The Extension of Isometry between Unit Spheres of Normed Space E and l^{1}

ZHAN Hua Ying
(College of Science, Tianjin University of Technology, Tianjin 300384, China)
(E-mail: zhanhuaying@gmail.com)

Abstract

The main result of this paper is to prove Fang and Wang's result by another method: Let E be any normed linear space and $V_{0}: S(E) \rightarrow S\left(l^{1}\right)$ be a surjective isometry. Then V_{0} can be linearly isometrically extended to E.

Keywords isometry; surjective; linearly isometric extension.
Document code A
MR(2000) Subject Classification 46B20
Chinese Library Classification O177.2

1. Introduction

We recall that a mapping T from a subset M of a normed space E to a subset of another normed space F is called an isometry if $\|T x-T y\|=\|x-y\|$ for all $x, y \in M$. In 1972, Mankiewicz proved in [1] that an isometry mapping an open connected subset of a normed space E onto an open subset of another normed space F can be extended to be an affine isometry from E onto F. In 1987, Tingley raised in [2] the following problem:

Problem Let E and F be normed spaces with unit spheres $S(E)$ and $S(F)$. Assume that $V_{0}: S(E) \rightarrow S(F)$ is an onto isometry. Does there exist a linear or affine isometry $V: E \rightarrow F$ such that $\left.V\right|_{S(E)}=V_{0}$?

Tingley just obtained the following result: If E and F are finite dimensional Banach spaces and $V_{0}: S(E) \rightarrow S(F)$ is an onto isometry, then $V_{0}(-x)=-V_{0}(x)$ for any $x \in S(E)$. That is, V_{0} preserves anti-polar points. In the past decade, Ding and his group kept on working on this topic and had obtained a number of significant results ${ }^{[3,4]}$. Most of these works just concerned the surjective isometries between spaces of the same type. Ding discussed first in [5] the extension of isometries between unit spheres of different type spaces. In [6], Fang and Wang gave an affirmative answer to Tingley's problem for the case that $F=l^{1}$. In this paper, we will give another method to prove Fang and Wang's result. Our notation and terminology are standard.

Received date: 2007-07-27; Accepted date: 2008-04-16
Foundation item: the National Natural Science Foundation of China (No. 10571090); the Research Fund for the Doctoral Program of Higher Education (No. 20060055010) and the Fund of Tianjin Educational Comittee (No. 20060402).

In the complex spaces, it is evident that the answer to Tingley's problem is negative. An obvious counterexample is that $E=F=\mathbf{C}$ (complex plane) and $V_{0}(x)=\bar{x}$. Hence, we just need to study the problem in the real spaces.

2. Main result

We note that for any $x=\left(x_{i}\right), y=\left(y_{i}\right) \in S\left(l^{1}\right),\|x-y\|=2$ if and only if x_{i} and y_{i} have different signs for each $i \in \operatorname{supp}(x) \bigcap \operatorname{supp}(y)$.

First, we prove Fang and Wang's result for the case that both of the spaces are 2-dimensional. $l_{(2)}^{1}$ stands for \mathbf{R}^{2} with l^{1}-norm, that is, $\left\|\left(\alpha_{1}, \alpha_{2}\right)\right\|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|$. We need the following lemma.

Lemma 1 Let $E=l_{(2)}^{1}, d_{1}=\left(\frac{1}{2}, \frac{1}{2}\right), d_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then for any $x, y \in S(E),\left\|x \pm d_{1}\right\|=\left\|y \pm d_{1}\right\|$ and $\left\|x \pm d_{2}\right\|=\left\|y \pm d_{2}\right\|$ imply that $x=y$.

