Journal of Mathematical Research & Exposition Sept., 2009, Vol. 29, No. 5, pp. 895–900 DOI:10.3770/j.issn:1000-341X.2009.05.016 Http://jmre.dlut.edu.cn

Weighted Norm Inequalities for Potential Type Operators

LI Wen Ming¹, QI Jin Yun², YAN Xue Fang¹

(1. College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, China;

2. Department of Mathematics, Langfang Normal College, Hebei 065000, China)

(E-mail: lwmingg@sina.com)

Abstract Let Φ be a non-negative locally integrable function on \mathbb{R}^n and satisfy some weak growth conditions, define the potential type operator T_{Φ} by

$$T_{\Phi}f(x) = \int_{\mathbb{R}^n} \Phi(x-y)f(y) \mathrm{d}y.$$

The aim of this paper is to give several strong type and weak type weighted norm inequalities for the potential type operator T_{Φ} .

Keywords potential type operators; weight; maximal function.

Document code A MR(2000) Subject Classification 42B20; 42B25 Chinese Library Classification 0174.3

1. Introduction

For a non-negative, locally integrable function Φ on \mathbb{R}^n , define the potential type operator T_{Φ} by

$$T_{\Phi}f(x) = \int_{\mathbb{R}^n} \Phi(x-y)f(y)\mathrm{d}y.$$
(1.1)

Although the basic example is provided by the Riesz potentials or fractional integrals I_{α} , defined by the kernel $\Phi(x) = |x|^{\alpha-n}$, $0 < \alpha < n$, there are other important examples such as the bessel potentials. They are denoted by $J_{\beta,\lambda}$, $\beta, \lambda > 0$, and the kernel $\Phi(x) = K_{\beta,\lambda}(x)$ is best defined by means of its Fourier transform $\hat{K}_{\beta,\lambda}(\xi) = (\lambda^2 + |\xi|^2)^{-\beta/2}$.

Now assume that the kernel Φ satisfies the following weak growth condition: there are constants δ , c, $0 \leq \varepsilon < 1$, with the property that for all $k \in \mathbb{Z}$,

$$\sup_{2^k < |x| \le 2^{k+1}} \Phi(x) \le \frac{c}{2^{kn}} \int_{\delta(1-\varepsilon)2^k < |x| \le 2\delta(1+\varepsilon)2^k} \Phi(x) \mathrm{d}x.$$
(1.2)

For any kernel Φ , we define the corresponding positive function $\widetilde{\Phi}$ as follows

$$\widetilde{\Phi}(t) = \int_{|x| \le t} \Phi(x) \mathrm{d}x, t \ge 0.$$

Received date: 2007-07-24; Accepted date: 2007-11-22

Foundation item: the Natural Science Foundation of Hebei Province (08M001) and the National Natural Science Foundation of China (Nos. 10771049,60773174).

Pérez^[1] studied the two-weight strong type (p, q) inequalities for T_{Φ} , 1 . In this paper, using the techniques developed in [1,2], we give several weighted norm inequalities for the potential type operators.

2. Preliminaries and main results

To state our result, we recall the mean Luxemburg norm on cube (see [3] for further information). A function $B : [0, \infty) \to [0, \infty)$ is a Young function if it is continuous, convex, increasing function with B(0) = 0 and such that $B(t) \to \infty$ as $t \to \infty$. Given a locally integrable function f and a Young function B, define the mean Luxemburg norm of f on a cube Q by

$$||f||_{B,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q B\left(\frac{|f(x)|}{\lambda}\right) \mathrm{d}x \le 1 \right\}.$$

Specially, for the Young function $B(t) = t \log(1+t)^{\delta}$, $\delta > 0$, its Luxemburg norm is also denoted by $\|\cdot\|_{L(\log L)^{\delta},Q}$.

A Young function B is doubling if it satisfies $B(2t) \leq CB(t)$ for any t > 0. For a Young function B, there exists a complementary Young function \overline{B} such that $t \leq B^{-1}(t)\overline{B}^{-1}(t) \leq 2t$ for all t > 0. For any Young function B, the following Hölder's inequality is true:

$$\frac{1}{|Q|} \int_{Q} |f(x)g(x)| \mathrm{d}x \le 2||f||_{B,Q} ||g||_{\bar{B},Q}.$$
(2.1)

For a non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ and the Young function $B(t) = t \log(1+t)^{\delta}$, $\delta \ge 0$, we define the maximal operator associated to ϕ and B by

$$M_{\phi,L(\log L)^{\delta}}f(x) = \sup_{Q \ni x} \phi(l(Q)) \|f\|_{L(\log L)^{\delta},Q},$$

where l(Q) denotes the side-length of cube Q. When $\delta = 0$, we write $M_{\phi,L(\log L)^{\delta}}$ as M_{ϕ} .

