi,q,g_2}(z)$$

$$= C \int_{B_n} \left\{ \int_{B_n} \frac{\chi_{E(z,r)}(w) |f_k(w)|^q g_1^q(|w|)}{(1 - |z|^2)^n g_1^q(|z|) (1 - |w|)} dv(w) \right\} d\mu_{\psi,\varphi,q,g_2}(z).$$

Applying Fubini's theorem, using that $\chi_{E(z,r)}(w) = \chi_{E(w,r)}(z)$ ($\forall z, w \in B_n$), Lemma 2.1 and the proof of Lemma 2.5, we get

$$C \int_{B_{n}} \left\{ \int_{B_{n}} \frac{\chi_{E(z,r)}(w)|f_{k}(w)|^{q} g_{1}^{q}(|w|)}{(1-|z|^{2})^{n} g_{1}^{q}(|z|)(1-|w|)} dv(w) \right\} d\mu_{\psi,\varphi,q,g_{2}}(z)$$

$$= C \int_{B_{n}} \left\{ \int_{B_{n}} \frac{\chi_{E(z,r)}(w)}{(1-|z|^{2})^{n} g_{1}^{q}(|z|)(1-|w|)^{\frac{p-q}{p}}} d\mu_{\psi,\varphi,q,g_{2}}(z) \right\} \frac{|f_{k}(w)|^{q} g_{1}^{q}(|w|)}{(1-|w|)^{\frac{q}{p}}} dv(w)$$

$$\leq C \int_{B_{n}} \left\{ \int_{E(w,r)} \frac{1}{(1-|w|^{2})^{n} g_{1}^{q}(|w|)(1-|w|)^{\frac{p-q}{p}}} d\mu_{\psi,\varphi,q,g_{2}}(z) \right\} \frac{|f_{k}(w)|^{q} g_{1}^{q}(|w|)}{(1-|w|)^{\frac{q}{p}}} dv(w)$$

$$= C \int_{B_{n}} \left(\frac{\mu_{\psi,\varphi,q,g_{2}}(E(w,r))}{(1-|w|^{2})^{n} g_{1}^{p}(|w|)} \frac{g_{1}^{p-q}(|w|)}{(1-|w|)^{\frac{p-q}{p}}} \right) \frac{|f_{k}(w)|^{q} g_{1}^{q}(|w|)}{(1-|w|)^{\frac{q}{p}}} dv(w).$$

Since $\int_{B_n} \hat{\mu}^s(|z|) (1-|z|)^{-1} g_1^p(|z|) dv(z) < \infty$ and $\{f_k\}$ is a bounded sequnce of $A_{g_1}^p$, there is a constant M > 0 such that

$$\left\{ \int_{B_n} |f_k(z)|^p g_1^p(|z|) (1-|z|)^{-1} dv(z) \right\}^{\frac{q}{p}} \le M; \tag{4.4}$$

$$\left\{ \int_{B_n} \left(\frac{\mu_{\psi,\varphi,q,g_2}(E(w,r))}{(1-|w|^2)^n g_1^p(|w|)} \right)^{\frac{p}{p-q}} (1-|w|)^{-1} g_1^p(|w|) \mathrm{d}v(w) \right\}^{\frac{p-q}{p}} \le M. \tag{4.5}$$

For any $\epsilon > 0$, there exists a number $\delta \in (0,1)$ such that

$$\left\{ \int_{B_n - \delta B_n} \left(\frac{\mu_{\psi, \varphi, q, g_2}(E(w, r))}{(1 - |w|^2)^n g_1^p(|w|)} \right)^{\frac{p}{p - q}} (1 - |w|)^{-1} g_1^p(|w|) dv(w) \right\}^{\frac{p - q}{p}} \le \epsilon. \tag{4.6}$$

Because $\{f_k\}$ converges to 0 uniformly on compact subsets of B_n , for above ϵ , there is a constant

N > 0 such that

$$\left\{ \int_{\delta B_n} |f_k(z)|^p g_1^p(|z|) (1-|z|)^{-1} dv(z) \right\}^{\frac{q}{p}} < \epsilon \tag{4.7}$$

as k > N. So for k > N, applying Hölder inequality and (4.4)–(4.7) yields

$$||T_{\psi,\varphi}(f_k)||_{A_{g_2}^q}^q$$

$$\leq C \Big\{ \int_{\delta B_n} (\frac{\mu_{\psi,\varphi,q,g_2}(E(w,r))}{(1-|w|^2)^n g_1^p(|w|)})^{\frac{p}{p-q}} \frac{g_1^p(|w|)}{1-|w|} \mathrm{d}v(w) \Big\}^{\frac{p-q}{p}} \Big\{ \int_{\delta B_n} \frac{|f_k(w)|^p g_1^p(|w|)}{1-|w|} \mathrm{d}v(w) \Big\}^{\frac{q}{p}} + \\ C \Big\{ \int_{B_n-\delta B_n} (\frac{\mu_{\psi,\varphi,q,g_2}(E(w,r))}{(1-|w|^2)^n g_1^p(|w|)})^{\frac{p}{p-q}} \frac{g_1^p(|w|)}{1-|w|} \mathrm{d}v(w) \Big\}^{\frac{p-q}{p}} \Big\{ \int_{B_n-\delta B_n} \frac{|f_k(w)|^p g_1^p(|w|)}{1-|w|} \mathrm{d}v(w) \Big\}^{\frac{q}{p}} \\ \leq 2CM\epsilon.$$

This means $||T_{\psi,\varphi}(f_k)||_{A^q_{g_2}}^q \to 0 \ (k \to \infty)$. So $T_{\psi,\varphi}: A^p_{g_1} \to A^q_{g_2}$ is a compact operator.

If $T_{\psi,\varphi}: A_{g_1}^p \to A_{g_2}^q$ is a compact operator, then $T_{\psi,\varphi}: A_{g_1}^p \to A_{g_2}^q$ must be a bounded operator, and the results can be obtained from Theorem 3.2 clearly.

References

- [1] LUO Luo, SHI Jihuai. Composition operators between weighted Bergman spaces on bounded symmetric domains in C^n [J]. Chinese Ann. Math. Ser. A, 2000, **21**(1): 45–52. (in Chinese)
- [2] XU Huiming, LIU Taishun. Weighted composition operators between Hardy spaces on the unit ball [J]. Chinese Quart. J. Math., 2004, 19(2): 111–119.
- [3] ZHU Kehe. Spaces of Holomorphic Functions in the Unit Ball [M]. Springer-Verlag, New York, 2005.
- ZHANG Xuejun, XIAO Jianbin, HU Zhangjian. The multipliers between the mixed norm spaces in Cⁿ [J].
 J. Math. Anal. Appl., 2005, 311(2): 664-674.
- [5] OHNO S, ZHAO Ruhan. Weighted composition operators on the Bloch space [J]. Bull. Austral. Math. Soc., 2001, 63(2): 177–185.
- [6] SMITH W. Composition operators between Bergman and Hardy spaces [J]. Trans. Amer. Math. Soc., 1996, 348(6): 2331–2348.
- [7] ZHANG Xuejun, CHU Yuming. Compact Cesàro operators from spaces H(p, q, u) to H(p, q, v) [J]. Acta Math. Appl. Sin. Engl. Ser., 2006, 22(3): 437–442.