Proof Let $x=\left(\alpha_{1}, \alpha_{2}\right), y=\left(\beta_{1}, \beta_{2}\right) \in S(E)$. Suppose that $0 \leq \alpha_{1}, \alpha_{2} \leq 1$. Then $\left\|x+d_{1}\right\|=$ $2=\left\|y+d_{1}\right\|$, which implies that $0 \leq \beta_{1}, \beta_{2} \leq 1$. Since $\left\|x-d_{1}\right\|=\left\|y-d_{1}\right\|$, if $x \neq y$, then $d_{1}=\frac{x+y}{2}$. Hence, from $\left\|x+d_{2}\right\|=\left\|y+d_{2}\right\|$, we can get a contradiction. In fact, from $d_{1}=\frac{x+y}{2}$ we know that $\beta_{1}=1-\alpha_{1}, \beta_{2}=1-\alpha_{2}$. Hence,

$$
\begin{aligned}
& \left\|x-d_{2}\right\|=\left\|\left(\alpha_{1}+\frac{1}{2}, \alpha_{2}-\frac{1}{2}\right)\right\|=\left|\alpha_{1}+\frac{1}{2}\right|+\left|\alpha_{2}-\frac{1}{2}\right| \\
& \quad=\left\|y-d_{2}\right\|=\left\|\left(1-\alpha_{1}+\frac{1}{2}, 1-\alpha_{2}-\frac{1}{2}\right)\right\|=\left|\frac{3}{2}-\alpha_{1}\right|+\left|\frac{1}{2}-\alpha_{2}\right| .
\end{aligned}
$$

Since $0 \leq \alpha_{1} \leq 1$, we know that $\frac{3}{2}-\alpha_{1}=\alpha_{1}+\frac{1}{2}$. It follows that $\alpha_{1}=\frac{1}{2}$. Hence, $\alpha_{2}=\beta_{1}=$ $\beta_{2}=\frac{1}{2}$. That is, $x=y$.

So, $x=y$ if $0 \leq \alpha_{1}, \alpha_{2} \leq 1$. Similarly, we can get the same result for other cases.
Proposition 2 Let E be a 2-dimensional normed space. Then any isometry $V_{0}: S(E) \rightarrow S\left(l_{(2)}^{1}\right)$ can be linearly extended to an isometry on E.

Proof Since E and $l_{(2)}^{1}$ are both 2-dimensional, following Tingley's result, V_{0} preserves antipolar points. Let $d_{1}=\left(\frac{1}{2}, \frac{1}{2}\right), d_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $e_{1}=V_{0}^{-1} d_{1}, e_{2}=V_{0}^{-1} d_{2}$. Obviously, e_{1} and e_{2} are linearly independent. Moreover, $\left\|e_{1}+e_{2}\right\|=\left\|d_{1}+d_{2}\right\|=\left\|d_{1}-d_{2}\right\|=\left\|e_{1}-e_{2}\right\|=1$. Put $A \triangleq\left\{x \in S(E): V_{0} x(1), V_{0} x(2) \geq 0\right\}$. We will show that A is a convex subset.

Obviously, $e_{1} \in A$. Fix any $x_{1}, x_{2} \in A$. By the definition of A and that of the norm, $\left\|V_{0} x_{1}+d_{1}\right\|=2$. Hence, $\left\|\frac{x_{1}+e_{1}}{2}\right\|=1$. By the Hahn-Banach theorem, there is $x_{1}^{*} \in S\left(E^{*}\right)$ such that $x_{1}^{*}\left(\frac{x_{1}+e_{1}}{2}\right)=\left\|\frac{x_{1}+e_{1}}{2}\right\|=1$. Consequently, $x_{1}^{*}\left(x_{1}\right)=x_{1}^{*}\left(e_{1}\right)=1$, which implies that

$$
2=x_{1}^{*}\left(\frac{x_{1}+e_{1}}{2}+e_{1}\right) \leq\left\|\frac{x_{1}+e_{1}}{2}+e_{1}\right\| \leq 2 .
$$

Then,

$$
\left\|V_{0}\left(\frac{x_{1}+e_{1}}{2}\right)+d_{1}\right\|=\left\|\frac{x_{1}+e_{1}}{2}+e_{1}\right\|=2 .
$$

That means $V_{0}\left(\frac{x_{1}+e_{1}}{2}\right)(i) \geq 0(i=1,2)$, which implies that

$$
\left\|\frac{x_{1}+e_{1}}{2}+x_{2}\right\|=\left\|V_{0}\left(\frac{x_{1}+e_{1}}{2}\right)+V_{0} x_{2}\right\|=2
$$

