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1. Introduction and preliminaries

The existence, convergence, and stability of solutions for ordinary differential equations with

infinite delay have been studied by many authors[1,4,5,8,9]. Recently, the existence and uniqueness

theorem of solutions for stochastic functional differential equations with infinite delay has been

established at phase space BC((−∞, 0]; Rn) by Wei et al.[2]. The stability of solutions for neutral

stochastic functional differential equations with infinite delay has been derived by Luo[3] by using

fixed theorem. The conditions of the existence and uniqueness of solutions for neutral stochastic

functional differential equations with finite delay have been given by Mao[6,7]. However, the

existence and uniqueness of solutions for neutral stochastic functional differential equations with

infinite delay has not been studied until now. This paper is devoted to build the existence-

and-uniqueness theorem of solutions for neutral stochastic functional differential equations with

infinite delay (short for ISFDEs) at phase space BC((−∞, 0]; Rn). At last, we give an example

to verify the conditions of Theorem 2.1.

Throughout this paper, unless otherwise specified, we let {Ω,F , {Ft}t≥0, P} be a complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right con-

tinuous and F0 contains all P-null sets). Let W (t) = (W1(t), W2(t), . . . , Wm(t))T be an m-

dimensional Brownian motion defined on the probability space. Let | · | denote the Euclidean
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norm in Rn. If A is a vector or matrix, its transpose is denoted by AT. If A is a ma-

trix, its trace norm is denoted by |A| =
√

trace(ATA) while its operator norm is denoted by

‖A‖ = sup{|Ax| : |x| = 1}. Let BC((−∞, 0]; Rn) denote the family of all bounded continuous

Rn-valued functions ϕ on (−∞, 0] with the norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|. Moreover, denote by

L2([a, b]; Rn) the family of Borel measurable functions h : [a, b] → Rn such that
∫ b

a
|h(t)|2dt < ∞.

Also, denote by L2([a, b]; Rn) the family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b such

that
∫ b

a
|f(t)|2dt < ∞ a.s. Furthermore, denote by M 2((−∞, T ]; Rn) the family of processes

{φ(t)}−∞<t≤T such that E[sup−∞<θ≤0 |ϕ(θ)|2] + E
∫ T

0 |φ(t)|2dt < ∞ a.s. In this paper, a ∨ b

presents the maximum of a and b, while a ∧ b shows the minimum of a and b.

In this paper, we consider an n-dimensional stochastic functional differential equation of

neutral type

d[x(t) − D(xt)] = f(xt, t)dt + g(xt, t)dW (t), on 0 ≤ t ≤ T, (1.1)

where xt = x(t + θ) : −∞ < θ ≤ 0 can be regarded as a BC((−∞, 0]; Rn)-valued stochastic pro-

cess, where f : BC((−∞, 0]; Rn) × [0, T ] → Rn, g : BC((−∞, 0]; Rn) × [0, T ] → Rn×m, and

D : BC((−∞, 0]; Rn) → Rn are all Borel measurable. By the definition of Itô’s stochastic

differential equation (1.1) means that for every 0 ≤ t ≤ T ,

x(t) − D(xt) = x(0) − D(x0) +

∫ t

0

f(xs, s)ds +

∫ t

0

g(xs, s)dW (s). (1.2)

For the initial-value problem of this equation, we must specify the initial data on the entire

interval (−∞, 0], and hence we impose the initial condition:

x0 = ξ = {ξ(θ) : −∞ < t ≤ 0} ∈ M
2((−∞, 0]; Rn), (1.3)

that is, ξ is an F0-measurable BC((−∞, 0]; Rn)-valued random variable such that E‖ξ‖2 < ∞.

The initial-value problem for Eq.(1.1) is to find the solution of Eq.(1.1) satisfying the initial data

(1.3). To be more precise, we give the definition of the solution.

Definition 1.1 An Rn-valued stochastic process x(t) on −∞ < t ≤ T is called a solution to

Eq.(1.1) with the initial data (1.3) if it has the following properties:

(i) It is continuous and {xt}0≤t≤T is Ft-adapted;

(ii) f(xt, t) ∈ L1([0, T ]; Rn) and g(xt, t) ∈ L2([0, T ]; Rn×m);

(iii) x0 = ξ and (1.2) holds for every 0 ≤ t ≤ T .

A solution x(t) is said to be unique if any other solution x̄(t) is indistinguishable from it,

that is

P{x(t) = x̄(t), for all −∞ < t ≤ T } = 1.

