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Abstract Let ® be a non-negative locally integrable function on R"™ and satisfy some weak
growth conditions, define the potential type operator Te by

Tof(e) = [ Bz )iy

The aim of this paper is to give several strong type and weak type weighted norm inequalities
for the potential type operator Ts.
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1. Introduction

For a non-negative, locally integrable function ® on R"™, define the potential type operator
Tq> by

Tof() = [ ®e = )f)dy (1.1)

Although the basic example is provided by the Riesz potentials or fractional integrals I,,, defined
by the kernel ®(z) = |z|*™, 0 < o < m, there are other important examples such as the bessel
potentials. They are denoted by Js x, 5, A > 0, and the kernel ®(z) = K3 () is best defined
by means of its Fourier transform Kz (€) = (A% + |¢[2)~#/2.

Now assume that the kernel ® satisfies the following weak growth condition: there are con-
stants 0, ¢, 0 < & < 1, with the property that for all k € Z,

c
sup  P(z) < —
2k < || <2k+1 2kn

/ O(x)dz. (1.2)
§(1—e)2k <|z|<28(1+¢)2k

For any kernel ®, we define the corresponding positive function @ as follows

@(t):/||<t<1>(:c)d:v,t20.
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Pérez!Y studied the two-weight strong type (p, q) inequalities for Ty, 1 < p < ¢ < oo. In this
paper, using the techniques developed in [1,2], we give several weighted norm inequalities for the

potential type operators.

2. Preliminaries and main results

To state our result, we recall the mean Luxemburg norm on cube (see [3] for further informa-
tion). A function B : [0,00) — [0,00) is a Young function if it is continuous, convex, increasing
function with B(0) = 0 and such that B(t) — oo as t — co. Given a locally integrable function

f and a Young function B, define the mean Luxemburg norm of f on a cube @ by

1fllB.q = inf{A >0: |712| /QB(U(;)')dx < 1}.

Specially, for the Young function B(t) = tlog(1+1)°, § > 0, its Luxemburg norm is also denoted

by [+ || Laog £)s .-

A Young function B is doubling if it satisfies B(2t) < CB(t) for any ¢ > 0. For a Young
function B, there exists a complementary Young function B such that ¢t < B=1(t)B~1(¢) < 2t
for all ¢ > 0. For any Young function B, the following Holder’s inequality is true:

1
[l /Q |f(@)g(2)ldx < 2|[f]B.ell9ll5,q- (2.1)

For a non-decreasing function ¢ : [0, 00) — [0, 00) and the Young function B(t) = tlog(1+t)°,

0 > 0, we define the maximal operator associated to ¢ and B by
My 1ogys f(x) = ng AU Log )5 ,05

where [(Q) denotes the side-length of cube Q. When 0 = 0, we write My, 1,(10g )5 as M.

Our main results are the following theorems.

Theorem 2.1 Let Ty be the potential type operator defined by (1.1) with ® satisfying condition
(1.2).
< p <1, then there is a constant C' > 0 such that for any weight w and all f,
1) IfO 1, th h i C>0 h that f igh dall f
/ Tof (@) Pu(z)de < C | (Mg f(e)? Mu(z)da. (2.2)
Rn Rn
< p < 0o, then there is a constant C' > 0 such that for any weight w and all f,
2) If1 h h i C>0 h that fc y weigh d all
/ T f () [Pw(z)dx < C / (M3 f(x))P MP T (z)da. (2.3)
Rn

Theorem 2.2 Let Ty be the potential type operator defined by (1.1) with ® satisfying condition
(1.2). If 1 < p < oo, then there is a constant C' > 0 such that for any weight w and all f,

/R [Taf@)Pw()ds <C [ F@)FM My g sy 0w (2.4)
Theorem 2.3 Let Ty be the potential type operator defined by (1.1) with ® satisfying condition

(1.2)
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(a) If 0 < p < 1, then for any 6 > 0 there is a constant C > 0 such that for any weight w
and all f,