Similarly, there is $x_{2}^{*} \in S\left(E^{*}\right)$ such that $x_{2}^{*}\left(x_{2}\right)=x_{2}^{*}\left(x_{1}\right)=x_{2}^{*}\left(e_{1}\right)=1$. Then

$$
2=x_{2}^{*}\left(\frac{x_{1}+x_{2}}{2}+e_{1}\right) \leq\left\|\frac{x_{1}+x_{2}}{2}+e_{1}\right\| \leq 2
$$

which means that

$$
\left\|V_{0}\left(\frac{x_{1}+x_{2}}{2}\right)+d_{1}\right\|=\left\|\frac{x_{1}+x_{2}}{2}+e_{1}\right\|=2 .
$$

Hence, $\frac{x_{1}+x_{2}}{2} \in A$. Since V_{0} is continuous and x_{1} and x_{2} are arbitrarily chosen, A is convex.
Similarly, $B \triangleq\left\{x \in S(E): V_{0} x(1) \leq 0, V_{0} x(2) \geq 0\right\}$ is also a convex set. Moreover, $x_{0} \triangleq V_{0}^{-1}\left(d_{1}+d_{2}\right) \in A \bigcap B$. It is straightforward to have that $x_{0}=e_{1}+e_{2}$.

In fact, e_{1} and e_{2} are linearly independent, hence, $\left\{e_{1}, e_{2}\right\}$ is a basis of E. Say, $x_{0}=$ $\alpha_{1} e_{1}+\alpha_{2} e_{2}$. If $x_{0} \neq e_{1}+e_{2}$, following $\left\|x_{0}\right\|=\left\|e_{1}\right\|=\left\|e_{2}\right\|=\left\|x_{0}-e_{1}\right\|=\left\|x_{0}-e_{2}\right\|=1$ and $\left\|x_{0}+e_{1}\right\|=\left\|x_{0}+e_{2}\right\|=2$, we may claim that

$$
\begin{gathered}
x_{0} \notin\left\{\lambda e_{1}: \lambda \in \mathbf{R}\right\} \bigcup\left\{\lambda e_{2}: \lambda \in \mathbf{R}\right\} \bigcup\left\{\alpha e_{1}+\alpha e_{2}: \alpha \in \mathbf{R},|\alpha| \neq 1\right\} \bigcup \\
\left\{e_{1}+\lambda e_{2}: \lambda \in \mathbf{R}, \lambda \neq 1\right\} \bigcup\left\{\lambda e_{1}+e_{2}: \lambda \in \mathbf{R}, \lambda \neq 1\right\} .
\end{gathered}
$$

If $0<\alpha_{1}<\alpha_{2}$, then $\left[x_{0}, e_{1}\right] \triangleq\left\{\lambda x_{0}+(1-\lambda) e_{1}: \lambda \in[0,1]\right\}$ intersects with the line that joints θ and $e_{1}+e_{2}$ at some point x_{1}. Obviously, $x_{1}=\lambda\left(e_{1}+e_{2}\right)$ for some $\lambda \neq 1$. Hence, $\left\|x_{1}\right\| \neq 1$. On the other hand, following the convexity of $A,\left[x_{0}, e_{1}\right] \subset A \subset S(E)$. It means that $x_{1} \in S(E)$. It is impossible.

If $0<\alpha_{2}<\alpha_{1}$, it may also lead a contradiction similarly.
If $\alpha_{1}<\alpha_{2}<0$, then

$$
\left\|x_{0}-e_{1}\right\|=\left\|\left(\alpha_{1}-1\right) e_{1}+\alpha_{2} e_{2}\right\| \geq\left|1-\alpha_{1}\right|-\left|\alpha_{2}\right|=1-\alpha_{1}+\alpha_{2}>1
$$

