Green's Relations on a Kind of Semigroups of Linear Transformations

PEI Hui Sheng ${ }^{1}$, LU Feng Mei ${ }^{2}$
(1. Department of Mathematics, Xinyang Normal University, Henan 464000, China;
2. Department of Science, Anyang Polytechnic College, Henan 454900, China)
(E-mail: phszgz@mail2.xytc.edu.cn)

Abstract

Let V be a linear space over a field F with finite dimension, $L(V)$ the semigroup, under composition, of all linear transformations from V into itself. Suppose that $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{m}$ is a direct sum decomposition of V, where $V_{1}, V_{2}, \ldots, V_{m}$ are subspaces of V with the same dimension. A linear transformation $f \in L(V)$ is said to be sum-preserving, if for each $i(1 \leq$ $i \leq m)$, there exists some $j(1 \leq j \leq m)$ such that $f\left(V_{i}\right) \subseteq V_{j}$. It is easy to verify that all sum-preserving linear transformations form a subsemigroup of $L(V)$ which is denoted by $L^{\oplus}(V)$. In this paper, we first describe Green's relations on the semigroup $L^{\oplus}(V)$. Then we consider the regularity of elements and give a condition for an element in $L^{\oplus}(V)$ to be regular. Finally, Green's equivalences for regular elements are also characterized.

Keywords linear spaces; linear transformations; semigroups; Green's equivalence; regular semigroups.

```
Document code A
MR(2000) Subject Classification 20M20
Chinese Library Classification O152.7
```


1. Introduction and preliminaries

Let X be an arbitrary set, \mathcal{T}_{X} the full transformation semigroup on the set X and E be an equivalence relation on X. The first author observed in [6] a class of transformation semigroups determined by the equivalence E, namely

$$
T_{E}(X)=\left\{f \in \mathcal{T}_{X}: \forall(a, b) \in E,(f(a), f(b)) \in E\right\}
$$

$T_{E}(X)$ is obviously a subsemigroup of \mathcal{T}_{X}. The common nature of all elements in $T_{E}(X)$ is that they preserve the decomposition induced by the equivalence E. In other words, all $f \in T_{E}(X)$ satisfy the condition that for each E-class A there exists some E-class B such that $f(A) \subseteq B$. In recent years, some properties for $T_{E}(X)$ are investigated in many papers. For example, [7] considered the Green's equivalences, [9] and [10] discussed some subsemigroups of $T_{E}(X)$ inducing certain lattices of equivalences on the set X, and [8] investigated the rank of $T_{E}(X)$ for a special case of X and E.

In this paper we examine a related semigroup defined as follows. Let V be a linear space over a field F and $L(V)$ be the semigroup, under composition, of all linear transformations on the
linear space V. Suppose that $V=\oplus\left\{V_{i}: i \in I\right\}$, where each V_{i} is a subspace of V with $|I| \geq 2$ and $\operatorname{dim} V_{i} \geq 2$ for each i. A linear transformation $f \in L(V)$ is called sum-preserving if for each $i \in I$, there exists some $j \in I$ such that $f\left(V_{i}\right) \subseteq V_{j}$. It is not hard to verify that if f and g are sum-preserving, then so is $f g$. Consequently, all sum-preserving linear transformations form a subsemigroup of $L(V)$ which will be denoted by $L^{\oplus}(V)$.

We notice that many conclusions for \mathcal{T}_{X} have their parallelism for $L(V)$. For example, in 1966, Howie ${ }^{[2]}$ characterized the transformations in \mathcal{T}_{X} that can be written as a product of finite number idempotents in \mathcal{T}_{X}. Since then Erdos ${ }^{[3]}$ and Dawlings ${ }^{[4]}$ gave different proofs of the result that when V is finite-dimensional, $\alpha \in L(V)$ is a finite product of proper idempotents in $L(V)$ if and only if $\operatorname{dim}(\alpha(V))<\operatorname{dim} V$. Later in 1985, Reynolds and Sullivan ${ }^{[5]}$ investigated the case of infinite-dimensional spaces and obtained the results similar to Howie's.

We may compare the elements in $L^{\oplus}(V)$ with that in $T_{E}(X)$ and find that all they are transformations of a set (or a linear space) preserving some decomposition. Therefore, $L^{\oplus}(V)$ can be regarded as the linear transformation version of the semigroup $T_{E}(X)$.

In this paper, we are going to consider a special case for the direct sum decomposition, namely, we assume $\operatorname{dim} V_{i}=n \geq 2$ for each $i \in I=\{1,2, \ldots, m\}$ with $m \geq 2$ while

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{m}, \quad \operatorname{dim} V_{i}=n(1 \leq i \leq m)
$$

Here we focus our attention to Green's equivalence relations and the regularity for the semigroup $L^{\oplus}(V)$. Accordingly, in Section 2, we describe five Green's relations and conclude that $\mathcal{D}=\mathcal{J}$. In Section 3, we consider the condition for an element $f \in L^{\oplus}(V)$ to be regular. By the way, we describe the Green's relations for regular elements in the semigroup $L^{\oplus}(V)$.

In order to avoid repeat, in the remainder of the paper, the symbols $V_{i}, V_{j}, V_{l}, V_{j_{s}}, \ldots$ will always denote certain subspaces in the direct sum decomposition $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{m}$ without further mention. In addition, if we have defined a number of linear mappings $f_{i}: V_{i} \rightarrow V_{i^{\prime}}$ where $i, i^{\prime} \in I$, then there exists a unique linear transformation $f \in L^{\oplus}(V)$ satisfying $f \mid V_{i}=f_{i}$. Finally, for convenience, we do not distinguish the zero vector 0 and the singleton set $\{0\}$. As we have seen previously, we write $f\left(V_{i}\right)=0$ to mean $f\left(V_{i}\right)=\{0\}$.

