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Abstract Let E be a real Banach space and K be a nonempty closed convex and bounded

subset of E. Let Ti : K → K, i = 1, 2, . . . , N , be N uniformly L-Lipschitzian, uniformly

asymptotically regular with sequences {ε
(i)
n } and asymptotically pseudocontractive mappings

with sequences {k
(i)
n }, where {k

(i)
n } and {ε

(i)
n }, i = 1, 2, . . . , N , satisfy certain mild conditions.

Let a sequence {xn} be generated from x1 ∈ K by zn := (1−µn)xn+µnT n

n xn, xn+1 := λnθnx1+

[1 − λn(1 + θn)]xn + λnT n

n zn for all integer n > 1, where Tn = Tn(mod N), and {λn}, {θn} and

{µn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn − Tlxn|| → 0

as n → ∞ for each l ∈ {1, 2, . . . , N}. The results presented in this paper generalize and improve

the corresponding results of Chidume and Zegeye[1], Reinermann[10], Rhoades[11] and Schu[13].
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1. Introduction and preliminaries

Let E be a real normed linear space and E∗ its dual space. Let J : E → 2E∗

be the normalized

duality mapping defined by J(x) = {f ∈ E∗ : 〈x, f〉 = ||x||2, ||x|| = ||f ||}, x ∈ E, where 〈·, ·〉

denotes the generalized duality pairing. It is well known that if E∗ is strictly convex, then J is

single-valved. In the sequel, we shall denote the single-valved normalized duality mapping by j.

Let E be a normed linear space, ∅ 6= K ⊂ E. A mapping T : K → K is said to be

nonexpansive if for all x, y ∈ K we have ||Tx − Ty|| 6 ||x − y||. It is said to be uniformly

L-Lipschitzian if there exists L > 0 such that ‖T nx − T ny‖ 6 L‖x − y‖ for all integers n > 1

and all x, y ∈ K. It is said to be asymptotically nonexpansive if there exists a sequence {kn}

with kn > 1 and limn→∞ kn = 1 such that ‖T nx − T ny‖ 6 kn‖x − y‖ for all integers n > 1

and all x, y ∈ K. Clearly, every nonexpansive mapping is asymptotically nonexpansive with

sequence kn ≡ 1, ∀n > 1. There are however, asymptotically nonexpansive mappings which are

not nonexpansive[4].
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The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk[3] in

1972 and has been studied by severval authors[5,11−13, 15].

LetK be a subset of real Banach spaceE and T : K → E any mapping. T is said to be asymp-

totically pseudocontractive if there exists a sequence {kn} ⊂ [1,+∞) such that limn→∞ kn = 1,

and there exists j(x− y) ∈ J(x− y) such that the inequality 〈T nx−T ny, j(x− y)〉 6 kn||x− y||
2

holds for all integers n > 1 and all x, y ∈ K. It is easy to know that every asymptotically

nonexpansive mapping is asymptotically pseudocontractive mapping.

The class of asymptotically pseudocontractive mappings was introduced by Schu[14] and has

been studied by various authors.

The mapping T is called uniformly asymptotically regular if for each ε > 0 there exists integer

n0 ∈ N, such that ‖T n+1x − T nx‖ 6 ε for all n > n0 and all x ∈ K and it is called uniformly

asymptotically regular with sequence {εn} if ‖T n+1x− T nx‖ 6 εn for all integers n > 1 and all

x ∈ K, where εn → 0 as n→ ∞.

A family of mappings {Ti}N
i=1 is called uniformly asymptotically regular if for each ε > 0

there exists integer n0 ∈ N, such that max16i,j6N ‖T n+1
i x − T n

j x‖ 6 ε for all n > n0 and all

x ∈ K and the mapping family {Ti}N
i=1 is called uniformly asymptotically regular with sequence

{εn} if max16i,j6N{‖T n+1
i x−T n

j x‖} 6 εn for all integers n > 1 and all x ∈ K, where εn → 0 as

n→ ∞.

LetK be a nonempty closed convex and bounded subset of a real Banach space E. A mapping

T : K → K is called pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2, (1.1)

for all x, y ∈ K. It follows from a result of Kato[6] that the inequality (1.1) is equivalent to

‖x− y‖ 6 ‖x− y + t((I − T )x− (I − T )y)‖ (1.2)

for all x, y ∈ K and all t > 0, where I denotes the identity mapping.