leads a contradiction.
Similarly, it is impossible for $\alpha_{2}<\alpha_{1}<0$.
Hence, $x_{0}=e_{1}+e_{2}$.
Since $e_{1}+\lambda e_{2} \in\left[e_{1}, e_{1}+e_{2}\right]$ for any $0 \leq \lambda \leq 1$ and $e_{1}, e_{1}+e_{2} \in A$, then $\left\|e_{1}+\lambda e_{2}\right\|=$ $1=\left\|d_{1}+\lambda d_{2}\right\|$. Similarly, $\left\|\lambda e_{1}+e_{2}\right\|=1=\left\|\lambda d_{1}+d_{2}\right\|$ for any $0 \leq \lambda \leq 1$. Then for any $\lambda>1,\left\|e_{1}+\lambda e_{2}\right\|=\lambda\left\|\frac{1}{\lambda} e_{1}+e_{2}\right\|=\lambda=\lambda\left\|\frac{1}{\lambda} d_{1}+d_{2}\right\|=\left\|d_{1}+\lambda d_{2}\right\|$. Following Tingley's result, $V_{0}\left(-e_{i}\right)=-d_{i}, i=1,2$. Hence, $\left\|e_{1}+\lambda e_{2}\right\|=\left\|d_{1}+\lambda d_{2}\right\|$ for any $\lambda \in \mathbf{R}$.

Now, for any $x \in S(E)$, say $x=\lambda_{1} e_{1}+\lambda_{2} e_{2}$. It is immediate from the above that

$$
\begin{aligned}
\left\|V_{0} x \pm d_{1}\right\| & =\left\|x \pm e_{1}\right\|=\left\|\left(\lambda_{1} \pm 1\right) e_{1}+\lambda_{2} e_{2}\right\| \\
& =\left\|\left(\lambda_{1} \pm 1\right) d_{1}+\lambda_{2} d_{2}\right\|=\left\|\left(\lambda_{1} d_{1}+\lambda_{2} d_{2}\right) \pm d_{1}\right\|
\end{aligned}
$$

Similarly, $\left\|V_{0} x \pm d_{2}\right\|=\left\|\left(\lambda_{1} d_{1}+\lambda_{2} d_{2}\right) \pm d_{2}\right\|$. Following Lemma 1, $V_{0}\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}\right)=\lambda_{1} d_{1}+\lambda_{2} d_{2}$. That is, V_{0} is linear on $S(E)$. Then it is easy to show that V_{0} has a linearly isometric extension on the whole space E.

For infinite dimensional case, we have the following result.
Lemma 3 Suppose that V_{0} is an isometry from $S(E)$ into $S\left(l^{1}\right)$, and that $\left\{ \pm e_{i}\right\} \in V_{0}(S(E))$, where $\left\{e_{i}\right\}$ is the unit basis of l^{1}. Let $x_{i}=V_{0}^{-1} e_{i}$. Then $V_{0}\left(-x_{i}\right)=-e_{i}$.

Proof Fix $i_{0} \in \mathbf{N}$. Let $\mathcal{A}^{+}=\left\{x \in S(E): V_{0} x\left(i_{0}\right)>0\right\}$, where $V_{0} x\left(i_{0}\right)$ is the i_{0} th coordinate of $V_{0} x$. We classify \mathcal{A}^{+}in the following way: x, y are in the same class A if and only if $V_{0} x(j) \cdot V_{0} y(j) \geq 0$ for any $j \in \mathbf{N}$. Let $\mathcal{A}^{\prime}=S(E) \backslash \mathcal{A}^{+}$. We may classify it by the same way.

We note that if $V_{0} x(j) \neq 0$, then $V_{0} x(j) \cdot V_{0}(-x)(j) \leq 0$, since $\left\|V_{0} x-V_{0}(-x)\right\|=2$. Hence, for any $j \in \mathbf{N}$,

$$
V_{0} x(j) \cdot V_{0} y(j)>0 \text { implies that } V_{0}(-x)(j) \cdot V_{0}(-y)(j) \geq 0
$$