Let us establish the theory of the existence and uniqueness of the solution. Obviously, the

Lipschitz condition as well as the linear growth condition on the functionals f and g are required,

for Eq.(1.1) reduces to the stochastic functional differential equation if D(·) ≡ 0. The question

is: What condition should be imposed on the functional D? It turns out that D should be

uniformly Lipschitz continuous with the Lipschitz coefficient less than 1.
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2. The existence-and-uniqueness theorem

Theorem 2.1 Assume that there exist two positive constants K̄ and K such that for all

φ, ϕ ∈ BC((−∞, 0]; Rn) and t ∈ [0, T ],

|f(φ, t) − f(ϕ, t)|2 ∨ |g(φ, t) − g(ϕ, t)|2 ≤ K̄‖φ − ϕ‖2; (2.1)

and for all (φ, t) ∈ BC((−∞, 0]; Rn) × [0, T ],

‖f(φ, t)‖2 ∨ ‖g(φ, t)‖2 ≤ K(1 + ‖φ‖2). (2.2)

Assume also that there is a κ ∈ (0, 1) such that for all φ, ϕ ∈ BC((−∞, 0]; Rn),

|D(φ) − D(ϕ)| ≤ κ‖φ − ϕ‖. (2.3)

Then there exists a unique solution x(t) to Eq.(1.1) with the initial data (1.3). Moreover, the

solution belongs to M 2((−∞, T ]; Rn).

In order to prove this theorem, let us present two useful lemmas.

Lemma 2.2 For any a, b ≥ 0 and 0 < α < 1, we have

(a + b)2 ≤ a2

α
+

b2

1 − α
.

Proof Note that for any ε > 0,

(a + b)2 = a2 + b2 + 2ab ≤ (1 + ε)a2 + (1 + ε−1)b2.

Let ε = (1 − α)/α. We obtain the required inequality. 2

Lemma 2.3 Let (2.2) and (2.3) hold. Let x(t) be a solution to Eq.(1.1) with the initial data

(1.3). Then

E
(

sup
−∞<t≤T

|x(t)|2
)

≤
[

1 +
4 + κ

√
κ

(1 − κ)(1 −√
κ)E‖ξ‖2

]

× exp
[ 3KT (T + 4)

(1 − κ)(1 −√
κ)

]

. (2.4)

In particular, x(t) belongs to M 2((−∞, T ]; Rn).

Proof For every integer n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [0, T ] : ‖xt‖ ≥ n}.

Clearly, τn ↑ T , a.s,. Set xn(t) = x(t ∧ τn) for t ∈ (−∞, T ]. Then, for 0 ≤ t ≤ T ,

xn(t) = D(xn
t ) − D(ξ) + Jn(t),

where

Jn(t) = ξ(0) +

∫ t

0

f(xn
s , s)I[0,τn](s)ds +

∫ t

0

g(xn
s , s)I[0,τn](s)dB(s).

Applying Lemma 2.2 twice, one derives that

|xn(t)|2 ≤ 1

κ
|D(xn

t ) − D(ξ)|2 +
1

1 − κ
|Jn(t)|2

≤ κ‖xn
t − ξ‖2 +

1

1 − κ
|Jn(t)|2
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≤
√

κ‖xn
t ‖2 +

κ

1 −√
κ
‖ξ‖2 +

1

1 − κ
|Jn(t)|2,

where the condition (2.3) has also been used. Hence

E
(

sup
0≤s≤t

|xn(s)|2
)

≤
√

κE
(

sup
−∞<s≤t

|xn(s)|2
)

+

κ

1 −√
κ

E‖ξ‖2 +
1

1 − κ
E

(

sup
0≤s≤t

|Jn(s)|2
)

.

Noting that sup−∞<s≤t |xn(s)|2 ≤ ‖ξ‖2 + sup0≤s≤t |xn(s)|2, one sees that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤E
(

sup
−∞<s≤t

|xn(s)|2
)

+

1 + κ −√
κ

1 −√
κ

E‖ξ‖2 +
1

1 − κ
E

(

sup
0≤s≤t

|Jn(s)|2
)

.

Consequently

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 1 + κ −√
κ

(1 −√
κ)2

E‖ξ‖2 +
1

(1 − κ)(1 −√
κ)

E
(

sup
0≤s≤t

|Jn(s)|2
)

. (2.5)

On the other hand, by Hölder’s inequality, Doob’s martingale inequality and the linear growth

condition (2.2), one can show that

E
(

sup
0≤s≤t

|Jn(s)|2
)

≤ 3E‖ξ‖2 + 3K(T + 4)

∫ t

0

(1 + E‖xn
s ‖2)ds.

Substituting this into (2.5) yields that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 4 + κ
√

κ

(1 − κ)(1 −√
κ)

E‖ξ‖2+

3K(T + 4)

(1 − κ)(1 −√
κ)

∫ t

0

(1 + E‖xn
s ‖2)ds.