A mapping T is called strongly pseudocontractive if for each x, y ∈ D(T ), there exists j(x−

y) ∈ J(x − y) and k ∈ (0, 1) such that 〈Tx− Ty, j(x− y)〉 6 k||x− y||2.

Any sequence {xn} satisfying that ‖xn − Tlxn‖ → 0 as n → ∞ for each l ∈ {1, 2, . . . , N}, is

called an approximate fixed point sequence for a family mappings {Ti}N
i=1.

The importance of approximate fixed point sequences is that once a sequence has been con-

structed and proved to be an appropriate fixed point sequence for a continuous mapping T ,

convergence of that sequence to a fixed point of T is then generally achieved.

For an asymptotically pseudocontractive self-mapping T of a nonempty closed convex and

bounded subset of a Hilbert space H , Schu[13] proved the following theorem:

Theorem S
[13] Let H be a Hilbert space, K ⊂ E be nonempty closed convex and bounded.

Let T be a uniformly L-Lipschitzian and asymptotically pseudocontractive self-mapping of K

with {kn} ⊂ [1,∞);
∑

(q2n − 1) < ∞, where qn = (2kn − 1) for all n > 1, αn, βn ∈ [0, 1],

ε 6 αn 6 βn 6 b for all integers n > 1 and some ε > 0; and some b ∈ (0, L−1[(1 + L2)1/2 − 1]);

pick x0 ∈ K; and define xn+1 := αnT
nzn + (1−αn)xn; zn = βnT

nxn + (1− βn)xn for all n > 0.
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Then limn→∞ ‖xn − Txn‖ = 0.

In 2003, Chidume and Zegeye[1] constructed an approximate fixed point sequence for the

class of asymptotically pseudocontractive mappings in Banach spaces and proved the following

theorem:

Theorem CZ
[1] Let K be a nonempty closed convex and bounded subset of a real Banach

space E. Let T : K → K be a uniformly L-Lipschitzian, uniformly asymptotically regular

with sequence {εn} and asymptotically pseudocontractive with sequence {kn} such that for

λn, θn ∈ (0, 1), ∀n > 0, and satisfying the conditions: (i) λn(1 + θn) 6 1,
∑∞

n=1 λnθn = ∞; (ii)

θn → 0, λn

θn
→ 0, ( θn−1

θn
− 1)/λnθn → 0, εn−1

λnθ2
n

→ 0; (iii) kn−1 − kn = o(λnθ
2
n); (iv) kn − 1 = o(θn).

Let a sequence {xn} be iteratively generated from x1 ∈ K

xn+1 := λnθnx1 + [1 − λn(1 + θn)]xn + λnT
nxn, ∀n > 1, n ∈ N. (1.3)

Then ‖xn − Txn‖ → 0 as n→ ∞.

In this paper, we introduce a new two-step iteration process as follows:
{

xn+1 := λnθnx1 + [1 − λn(1 + θn)]xn + λnT
n
n zn,

zn := (1 − µn)xn + µnT
n
n xn, n > 1,

(1.4)

where {Ti}
N
i=1 : K → K, are N asymptotically pseudocontractive mappings, Tn = Tn(modN),

{λn}, {θn} and {µn} are three real sequences in [0, 1] satisfying λn(1 + θn) ≤ 1 for all n ≥ 1 and

x0 is a given point in K.

Especially, if {λn}, {θn} are two sequences in [0, 1] satisfying λn(1 + θn) ≤ 1 for all n ≥ 1

and x0 is a given point in K, then the sequence {xn} is defined by

xn+1 := λnθnx1 + [1 − λn(1 + θn)]xn + λnT
n
n xn, ∀n ≥ 1. (1.5)

Remark 1.1 If T1 = T2 = · · · = TN = T or N = 1, then (1.5) reduces to (1.3).

The purpose of this paper is to construct an approximate fixed point sequence for a finite

family of asymptotically pseudocontractive mappings {Ti}N
i=1 in Banach spaces. The results pre-

sented in this paper generalize and improve the corresponding results of Chidume and Zegeye[1],

Reinermann[10], Rhoades[11] and Schu[13].

In order to prove the main result of this paper, we need the following Lemmas:

Lemma 1.1
[2,8] Let E be a real normed linear space. Then for any x, y ∈ E and j(x + y) ∈

J(x+ y), we have ‖x+ y‖2 6 ‖x‖2 + 2〈y, j(x+ y)〉.