If $x \in \mathcal{A}^{+}$and $V_{0} x(j)=0$ for some $j \in \mathbf{N}$, then there are classes A and B such that

$$
V_{0} y(j) \geq 0, V_{0} z(j) \leq 0, V_{0} y(k) \cdot V_{0} z(k) \geq 0
$$

for all $y \in A, z \in B, k \in \mathbf{N}(k \neq j)$, and that $x \in A \bigcap B$.
Consider such A and B. If $y_{1}, y_{2} \in A$ with $V_{0} y_{1}(j) \cdot V_{0} y_{2}(j)>0$, then

$$
V_{0}\left(-y_{1}\right)(j) V_{0}\left(-y_{2}\right)(j) \geq 0
$$

Thus, $-y_{1}$ and $-y_{2}$ are in the same class of \mathcal{A}^{\prime}, denote it by A^{\prime}. Similarly, if $z_{1}, z_{2} \in B$ with $V_{0} z_{1}(j) \cdot V_{0} z_{2}(j)>0$, then $-z_{1}$ and $-z_{2}$ are in the same class of \mathcal{A}^{\prime}, denote it by B^{\prime}. On the other hand, since $V_{0} x(j)=0, V_{0}(-x)(j)$ may be 0 or ≥ 0 or ≤ 0. If $V_{0}(-x)(j)<0\left(V_{0}(-x)(j)>0\right.$, respectively), then x is regarded as in A and $-x$ is regarded as in $A^{\prime}\left(x \in B\right.$ and $-x \in B^{\prime}$, respectively).

Hence, we say that $-A \subset A^{\prime}$, which means that $-\bigcap_{A \subset \mathcal{A}^{+}} A \subset \bigcap_{A^{\prime} \subset \mathcal{A}^{\prime}} A^{\prime}$. Since $\bigcap_{A \subset \mathcal{A}^{+}} A=$ $\left\{x_{i}\right\}$ and $\bigcap_{A^{\prime} \subset \mathcal{A}^{\prime}} A^{\prime}=V_{0}^{-1}\left(-e_{i}\right)$, we know that $V_{0}\left(-x_{i}\right)=-e_{i}$.

Lemma 4 For any $x=\left\{\alpha_{i}\right\}, y=\left\{\beta_{i}\right\} \in S\left(l^{1}\right)$ and any $j \in \mathbf{N}$, if $\left\|x \pm e_{j}\right\|=\left\|y \pm e_{j}\right\|$, then $\alpha_{j}=\beta_{j}$.

Proof In fact,

$$
\begin{aligned}
\left\|x \pm e_{j}\right\| & =\left\|\sum_{i=1}^{\infty} \alpha_{i} e_{i} \pm e_{j}\right\|=\sum_{i \neq j}\left|\alpha_{i}\right|+\left|1 \pm \alpha_{j}\right|=1-\left|\alpha_{j}\right|+\left|1 \pm \alpha_{j}\right| \\
& =\left\|y \pm e_{j}\right\|=\left\|\sum_{i=1}^{\infty} \beta_{i} e_{i} \pm e_{j}\right\|=\sum_{i \neq j}\left|\beta_{i}\right|+\left|1 \pm \beta_{j}\right|=1-\left|\beta_{j}\right|+\left|1 \pm \beta_{j}\right| .
\end{aligned}
$$

Hence, $\left|1 \pm \alpha_{j}\right|-\left|\alpha_{j}\right|=\left|1 \pm \beta_{j}\right|-\left|\beta_{j}\right|$. Obviously, $\alpha_{j}=0$ if and only if $\beta_{j}=0$. Then we just need to show the case that $\alpha_{j} \cdot \beta_{j} \neq 0$. If $\alpha_{j} \cdot \beta_{j}<0$, say $\alpha_{j}<0<\beta_{j}$, then

$$
1+\alpha_{j}-\left|\alpha_{j}\right|=1+\alpha_{j}+\alpha_{j}<1=1+\beta_{j}-\beta_{j}=1+\beta_{j}-\left|\beta_{j}\right|
$$

leads a contradiction. It is similar for $\beta_{j}<0<\alpha_{j}$. If $\alpha_{j}, \beta_{j}>0$, then

$$
1-\alpha_{j}-\left|\alpha_{j}\right|=1-2 \alpha_{j}=1-\beta_{j}-\left|\beta_{j}\right|=1-2 \beta_{j}
$$

implies that $\alpha_{j}=\beta_{j}$. Similarly, we can get the same result if $\alpha_{j}, \beta_{j}<0$.
Next, we show the main result.
Theorem 5 Let E be any normed linear space and $V_{0}: S(E) \rightarrow S\left(l^{1}\right)$ be a surjective isometry. Then V_{0} can be linearly isometrically extended to E.