Our main results are the following theorems.

Theorem 2.1 Let T_{Φ} be the potential type operator defined by (1.1) with Φ satisfying condition (1.2).

(1) If 0 , then there is a constant <math>C > 0 such that for any weight w and all f,

$$\int_{\mathbb{R}^n} |T_{\Phi}f(x)|^p w(x) \mathrm{d}x \le C \int_{\mathbb{R}^n} (M_{\tilde{\Phi}}f(x))^p M w(x) \mathrm{d}x.$$
(2.2)

(2) If 1 , then there is a constant <math>C > 0 such that for any weight w and all f,

$$\int_{\mathbb{R}^n} |T_{\Phi}f(x)|^p w(x) \mathrm{d}x \le C \int_{\mathbb{R}^n} (M_{\widetilde{\Phi}}f(x))^p M^{[p]+1} w(x) \mathrm{d}x.$$
(2.3)

Theorem 2.2 Let T_{Φ} be the potential type operator defined by (1.1) with Φ satisfying condition (1.2). If 1 , then there is a constant <math>C > 0 such that for any weight w and all f,

$$\int_{\mathbb{R}^n} |T_{\Phi}f(x)|^p w(x) \mathrm{d}x \le C \int_{\mathbb{R}^n} |f(x)|^p M(M_{\widetilde{\Phi}^p, L(\log L)^{[p]}}) w(x) \mathrm{d}x.$$
(2.4)

Theorem 2.3 Let T_{Φ} be the potential type operator defined by (1.1) with Φ satisfying condition (1.2)

Weighted norm inequalities for potential type operators

(a) If $0 , then for any <math>\delta > 0$ there is a constant C > 0 such that for any weight w and all f,

$$|T_{\Phi}f||_{L^{p,\infty}(w)} \le C ||M_{\widetilde{\Phi}}f||_{L^{p,\infty}(M_{L(\log L)^{\delta}}(w))}.$$
(2.5)

(b) If $1 , then for any <math>\delta > 0$ there is a constant C > 0 such that for any weight w and all f,

$$\|T_{\Phi}f\|_{L^{p,\infty}(w)} \le C \|M_{\widetilde{\Phi}}f\|_{L^{p,\infty}(M_{L(\log L)^{p-1}+\delta}(w))}.$$
(2.6)

Remark 2.4 For $0 < \alpha < n$, the case $\Phi(x) = |x|^{\alpha-n}$ corresponds to the Riesz potential I_{α} of order α . In this case $\tilde{\Phi}(t) \cong t^{\alpha}$ and the maximal operator $M_{\tilde{\Phi}}$ is the classical fractional maximal operator M_{α} . For the fractional integral I_{α} , Pérez^[4] obtained the result for $1 \leq p < \infty$ in Theorem 2.1 and a similar result as in Theorem 2.2, Carro, et al^[2] got the result for 0 in Theorem 2.1 and the result for <math>p = 1 in Theorem 2.3.

Let $1 . We say that a doubling Young function B satisfies the <math>B_p$ -condition if there is a positive constant c such that

$$\int_{c}^{\infty} \frac{B(t)}{t^{p}} \frac{\mathrm{d}t}{t} \approx \int_{c}^{\infty} \left(\frac{t^{p'}}{\bar{B}(t)}\right)^{p-1} \frac{\mathrm{d}t}{t} < \infty$$

Lemma 2.5^[5] Let B be a doubling Young function and p satisfy $1 . Then <math>B \in B_p$ if and only if $M_B : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is bounded.

3. Proof of the theorems

We need the following Lemmas.

Lemma 3.1^[1] Let T_{Φ} be the potential type operator defined by (1.1) with Φ satisfying condition (1.2), f and g be nonnegative bounded functions with compact support, and let μ be a nonnegative measure finite on compact sets. Let $a > 2^n$. Then there exist a family of cubes $\{Q_{k,j}\}$, and a family of pairwise disjoint subsets $\{E_{k,j}\}, E_{k,j} \subset Q_{k,j}$, with $|Q_{k,j}| < (1 - 2^n/a)^{-1}|E_{k,j}|$ for all k, j, such that

$$\int_{\mathbb{R}^{n}} T_{\Phi} f(x) g(x) \mathrm{d}\mu(x) \le C \sum_{k,j} \frac{\dot{\Phi}(l(\gamma Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} f(y) \mathrm{d}y \frac{1}{|Q_{k,j}|} \int_{Q_{k,j}} g(y) \mathrm{d}\mu(y) |E_{k,j}|, \quad (3.1)$$

where $\gamma = \max\{3, \delta(1+\varepsilon)\}, \delta, \varepsilon$ are the numbers provided by condition (1.2).