Lemma 1.2
[7] Let {ρn}, {σn} and {αn} be three sequences of nonnegative numbers satisfying

the conditions limn→∞ αn = 0, Σ∞
n=1αn = ∞, and σn

αn
→ 0, as n → ∞. Let the recursive in-

equality ρ2
n+1 6 ρ2

n −αnψ(ρn+1) + σn, n > 1 be given, where ψ : [0,+∞) → [0,+∞) is a strictly

increasing function such that it is positive on (0,+∞) and ψ(0) = 0. Then ρn → 0 as n→ ∞.

2. Main results

Lemma 2.1 Let E be a real Banach space, and K be a nonempty closed convex and bounded
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subset of E. Let {Ti}N
i=1 : K → K be N uniformly asymptotically regular, uniformly L-

Lipschitzian and asymptotically pseudocontractive mappings with sequences {k
(i)
n }, i = 1, 2, . . . , N .

Then for u ∈ K and tn ∈ (0, 1) such that tn → 1 as n → ∞, there exists a sequence {yn} ⊂ K

satisfying the following condition:

yn =
tn
kn
T n

n yn +
(

1 −
tn
kn

)

u, (2.1)

where kn = max{k
(1)
n , k

(2)
n , . . . , k

(N)
n }, Tn = Tn(modN). Furthermore, we have ‖yn − Tnyn‖ → 0,

as n→ ∞.

Proof Since Ti : K → K, i = 1, 2, . . . , N , is uniformly L-Lipschitzian, there exists Li > 0,

i = 1, 2, . . . , N such that ‖T n
i x − T n

i y‖ 6 Li‖x − y‖ 6 L‖x− y‖ for all n > 1 and all x, y ∈ K,

where L = max{L1, L2, . . . , LN}.

For each n > 1, define the mapping Sn : K → K by Sn(y) := tn

kn
T n

n y + (1 − tn

kn
)u. Then

Sn : K → K is continuous and strongly pseudocontractive. Therefore, by Theorem 5 of Reich[9],

Sn has a unique fixed point (say) yn ∈ K. This means that the equation yn = tn

kn
T n

n yn+(1− tn

kn
)u

has a unique solution for each tn ∈ (0, 1). Moreover, since K is bounded, we have that

‖yn − T n
n yn‖ =

∥

∥

∥

(

1 −
tn
kn

)

u+
( tn
kn

− 1
)

T n
n yn

∥

∥

∥

=
(

1 −
tn
kn

)

‖u− T n
n yn‖ → 0 as n→ ∞. (2.2)

Thus

‖yn − Tnyn‖ =
∥

∥

∥

(

1 −
tn
kn

)

(u − Tnyn) +
tn
kn

(T n
n yn − Tnyn)

∥

∥

∥

6

(

1 −
tn
kn

)

‖u− Tnyn‖ +
tn
kn

‖T n
n yn − T n+1

n yn‖ +
tn
kn
L‖T n

n yn − yn‖. (2.3)

In view of the uniformly asymptotic regularity of {Ti}N
i=1, it follows from (2.2) and (2.3) that

‖yn − Tnyn‖ → 0 as n→ ∞. 2

Theorem 2.2 Let K be a nonempty closed convex and bounded subset of a real Banach space

E. Let {Ti}N
i=1 : K → K be N uniformly L-Lipschitzian, asymptotically pseudocontractive with

sequence {k
(i)
n }, i = 1, 2, . . . , N , and uniformly asymptotically regular with sequence {εn}. Let

{λn}, {θn} and {µn} be three real sequences in [0, 1] satisfying the following conditions:

(i) λn(1 + θn) ≤ 1,
∑∞

n=1 λnθn = ∞;

(ii) θn → 0, λn

θn
→ 0, µn

θn
→ 0,

|
θn−1

θn
−1|

λnθn
→ 0, εn−1

λnθ2
n

→ 0;

(iii) |kn−1 − kn| = o(λnθ
2
n);

(iv) kn − 1 = o(θn).

Where kn = max{k
(1)
n , k

(2)
n , . . . , k

(N)
n }. Suppose further that x1 ∈ K is any given point and

{xn} is the iterative sequence defined by (1.4). Then ‖xn − Tlxn‖ → 0 as n → ∞ for each

l ∈ {1, 2, . . . , N}.