Proof Fix $n \in \mathbf{N}$. For any subset Δ_{1} of $\{1, \ldots, n\}$, let $\Delta_{2}=\{1, \ldots, n\} \backslash \Delta_{1}$. We denote $B_{\Delta_{1}}=$ $\left\{x \in S(E): V_{0} x(i) \leq 0, V_{0} x(j) \geq 0\right.$ for any $\left.i \in \Delta_{1}, j \in \Delta_{2}\right\}$, and $d_{\Delta_{1}}=\frac{1}{n}\left(\sum_{i \in \Delta_{1}} e_{i}-\sum_{j \in \Delta_{2}} e_{j}\right)$. Then $d_{\Delta_{1}}(i) \geq 0, d_{\Delta_{1}}(j) \leq 0$ for any $i \in \Delta_{1}, j \in \Delta_{2}$. Since V_{0} is surjective, there is $z \in S(E)$ such that $V_{0} z=d_{\Delta_{1}}$.

Following the same steps shown in the proof of Proposition 2, we know that $B_{\Delta_{1}}$ is convex.
Now, for any real scalar $\alpha_{i}(1 \leq i \leq n)$ with $\alpha=\sum_{i=1}^{n}\left|\alpha_{i}\right| \neq 0$. Let $\Delta_{1}=\{1 \leq i \leq n$: $\left.\alpha_{i} \geq 0\right\}, \Delta_{2}=\{1, \ldots, n\} \backslash \Delta_{1}$, and $x_{i}=V_{0}^{-1} e_{i}$. Following Lemma 3, $V_{0}\left(-x_{i}\right)=-e_{i}$. Moreover, $x_{i} \in B_{\Delta_{2}},-x_{j} \in B_{\Delta_{2}}$ for any $i \in \Delta_{1}, j \in \Delta_{2}$. Since $B_{\Delta_{2}}$ is convex,

$$
\sum_{i \in \Delta_{1}} \frac{\alpha_{i}}{\alpha} x_{i}+\sum_{j \in \Delta_{2}} \frac{-\alpha_{j}}{\alpha}\left(-x_{j}\right) \in B_{\Delta_{2}}
$$

That is, $\sum_{i=1}^{n} \alpha_{i} x_{i} \in \alpha \cdot B_{\Delta_{2}}$. It follows that

$$
\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|=\alpha=\sum_{i=1}^{n}\left|\alpha_{i}\right|=\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| .
$$

Now, for any $\sum_{i=1}^{n} \alpha_{i} x_{i} \in S(E)$, say $V_{0}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{\infty} \beta_{i} e_{i}$, then for all $1 \leq j \leq n$,

$$
\left\|\sum_{i=1}^{\infty} \beta_{i} e_{i} \pm e_{j}\right\|=\left\|V_{0}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \pm V_{0} x_{j}\right\|=\left\|\sum_{i=1}^{n} \alpha_{i} x_{i} \pm x_{j}\right\|=\left\|\sum_{i=1}^{n} \alpha_{i} e_{i} \pm e_{j}\right\|
$$

Following Lemma $4, \beta_{j}=\alpha_{j}$ for any $1 \leq j \leq n$, and $\beta_{j}=0$ for any $j>n$. That is, $V_{0}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} e_{i}$.

It is easy to check that V_{0} can be extended to $S(E) \bigcup\left[x_{i}: 1 \leq i \leq n\right]$. Denote the extension by V_{n}, where V_{n} is a linear isometry on $\left[x_{i}: 1 \leq i \leq n\right]$.