1 Te fll Lo w) < ClIMgfllLro (2.5)

My (10g 1y (0))-
(b) If1 < p < oo, then for any 6 > 0 there is a constant C' > 0 such that for any weight w

and all f,
||T<I>f||LT’ 200 (w) < C” f”LT’ (M (1og Lyp—1+6 (W) (26)

Remark 2.4 For 0 < a < n, the case ®(x) = |x|*™ corresponds to the Riesz potential I, of
order «. In this case E)(t) = ¢ and the maximal operator Mg is the classical fractional maximal
operator M,. For the fractional integral I, Pérezl¥ obtained the result for 1 < p < oo in
Theorem 2.1 and a similar result as in Theorem 2.2, Carro, et all?l got the result for 0 < p < 1
in Theorem 2.1 and the result for p = 1 in Theorem 2.3.

Let 1 < p < co. We say that a doubling Young function B satisfies the Bj-condition if there

is a positive constant ¢ such that

> B(t) dt 2 \p-1dt
/C tp?'“/c (B@)) TS

Lemma 2.5 Let B be a doubling Young function and p satisfy 1 < p < co. Then B € By, if
and only if Mp : LP(R™) — LP(R"™) is bounded.

3. Proof of the theorems
We need the following Lemmas.

Lemma 3.1 Let Ty be the potential type operator defined by (1.1) with ® satisfying condition
(1.2), f and g be nonnegative bounded functions with compact support, and let . be a non-
negative measure finite on compact sets. Let a > 2". Then there exist a family of cubes {Qx.;},
and a family of pairwise disjoint subsets {Ej ;}, Eyj C Qg ;, with |Qr ;| < (1 —2"/a)" | Ex |
for all k, j, such that

/an»f(:v) <CZ |,YZ;£]Z|J /va-f( )dleijl o 9(W)du(y)|Ersl,  (3.1)

where v = max{3,d(1 + ¢)}, d,¢ are the numbers provided by condition (1.2).
A weight v satisfies RH, condition, if there is a constant C' > 0 such that for each cube @,

ess sup v /
TEQR |Q|
It is very easy to check that RH. C A

Lemma 3.2 Let Ty be the potential type operator defined by (1.1) with ® satisfying condition
(1.2) and v be a weight satisfying the RH, condition. Then there is a constant C such that for
any weight w and all positive f,

/n Ty f(x)w(z)v(z)de < C | Mg f(x)Mw(x)v(x)dz. (3.2)

R™
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Proof We start with inequality (3.1) with g replaced by w and du replaced by v(z)dx:

/n To f (z)w(z)v(z)dx

FYQk Tk G))
CZ 1Y Qk.;1 /va- f(y)dy/%j w(y)o(y)dy

T€QE,;

FYQkJ / /
<C d w(y)dy ess sup v
Z "0 o fly)dy o (y)dy

<C (v Qw.5)) dy L . N
Z Q] /VQM_~"‘<>y|Q,w| . Q)

Since v € RH, by the properties of the sets {Ej ;}, we have v(Qg ;) < Cv(Ej, ;). Combining
this with the fact that the family {E}, ;} is formed by pairwise disjoint subsets, with Ej ; C Qk,;,

we continue with

/n T f(x)w(z)v(x)de

Qus) )
=¢ o “raul d dyv ;
Z Qrd] /VQk,jf Wy [, v (B

< C; /Ek,j Mg f(x) Mw(z)v(z)dz

<C o M5 f(x)Mw(z)v(x)de.

This completes the proof of Lemma 2.2. O
Lemma 3.3 Let g be any function such that Mg is finite a.e. Then (Mg)~® € RHoo,a > 0.

Proof of Theorem 2.1 Using (3.2) with v(z) = 1 and the extrapolation Theorem 1.1 in [7], we
obtain (2.3) immediately. The case ®(x) = |z|*~™ of (2.2) was proved in [4] and the same proof
works for (2.2) with the obvious changes, and we omit the details. This concludes the proof of
Theorem 2.1. O

Proof of Theorem 2.2 In fact we will prove something sharper than (2.4): for 1 < p < oo and
0 > 0, there is a constant C' such that for any weight w and all f,

| et @l < [ P, 4o, (3.3)

where M&)p L(log L)p—1+5 denotes the maximal operator associated to P and
B(t) = tlog(1 + )P~ ¢t >0.