Proof Let {yn} denote the sequence defined as in (2.1) with tn = 1
1+θn

and u = x1. Then from



868 GU F

(1.4) and Lemma 1.1 we get the following estimates:

‖xn+1 − yn‖
2 = ‖xn − yn − λn((xn − T n

n zn) + θn(xn − x1))‖
2

6 ‖xn − yn‖
2 − 2λn〈(xn − T n

n zn) + θn(xn − x1), j(xn+1 − yn)〉

= ‖xn − yn‖
2 − 2λnθn‖xn+1 − yn‖

2+

2λn〈θn(xn+1 − xn) − (xn − T n
n zn) + θn(x1 − yn), j(xn+1 − yn)〉

6 ‖xn − yn‖
2 − 2λnθn‖xn+1 − yn‖

2+

2λn

〈

θn(xn+1−xn)+
[

θn(x1−yn)−
(

yn −
1

kn
T n

n yn

)]

−

[(

xn+1 −
1

kn
T n

n xn+1

)

−
(

yn −
1

kn
T n

n yn

)]

+

[(

xn+1 −
1

kn
T n

n xn+1

)

− (xn−T
n
n zn)

]

, j(xn+1 − yn)
〉

. (2.4)

Observe that from the properties of yn and the asymptotical pseudocontractivity of Tn, we get

that

θn(x1 − yn) −
(

yn −
1

kn
T n

n yn

)

+
(

1 −
1

kn

)

x1 = 0 (2.5)

and
〈(

xn+1 −
1

kn
T n

n xn+1

)

−
(

yn −
1

kn
T n

n yn

)

, j(xn+1 − yn)
〉

> 0. (2.6)

Combining (2.5), (2.6) and (2.4) we have

‖xn+1−yn‖
2

6 ‖xn−yn‖
2−2λnθn‖xn+1−yn‖

2+

2λn

〈

(θn + 1)(xn+1−xn)−
1

kn
(T n

n xn+1−T
n
n zn)+

kn−1

kn
(T n

n zn−x1), j(xn+1−yn)
〉

−

2λn

〈(

xn+1−
1

kn
T n

n xn+1

)

−
(

yn −
1

kn
T n

n yn

)

, j(xn+1−yn)
〉

6 ‖xn−yn‖
2−2λnθn‖xn+1−yn‖

2+

2λn

[

(θn + 1)‖xn+1−xn‖+
1

kn
‖T n

n zn−T
n
nxn+1‖+

kn−1

kn
‖T n

n zn−x1‖
]

· ‖xn+1−yn‖

6 ‖xn−yn‖
2−2λnθn‖xn+1−yn‖

2+

2λn

[

(2 + L)‖xn+1−xn‖+L‖zn − xn‖+
kn−1

kn
(‖T n

n zn‖+‖x1‖)
]

· ‖xn+1−yn‖. (2.7)

Notice the fact that xn+1 − xn = λnθnx1 − λn(1 + θn)xn + λnT
n
n zn = λnun and zn − xn =

µn(T n
n xn − xn) = µnvn, where un = θnx1 − (1 + θn)xn + T n

n zn, vn = T n
n xn − xn. Since K is

bounded, which implies that {xn}, {yn}, {zn}, {T n
n xn} and {T n

n zn} are all bounded, there exists

M1 > 0 such that

max{‖xn+1 − yn‖, ‖un‖, ‖vn‖, ‖T
n
n zn‖ + ‖x1‖} ≤M1, (2.8)

and so

‖xn+1 − xn‖ = λn‖un‖ 6 λnM1, ‖zn − xn‖ = µn‖vn‖ 6 µnM1. (2.9)

Substituting (2.8) and (2.9) into (2.7), we have

‖xn+1 − yn‖
2

6‖xn − yn‖
2 − 2λnθn‖xn+1 − yn‖

2+
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2(2 + L)λ2
nM

2
1 + 2λnLµnM

2
1 + 2λn

kn − 1

kn
M2

1 . (2.10)

Moreover, observe that T := 1
kn
T n

n is pseudocontractive. Thus it follows from (1.2) that

‖yn−1 − yn‖ 6

∥

∥

∥
yn−1 − yn +

1

θn
[(I − T )yn−1 − (I − T )yn]

∥

∥

∥

=
∣

∣

∣

(θn−1

θn
−1

)