Now, for any $x \in S(E)$, say $V_{0} x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$. Let $\beta_{n}=\sum_{i=1}^{n}\left|\alpha_{i}\right|$. Then $\beta_{n}=\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|=$ $\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|$, and $\beta_{n} \rightarrow 1(n \rightarrow \infty)$. Since

$$
\begin{aligned}
\left\|x-\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| & \leq\left\|x-\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right\|+\left\|\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}-\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \\
& =\left\|V_{0} x-V_{0}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right)\right\|+\left\|V_{n}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right)-V_{n}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right\| \\
& =\left\|\sum_{i=1}^{\infty} \alpha_{i} e_{i}-V_{n}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right)\right\|+\left\|\frac{1}{\beta_{n}} \sum_{i=1}^{n} \alpha_{i} e_{i}-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \\
& =\left\|\sum_{i=1}^{\infty} \alpha_{i} e_{i}-\frac{1}{\beta_{n}} \sum_{i=1}^{n} \alpha_{i} e_{i}\right\|+\frac{1-\beta_{n}}{\beta_{n}}\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \\
& \leq \frac{2\left(1-\beta_{n}\right)}{\beta_{n}}\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|+\left\|\sum_{i=n+1}^{\infty} \alpha_{i} e_{i}\right\| \\
& =2\left(1-\beta_{n}\right)+\left\|\sum_{i=n+1}^{\infty} \alpha_{i} e_{i}\right\|
\end{aligned}
$$

which is convergent to 0 , we have $x=\sum_{i=1}^{\infty} \alpha_{i} x_{i}$. That is, $E=\left[x_{i}: i \in \mathbf{N}\right]$.
Now, we can define the desired isometry. For any $x=\sum_{i=1}^{\infty} \alpha_{i} x_{i}$, let $V x=\sum_{i=1}^{\infty} \alpha_{i} e_{i} . V$ is
well defined since, for any $m>n$,

$$
V_{m}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} e_{i}
$$

and

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}-\sum_{i=1}^{m} \alpha_{i} e_{i}\right\| & =\left\|V_{m}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)-V_{m}\left(\sum_{i=1}^{m} \alpha_{i} x_{i}\right)\right\| \\
& =\left\|V_{m}\left(\sum_{i=n+1}^{m} \alpha_{i} x_{i}\right)\right\| \\
& =\left\|\sum_{i=n+1}^{m} \alpha_{i} x_{i}\right\| \rightarrow 0(m, n \rightarrow 0) .
\end{aligned}
$$

Obviously, V is a linear isometry. Moreover, we show that V is an extension of V_{0}. For any $x=\sum_{i=1}^{\infty} \alpha_{i} x_{i} \in S(E)$, let $\beta_{n}=\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|$. Then $\beta_{n} \rightarrow 1(n \rightarrow \infty)$. Hence,

$$
\begin{aligned}
V x & =\sum_{i=1}^{\infty} \alpha_{i} e_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} e_{i} \\
& =\lim _{n \rightarrow \infty} V_{n}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\lim _{n \rightarrow \infty} \beta_{n} \cdot V_{n}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right) \\
& =\lim _{n \rightarrow \infty} \beta_{n} \cdot V_{0}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right)=\lim _{n \rightarrow \infty} V_{0}\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}\right) \\
& =V_{0}\left(\sum_{i=1}^{\infty} \alpha_{i} x_{i}\right)=V_{0} x .
\end{aligned}
$$

The proof is completed.
Acknowledgement The author would like to thank Prof. Ding Guanggui for his guidance and to thank the referees for the suggestions.

References

[1] MANKIEWICZ P. On extension of isometries in normed linear spaces [J]. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 1972, 20: 367-371.
[2] TINGLEY D. Isometries of the unit sphere [J]. Geom. Dedicata, 1987, $22(3): 371-378$.
[3] DING Guanggui. A survey on the problems of isometries [J]. Southeast Asian Bull. Math., 2005, 29(3): 485-492.
[4] DING Guanggui. On extensions and approximations of isometric operators [J]. Adv. Math. (China), 2003, 32(5): 529-536. (in Chinese)
[5] DING Guanggui. On the extension of isometries between unit spheres of E and $C(\Omega)[J]$. Acta Math. Sin. (Engl. Ser.), 2003, 19(4): 793-800.
[6] FANG Xinian, WANG Jianhua. Extension of isometries between unit spheres of a normed space E and the space $l^{1}(\Gamma)[J]$. Acta Math. Sinica (Chin. Ser.), 2008, 51(1): 23-28. (in Chinese)