A weight v satisfies RH_{∞} condition, if there is a constant C > 0 such that for each cube Q,

$$\operatorname{ess\,sup}_{x\in Q} v(x) \le \frac{C}{|Q|} \int_Q v$$

It is very easy to check that $RH_{\infty} \subset A_{\infty}$.

Lemma 3.2 Let T_{Φ} be the potential type operator defined by (1.1) with Φ satisfying condition (1.2) and v be a weight satisfying the RH_{∞} condition. Then there is a constant C such that for any weight w and all positive f,

$$\int_{\mathbb{R}^n} T_{\Phi} f(x) w(x) v(x) \mathrm{d}x \le C \int_{\mathbb{R}^n} M_{\widehat{\Phi}} f(x) M w(x) v(x) \mathrm{d}x.$$
(3.2)

Proof We start with inequality (3.1) with g replaced by w and $d\mu$ replaced by v(x)dx:

$$\begin{split} &\int_{\mathbb{R}^n} T_{\Phi} f(x) w(x) v(x) \mathrm{d}x \\ &\leq C \sum_{k,j} \frac{\tilde{\Phi}(l(\gamma Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} f(y) \mathrm{d}y \int_{Q_{k,j}} w(y) v(y) \mathrm{d}y \\ &\leq C \sum_{k,j} \frac{\tilde{\Phi}(l(\gamma Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} f(y) \mathrm{d}y \int_{Q_{k,j}} w(y) \mathrm{d}y \text{ ess } \sup_{x \in Q_{k,j}} v \\ &\leq C \sum_{k,j} \frac{\tilde{\Phi}(l(\gamma Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} f(y) \mathrm{d}y \frac{1}{|Q_{k,j}|} \int_{Q_{k,j}} w(y) \mathrm{d}y v(Q_{k,j}). \end{split}$$

Since $v \in RH_{\infty}$, by the properties of the sets $\{E_{k,j}\}$, we have $v(Q_{k,j}) \leq Cv(E_{k,j})$. Combining this with the fact that the family $\{E_{k,j}\}$ is formed by pairwise disjoint subsets, with $E_{k,j} \subset Q_{k,j}$, we continue with

$$\begin{split} &\int_{\mathbb{R}^n} T_{\Phi} f(x) w(x) v(x) \mathrm{d}x \\ &\leq C \sum_{k,j} \frac{\tilde{\Phi}(l(\gamma Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} f(y) \mathrm{d}y \frac{1}{|Q_{k,j}|} \int_{Q_{k,j}} w(y) \mathrm{d}y v(E_{k,j}) \\ &\leq C \sum_{k,j} \int_{E_{k,j}} M_{\tilde{\Phi}} f(x) M w(x) v(x) \mathrm{d}x \\ &\leq C \int_{\mathbb{R}^n} M_{\tilde{\Phi}} f(x) M w(x) v(x) \mathrm{d}x. \end{split}$$

This completes the proof of Lemma 2.2.

Lemma 3.3^[6] Let g be any function such that Mg is finite a.e. Then $(Mg)^{-\alpha} \in RH_{\infty}, \alpha > 0$.

Proof of Theorem 2.1 Using (3.2) with v(x) = 1 and the extrapolation Theorem 1.1 in [7], we obtain (2.3) immediately. The case $\Phi(x) = |x|^{\alpha-n}$ of (2.2) was proved in [4] and the same proof works for (2.2) with the obvious changes, and we omit the details. This concludes the proof of Theorem 2.1.

Proof of Theorem 2.2 In fact we will prove something sharper than (2.4): for $1 and <math>\delta > 0$, there is a constant C such that for any weight w and all f,

$$\int_{\mathbb{R}^n} |T_{\Phi}f(y)|^p w(y) \mathrm{d}y \le C \int_{\mathbb{R}^n} |f(y)|^p M(M_{\tilde{\Phi}^p, L(\log L)^{p-1+\delta}}) w(y) \mathrm{d}y, \tag{3.3}$$

where $M_{\tilde{\Phi}^p, L(\log L)^{p-1+\delta}}$ denotes the maximal operator associated to $\tilde{\Phi}^p$ and

$$B(t) = t \log(1+t)^{p-1+\delta}, \ t > 0$$

Selecting $\delta > 0$ such that $p - 1 + \delta = [p]$, we get (2.4).