Therefore

1 + E
(

sup
−∞<s≤t

|xn(s)|2
)

≤1 +
4 + κ

√
κ

(1 − κ)(1 −√
κ)

E‖ξ‖2+

3K(T + 4)

(1 − κ)(1 −√
κ)

∫ t

0

[

1 + E
(

sup
−∞<r≤s

|xn(r)|2
)]

ds.

Now the Gronwall inequality yields that

1 + E
(

sup
−∞<t≤T

|xn(t)|2
)

≤
(

1 +
4 + κ

√
κ

(1 − κ)(1 −√
κ)

E‖ξ‖2
)

exp
[ 3K(T + 4)

(1 − κ)(1 −√
κ)

]

.

Finally the required inequality (2.4) follows by letting n → ∞. The proof is completed. 2

Proof of Theorem 2.1 Existence. We divide the whole proof of the existence into two steps:

Step 1. We impose an additional condition: T is sufficiently small so that

δ := κ +
2K̄T (T + 4)

1 − κ
< 1. (2.6)

Define x0
0 = ξ and x0(t) = ξ(0) for 0 ≤ t ≤ T . For each n = 1, 2, . . . , set xn

0 = ξ and define, by
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the Picard iterations,

xn(t) − D(xn−1
t ) = ξ(0) − D(ξ) +

∫ t

0

f(xn−1
s , s)ds +

∫ t

0

g(xn−1
s , s)dW (s) (2.7)

for t ∈ [0, T ]. It is not difficult to show that xn(·) ∈ M 2((−∞, T ]; Rn). Note that for 0 ≤ t ≤ T ,

x1(t) − x0(t) = x1(t) − ξ(0) = D(x0
t ) − D(ξ) +

∫ t

0

f(x0
s, s)ds +

∫ t

0

g(x0
s, s)dW (s).

By Lemma 2.2 and the condition (2.3), one easily derives that

|x1(t) − x0(t)|2 ≤ κ‖x0
t − ξ‖2 +

2

1 − κ

[
∣

∣

∣

∫ t

0

f(x0
s, s)ds

∣

∣

∣

2

+
∣

∣

∣

∫ t

0

g(x0
s, s)dW (s)

∣

∣

∣

2]

.

Then by Holder’inequality, Burkholder-Davis-Gundy inequality, and the condition (2.2), we can

derive

E
[

sup
0≤t≤T

|x1(t) − x0(t)|2
]

≤ κE sup
0≤t≤T

‖x0
t − ξ‖2 +

2

1 − κ

[

TE

∫ T

0

|f(x0
s, s)|2ds + 4E

∫ T

0

|g(x0
s, s)|2ds

]

≤ 2κE‖ξ‖2 +
2KT (T + 4)

1 − κ
(1 + E‖ξ‖2) := C. (2.8)

Note also that for n ≥ 1 and 0 ≤ t ≤ T ,

xn+1(t) − xn(t)

= D(xn
t ) − D(xn−1

t ) +

∫ t

0

[f(xn
s , s) − f(xn−1

s , s)]ds +

∫ t

0

[g(xn
s , s) − g(xn−1

s , s)]dW (s).

Now by Lemma 2.2, Holder’inequality, Burkholder-Davis-Gundy inequality, the conditions (2.1)

and (2.3), one can easily show that

E
(

sup
0≤t≤T

|xn+1(t) − xn(t)|2
)

≤ κE
(

sup
0≤t≤T

|xn(t) − xn−1(t)|2
)

+

2K̄(T + 4)

1 − κ

∫ T

0

E
(

sup
0≤s≤t

|xn(s) − xn−1(s)|2
)

dt

≤ δE
(

sup
0≤t≤T

|xn(t) − xn−1(t)|2
)

≤ δnE
(

sup
0≤t≤T

|x1(t) − x0(t)|2
)

≤ Cδn, (2.9)

where (2.8) has been used. Hence

P
{

sup
0≤t≤T

|xn+1(t) − xn(t)|2 > δ
n

4

}

≤ Cδ
n

2 .