(x1−yn−1)+
1

θnkn−1

(

T n−1
n−1 yn−1−T

n
n yn−1

)

+
1

θn

( 1

kn−1
−

1

kn

)(

T n
n yn−1−x1

)∥

∥

∥

6

∣

∣

∣

θn−1

θn
−1

∣

∣

∣
(‖x1‖+‖yn−1‖)+

εn−1

θnkn−1
+

1

θn

|kn − kn−1|

knkn−1

(

‖T n
n yn−1‖ + ‖x1‖

)

. (2.11)

Because {xn}, {yn}, {T n
n xn}, {T n

n yn} and {T n
n yn−1} are bounded, there exists M2 > 0 such that

max{2(‖xn − yn−1‖ + ‖yn−1 − yn‖), ‖x1‖ + ‖yn−1‖, ‖T
n
n yn−1‖ + ‖x1‖} 6 M2. Notice that

‖xn−yn‖
2

6 (‖xn−yn−1‖+‖yn−1−yn‖)
2

6 ‖xn−yn−1‖
2+‖yn−1−yn‖ ·M2. (2.12)

Combining (2.11), (2.12) and (2.10), we get

‖xn+1 − yn‖
2

6‖xn − yn−1‖
2 − 2λnθn‖xn+1 − yn‖

2 + 2λnLµnM
2
1 +

2(2 + L)λ2
nM

2
1 + 2λn(kn − 1)M2

1 +
∣

∣

∣

θn−1

θn
− 1

∣

∣

∣
M2

2 +

εn−1

θnkn−1
M2 +

1

θn

|kn − kn−1|

knkn−1
M2

2 . (2.13)

Thus by Lemma 1.2 and the conditions (i)-(iv) on {λn}, {θn}, {µn}, {kn} and {εn} we get

‖xn+1 − yn‖ → 0 as n→ ∞. Consequently, ‖xn − yn‖ → 0 as n→ ∞.

Next we prove that ‖xn−Tlxn‖ → 0 as n→ ∞ for each l ∈ {1, 2, . . . , N}. Indeed, by Lemma

2.1 we have that ‖yn − Tnyn‖ → 0 as n→ ∞. Thus

‖xn − Tnxn‖ 6 ‖xn − yn‖ + ‖yn − Tnyn‖ + ‖Tnyn − Tnxn‖

6 L(1 + L)‖xn − yn‖ + ‖yn − Tnyn‖ → 0 as n→ ∞. (2.14)

From the condition λn → 0 as n → ∞ and (2.9) we have ‖xn+1 − xn‖ 6 λnM1 → 0 as n → ∞,

and so ‖xn − xn+l‖ → 0 as n → ∞ for each l ∈ {1, 2, . . . , N}. Thus, for each l ∈ {1, 2, . . . , N},

from (2.14) we have

‖xn − Tn+lxn‖ 6 ‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖ + ‖Tn+lxn+l − Tn+lxn‖

6 (1 + L)‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖ → 0 as n→ ∞,

which implies that the sequence
⋃N

l=1{‖xn − Tn+lxn‖}
∞
n=1 → 0 as n → ∞. For each l ∈

{1, 2, . . . , N}, observe that

{‖xn−Tlxn‖}
∞
n=1 = {‖xn−Tn+(l−n)xn‖}

∞
n=1

= {‖xn−Tn+lnxn‖}
∞
n=1 ⊂

N
⋃

l=1

{‖xn−Tn+lxn‖}
∞
n=1,

where l − n = ln(modN), ln ∈ {1, 2, . . . , N}. Therefore, we have ‖xn − Tlxn‖ → 0 as n → ∞.

This completes the proof of Theorem 2.2. 2
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Remark 2.1 If µn ≡ 0 in Theorem 2.2, then zn = xn, hence we can obtain corresponding

results of the iterative process (1.5), which is omitted here.

Remark 2.2 If T1 = T2 = · · · = TN = T or N = 1 in Theorem 2.2, then we can obtain

corresponding results, which is omitted here.

Remark 2.3 Theorem 2.2 is a generalization of Theorem CZ, that is, if µn ≡ 0 and T1 = T2 =

· · · = TN = T or N = 1, then Theorem 2.2 will reduce to Theorem CZ.

Remark 2.4 Theorem 2.2 also improves and extends the corresponding results of Reinermann[10],

Rhoades[11] and Schu[13].
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