By Lemma 3.1, we have

$$\int_{\mathbb{R}^n} |T_{\Phi}f(x)| w(x) \mathrm{d}x$$

Weighted norm inequalities for potential type operators

$$\leq C \sum_{k,j} \frac{1}{|Q_{k,j}|} \int_{Q_{k,j}} |f(x)| dx \frac{\widetilde{\Phi}(\gamma l(Q_{k,j}))}{|\gamma Q_{k,j}|} \int_{\gamma Q_{k,j}} w(x) dx |E_{k,j}|$$

$$\leq C \sum_{k,j} \int_{E_{k,j}} Mf(y) M_{\widetilde{\Phi}} w(y) dy \leq C \int_{\mathbb{R}^n} Mf(y) M_{\widetilde{\Phi}} w(y) dy.$$
(3.4)

Our argument will be based on duality. By (3.4), there is a constant C such that for all $g \ge 0$,

$$\int_{\mathbb{R}^n} |T_{\Phi}f(y)| g(y) w(y)^{1/p} \mathrm{d}y \le C \int_{\mathbb{R}^n} Mf(y) M_{\widetilde{\Phi}}(g w^{1/p})(y) \mathrm{d}y.$$

We choose $A(t) \approx t^{p'}(\log t)^{-1-(p'-1)\delta}$ for large t, and then $\bar{A}(t) \approx t^{p}(\log t)^{p-1+\delta}$. It is easy to check that $A \in B_{p'}$. By the Hölder inequality (2.1) and Lemma 2.5, we can continue with

$$\leq C \int_{\mathbb{R}^n} Mf(y) M_{\tilde{\Phi},\bar{A}}(w^{1/p})(y) M_A g(y) dy$$

$$\leq C \Big(\int_{\mathbb{R}^n} Mf(y)^p (M_{\tilde{\Phi},\bar{A}}(w^{1/p})(y))^p dy \Big)^{1/p} \Big(\int_{\mathbb{R}^n} M_A g(y)^{p'} dy \Big)^{1/p'}$$

$$\leq C \Big(\int_{\mathbb{R}^n} Mf(y)^p M_{\tilde{\Phi}^p,L(\log L)^{p-1+\delta}}(w)(y) dy \Big)^{1/p} \Big(\int_{\mathbb{R}^n} g(y)^{p'} dy \Big)^{1/p'}$$

$$\leq C \Big(\int_{\mathbb{R}^n} |f(y)|^p M(M_{\tilde{\Phi}^p,L(\log L)^{p-1+\delta}}) w(y) dy \Big)^{1/p} \Big(\int_{\mathbb{R}^n} g(y)^{p'} dy \Big)^{1/p'}.$$

Thus (3.3) is true. This concludes the proof of Theorem 2.2.

Proof of Theorem 2.3 By standard density arguments, we may assume that both f and the weight w are non-negative bounded function with compact support. Raising the quantity $||T_{\Phi}f||_{L^{p,\infty}(w)}$ to the power 1/q, with pq > 1 (q > 1 will be choosen at the end of the proof), gives

$$\begin{aligned} \|T_{\Phi}f\|_{L^{p,\infty}(w)}^{1/q} &= \|(T_{\Phi}f)^{1/q}\|_{L^{pq,\infty}(w)} \\ &= \sup_{g \in L^{(pq)',1}(w), \|g\|_{L^{(pq)',1}(w)} = 1} \int_{\mathbb{R}^n} (T_{\Phi}f(x))^{1/q} g(x) w(x) \mathrm{d}x. \end{aligned}$$

The last equality follows since $L^{p',1}(w)$ and $L^{p,\infty}(w)$ are associate spaces. Fixing one of these g's, and using (2.2) and Hölder's inequality for Lorentz spaces, for any $\varepsilon > 0$, we have

$$\begin{split} &\int_{\mathbb{R}^n} (T_{\Phi} f(x))^{1/q} g(x) w(x) \mathrm{d}x \\ &\leq C \int_{\mathbb{R}^n} (M_{\widetilde{\Phi}} f(x))^{1/q} M(gw)(x) \mathrm{d}x \\ &= C \int_{\mathbb{R}^n} (M_{\widetilde{\Phi}} f(x))^{1/q} \frac{M(gw)(x)}{M_{L(\log L)^{pq-1+2\varepsilon}} w(x)} M_{L(\log L)^{pq-1+2\varepsilon}} w(x) \mathrm{d}x \\ &\leq C \| (M_{\widetilde{\Phi}} f)^{1/q} \|_{L^{pq,\infty}(M_{L(\log L)^{pq-1+2\varepsilon}} w)} \| \frac{M(gw)}{M_{L(\log L)^{pq-1+2\varepsilon}} w} \|_{L^{(pq)',1}(M_{L(\log L)^{pq-1+2\varepsilon}} w)} \\ &= C \| M_{\widetilde{\Phi}} f \|_{L^{p,\infty}(M_{L(\log L)^{pq-1+2\varepsilon}} w)}^{1/q} \left\| \frac{M(gw)}{M_{L(\log L)^{pq-1+2\varepsilon}} w} \right\|_{L^{(pq)',1}(M_{L(\log L)^{pq-1+2\varepsilon}} w)}. \end{split}$$