Selecting 6 > 0 such that p — 1+ § = [p], we get (2.4).

By Lemma 3.1, we have

[ mas@lutaas
o
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! B (11(Qn))
¢ A z)|dg —L 2527 2da _
S k,j |Qk7.7| Qk,j |f( )| |7Qk,]| /’YQ)@,]' w( ) |Ek7J|
S0 MMy < C | MJ(y)Mzuw(y)dy. (3.4)
k,j k,j n

Our argument will be based on duality. By (3.4), there is a constant C' such that for all g > 0,

[ mar @l iy < ¢ [ M)y 0.

We choose A(t) ~ t* (logt)~*~®' =13 for large ¢, and then A(t) ~ t?(logt)?~1+9. Tt is easy to
check that A € B,. By the Holder inequality (2.1) and Lemma 2.5, we can continue with

<c M f(y) Mg, z(w"/?)(y)Mag(y)dy
1/p

<o( [ aswros s mwra) ([ Mag ay)

R’Vl
1/17 ’ 1/17/
([ M Mg g yres@dt) ([ atwra)

O [ 156IM Mg 40y -0 wit) ([ o a)"”

Thus (3.3) is true. This concludes the proof of Theorem 2.2. O

IN

IN

Proof of Theorem 2.3 By standard density arguments, we may assume that both f and
the weight w are non-negative bounded function with compact support. Raising the quantity
| To f|Lp.oe(w) to the power 1/q, with pg > 1 (¢ > 1 will be choosen at the end of the proof),

gives
1
1T F11 70y = (T 1) 0 ()

- sup [ @ar@) eganteie

’
9ELED (@), gl (a1 )=

The last equality follows since Lp/’l(w) and LP°°(w) are associate spaces. Fixing one of these

g's, and using (2.2) and Holder’s inequality for Lorentz spaces, for any € > 0, we have
[ Tus@)rgayues
<C (Mg ()M (gw)(x)da

Rn
) e Mgu))
C - (M(bf(l')) ML(logL)Pq’lJrzEw(I)

ML(log L)pa—1+2¢ w(x)d:v
M(gw)
(log L)pa—1+2e W

— C||M~f||l/q M(gw)
o O NILp->o (M pa—14+2: W) || \f (pa)’,1 ’
L(log L) L(log L)pa—1+2¢ W I L(PD)" (ML(logL)pq,Hng)

< ON(Mz )M Lrace

Mp(1og rypa—1+25 W) H My, HL(M)/’I(ML(log Lypa—142¢ W)
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To conclude the proof, we just need to show that
[
M (1og Lypa—1+2ew ILED" (M 1, 1ypg—142w)

< CllgllLear 1wy
or equivalently

S L(pq)/’l(w) — L(pq)/’l(ML(logL)pq—st w),
where

§f = —_M(fw)

ML(log L)pq71+25w

Notice that Mw < My, 1og ypa—1+2cw for each w. With this we trivially have
S Loo(w) — LOO(ML(log L)pq—1+5w).

Therefore by Marcinkiewicz’s interpolation theorem for Lorentz spaces due to [3], it will be

enough to show that: for € > 0,
S : L(pq+€)/ (w) — L(pq—i—a)/ (ML(log L)Pq71+2s’u}).
Which amounts to proving

M (wf)(y) P17 My og ypa-12cw(y) =P+ dy < € [ f(y) P+ w(y)dy.
R Rn»

But this result follows from [5]: indeed it is shown there that, for » > 1, n > 0,

[ M) Mg yr-rn () )~y < C [ () wiy)* " dy.

We finally choose the appropriate parameters. Let r = pqg + €, n = ¢. This shows that for any
pq > 1 and € > 0,

1T fll ooy < ClIMa fll ety o pacrsn ()

We conclude the proof of (2.5) by choosing ¢ = %(1 + 6 — 2¢) and (2.6) by choosing ¢ =1+ %
for 1 < p < oo, where ¢ satisfies 0 < 2¢ < § . This concludes the proof of Theorem 2.3. O
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