Since
∑∞

n=0 Cδ
n

2 < ∞, using the additional condition (2.6) and the Borel-Cantelli lemma[7] yield

that for almost all ω ∈ Ω there exists a positive integer n0 = n0(ω) such that

sup
0≤t≤T

|xn+1(t) − xn(t)|2 ≤ δ
n

4 whenever n ≥ n0.
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It follows that, with Probability 1, the partial sums

x0(t) +

n−1
∑

i=0

[xi+1(t) − xi(t)] = xn(t)

are convergent uniformly in t ∈ [0, T ]. Denote the limit by x(t). Clearly, x(t) is continuous and

Ft-adapted. On the other hand, one sees from (2.9) that for every t ∈ [0, T ], {xn(t)}n≥1 is a

Cauchy sequence in L2 as well. Hence we also have xn(t) → x(t) in L2 as well. Letting n → ∞,

using (2.9) as well as ξ ∈ BC((−∞, 0]; Rn), one easily derives that x(·) ∈ M 2([0, T ]; Rn). It

remains to show that x(t) satisfies the equation (1.1). Note that

E|D(xn
t ) − D(xt)|2 + E

∣

∣

∣

∫ t

0

f(xn
s , s)ds

∣

∣

∣

2

+ E
∣

∣

∣

∫ t

0

g(xn
s , s)dW (s)

∣

∣

∣

2

≤ κ2E sup
0≤t≤T

|xn(t) − x(t)|2 + K̄(T + 4)

∫ T

0

E|xn(t) − x(t)|2ds as n → ∞.

Hence we let n → ∞ in (2.7) to obtain that

x(t) − D(xt) = ξ(0) − D(ξ) +

∫ t

0

f(xs, s)ds +

∫ t

0

g(xs, s)dW (s) on 0 ≤ t ≤ T

as desired.

Step 2. We need to remove the additional condition (2.6). Let σ > 0 be sufficiently small for

κ +
2K̄σ(σ + 4)

1 − κ
< 1.

By Step 1, there is a solution to equation (1.1) on (−∞, σ]. Now consider equation (1.1) on

[σ, 2σ] with initial data xσ . By Step 1 again, there is a solution to equation (1.1) on [σ, 2σ].

Repeating this procedure, we see that there is a solution to equation (1.1) on the entire interval

(−∞, T ]. The existence has been proved.

Uniqueness. Let x(t) and x̄(t) be the two solutions. By Lemma 2.3, both of them belong to

M 2((−∞, T ]; Rn). Note that

x(t) − x̄(t) =D(xt) − D(x̄t) +

∫ t

0

[f(xs, s) − f(x̄s, s)]ds+

∫ t

0

[g(xs, s) − g(x̄s, s)]dW (s).

In the same way as in the proof of the existence one derives that

E( sup
0≤s≤t

|x(s) − x̄(s)|2) ≤ 2K̄(T + 4)

(1 − κ)2

∫ t

0

E( sup
0≤r≤s

|x(r) − x̄(r)|2)ds.

The Gronwall inequality then yields that

E( sup
0≤t≤T

|x(t) − x̄(t)|2) = 0.

This implies that x(t) = x̄(t) for 0 ≤ t ≤ T , hence for all −∞ < t ≤ T , almost surely. The

uniqueness has been proved. The proof is completed. 2

The Lipschitz condition (2.1) means that the coefficients f(xt, t) and g(xt, t) do not change

faster than a linear function of x as change in x. This implies in particular the continuity of
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f(xt, t) and g(xt, t) in x for all t ∈ [0, T ]. Thus, functions that are discontinuous with respect

to x are excluded as the coefficients. Besides, functions like sinx2 do not satisfy the Lipschitz

condition. These indicate that the Lipschitz condition is too restrictive. The next theorem is

a generalization of Theorem 2.1 in which this (uniform) Lipschitz condition is replaced by the

local Lipchitz condition.

Theorem 2.4 Let (2.2) and (2.3) hold, but replace the condition (2.1) with the following local

Lipschitz condition: For every integer n ≥ 1, there exists a positive constant Kn such that, for

all t ∈ [0, T ] and those φ, ϕ ∈ BC((−∞, 0]; Rn) with ‖φ‖ ∨ ‖ϕ‖ ≤ n,

|f(φ, t) − f(ϕ, t)|2 ∨ |g(φ, t) − g(ϕ, t)|2 ≤ Kn‖φ − ϕ‖2. (2.10)

Then there exists a unique solution x(t) to the initial-value problem (1.1) and (1.3), and the

solution belongs to M 2((−∞, T ]; Rn).

The proof of Theorem 2.4 is left to the reader.

Now an example is given to verify the conditions of Theorem 2.1.

Example 2.5 Consider the following linear scalar neutral stochastic delay differential equation

d[x(t) − c1x(t − τ1(t))]

= [−2x(t) + c2x(t − τ2(t))]dt + [c3x(t) + c4x(t − τ3(t))]dW (t), t ≥ 0, (2.11)

where τ1(t) = 2µt − µ| sin t|, τ2(t) = 2µt, τ3(t) = 2µt − µ| cos t|. To be specific, let µ = 0.0025,

t ≥ 0, 0 < |c1| < 1, and c2, c3, c4 be constants. For any bounded initial data, by Theorem 2.1,

there exists a unique solution x(t) to Eq.(2.11).
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