To conclude the proof, we just need to show that

$$\left\|\frac{M(gw)}{M_{L(\log L)^{pq-1+2\varepsilon}}w}\right\|_{L^{(pq)',1}(M_{L(\log L)^{pq-1+2\varepsilon}}w)} \le C\|g\|_{L^{(pq)',1}(w)},$$

or equivalently

$$S: L^{(pq)',1}(w) \to L^{(pq)',1}(M_{L(\log L)^{pq-1+2\varepsilon}}w),$$

where

$$Sf = \frac{M(fw)}{M_{L(\log L)^{pq-1+2\varepsilon}}w}$$

Notice that $Mw \leq M_{L(\log L)^{pq-1+2\varepsilon}}w$ for each w. With this we trivially have

$$S: L^{\infty}(w) \to L^{\infty}(M_{L(\log L)^{pq-1+\varepsilon}}w)$$

Therefore by Marcinkiewicz's interpolation theorem for Lorentz spaces due to [3], it will be enough to show that: for $\varepsilon > 0$,

$$S: L^{(pq+\varepsilon)'}(w) \to L^{(pq+\varepsilon)'}(M_{L(\log L)^{pq-1+2\varepsilon}}w)$$

Which amounts to proving

$$\int_{\mathbb{R}^n} M(wf)(y)^{(pq+\varepsilon)'} M_{L(\log L)^{pq-1+2\varepsilon}} w(y)^{1-(pq+\varepsilon)'} \mathrm{d}y \le C \int_{\mathbb{R}^n} f(y)^{(pq+\varepsilon)'} w(y) \mathrm{d}y.$$

But this result follows from [5]: indeed it is shown there that, for r > 1, $\eta > 0$,

$$\int_{\mathbb{R}^n} M(f)(y)^{r'} M_{L(\log L)^{r-1+\eta}}(w)(y)^{1-r'} dy \le C \int_{\mathbb{R}^n} f(y)^{r'} w(y)^{1-r'} dy.$$

We finally choose the appropriate parameters. Let $r = pq + \varepsilon$, $\eta = \varepsilon$. This shows that for any pq > 1 and $\varepsilon > 0$,

$$||T_{\Phi}f||_{L^{p,\infty}(w)} \le C ||M_{\Phi}f||_{L^{p,\infty}(M_{L(\log L)})^{pq-1+2\varepsilon}(w))}.$$

We conclude the proof of (2.5) by choosing $q = \frac{1}{p}(1 + \delta - 2\varepsilon)$ and (2.6) by choosing $q = 1 + \frac{\delta - 2\varepsilon}{p}$ for $1 , where <math>\varepsilon$ satisfies $0 < 2\varepsilon < \delta$. This concludes the proof of Theorem 2.3.

References

- PÉREZ C. Two weighted inequalities for potential and fractional type maximal operators [J]. Indiana Univ. Math. J., 1994, 43(2): 663–683.
- [2] CARRO M, PÉREZ C, SORIA F. et al. Maximal functions and the control of weighted inequalities for the fractional integral operator [J]. Indiana Univ. Math. J., 2005, 54(3): 627–644.
- [3] BENNETT C, SHARPPLEY R. Interpolation of Operators [M]. New York: Academic Press, 1988.
- [4] PÉREZ C. Sharp L^p-weighted Sobolev inequalities [J]. Ann. Inst. Fourier (Grenoble), 1995, 45(3): 809–824.
- [5] PÉREZ C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L^p-spaces with different weights [J]. Proc. London Math. Soc. (3), 1995, 71(1): 135–157.
- [6] CRUZ-URIBE D, NEUGEBAUER C J. The structure of the reverse Hölder classes [J]. Trans. Amer. Math. Soc., 1995, 347(8): 2941–2960.
- [7] CRUZ-URIBE D, PÉREZ C. Two weight extrapolation via the maximal operator [J]. J. Funct. Anal., 2000, 174(1): 1–17.

900