For standard concepts and notations in semigroup theory one can consult [1].

2. Green's relations

In this section, we focus our attention on Green's relations for the semigroup $L^{\oplus}(V)$. We begin with the relation \mathcal{L}. Before stating the result, we need some notations.

Let $f \in L^{\oplus}(V)$ with $V_{j} \cap f(V) \neq 0$. Denote $W_{j}=\oplus\left\{V_{i}: 0 \neq f\left(V_{i}\right) \subseteq V_{j}\right\}$. Then it is easy to see that $f\left(W_{j}\right)=V_{j} \cap f(V)$. Suppose that all the subspaces V_{j} such that $V_{j} \cap f(V) \neq 0$ are $V_{j_{1}}, V_{j_{2}}, \ldots, V_{j_{t}}$. Denote $K(f)=\left\{W_{j_{1}}, \ldots, W_{j_{t}}\right\}$. Denote by $\operatorname{ker}(f)$ the kernel of f, that is, $\operatorname{ker}(f)=\{x \in V: f(x)=0\}$.

Theorem 2.1 Let $f, g \in L^{\oplus}(V)$. Then $f \mathcal{L} g$ if and only if $\operatorname{ker}(f)=\operatorname{ker}(g)$ and $K(f)=K(g)$.

Proof Suppose $f \mathcal{L} g$. Then there exist $u, v \in L^{\oplus}(V)$, such that $u f=g$ and $v g=f$. Hence

$$
g(\operatorname{ker}(f))=u f(\operatorname{ker}(f))=u(0)=0
$$

Thus, $\operatorname{ker}(f) \subseteq \operatorname{ker}(g)$. Similarly, $\operatorname{ker}(g) \subseteq \operatorname{ker}(f)$ and $\operatorname{ker}(f)=\operatorname{ker}(g)$. Suppose that

$$
K(f)=\left\{W_{j_{1}}, \ldots, W_{j_{t}}\right\} \text { and } K(g)=\left\{U_{l_{1}}, \ldots, U_{l_{s}}\right\}
$$

Without loss of generality, we may assume that $u\left(V_{j_{1}}\right) \subseteq V_{l_{1}}$. So

$$
g\left(W_{j_{1}}\right)=u f\left(W_{j_{1}}\right) \subseteq u\left(V_{j_{1}}\right) \subseteq V_{l_{1}}
$$

Clearly, $g\left(V_{i}\right) \neq 0$ for each $V_{i} \subseteq W_{j_{1}}$, since $\operatorname{ker}(f)=\operatorname{ker}(g)$. Thus $W_{j_{1}} \subseteq U_{l_{1}}$. Assume $f\left(U_{l_{1}}\right)=$ $v g\left(U_{l_{1}}\right) \subseteq v\left(V_{l_{1}}\right) \subseteq V_{p}$ for some p. Notice that $f=v g=v u f, f\left(W_{j_{1}}\right) \subseteq V_{j_{1}}$ and

$$
f\left(W_{j_{1}}\right)=v u f\left(W_{j_{1}}\right) \subseteq v u\left(V_{j_{1}}\right) \subseteq v\left(V_{l_{1}}\right) \subseteq V_{p}
$$

we have $V_{p}=V_{j_{1}}$ and $f\left(U_{l_{1}}\right) \subseteq V_{j_{1}}$. By $\operatorname{ker}(f)=\operatorname{ker}(g)$ again, $f\left(V_{i}\right) \neq 0$ for each $V_{i} \subseteq U_{l_{1}}$. Consequently, $U_{l_{1}} \subseteq W_{j_{1}}$ and $W_{j_{1}}=U_{l_{1}}$ holds. Similarly, one can verify that each $W \in K(f)$ is equal to some $U \in K(g)$ and $s=t$. Therefore, $K(f)=K(g)$ and the necessity follows.

In order to show the sufficiency, suppose $\operatorname{ker}(f)=\operatorname{ker}(g)$ and $K(f)=K(g)$. We must find some $u, v \in L^{\oplus}(V)$ satisfying $u f=g$ and $v g=f$. Denote $f_{i}=f \mid V_{i}$ and $g_{i}=g \mid V_{i}(1 \leq i \leq m)$. Then $\operatorname{ker} f_{i}=\operatorname{ker} g_{i}$. While for each $W \in K(f)=K(g), f \mid W$ and $g \mid W$ are linear mappings and

$$
\begin{equation*}
\operatorname{ker}(f \mid W)=\operatorname{ker}(g \mid W) \tag{2.1.1}
\end{equation*}
$$

If $V_{j} \cap f(V) \neq 0$, then there exists some $W \in K(f)=K(g)$ such that $f(W)=V_{j} \cap f(V)$, $g(W)=V_{l} \cap g(V)$. Let $f(W)=V_{j}^{\prime} \subseteq V_{j}$ and $g(W)=V_{l}^{\prime} \subseteq V_{l}$. From (2.1.1), V_{j}^{\prime} and V_{l}^{\prime} have the same dimension. Without loss of generality, we may assume $W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{t}$. Take a basis $e_{1}, \ldots, e_{r_{1}}, e_{r_{1}+1}, \ldots, e_{n}$ for V_{1}, a basis $\alpha_{1}, \ldots, \alpha_{r_{2}}, \alpha_{r_{2}+1}, \ldots, \alpha_{n}$ for V_{2}, \ldots, a basis $\beta_{1}, \ldots, \beta_{r_{t}}, \beta_{r_{t}+1}, \ldots, \beta_{n}$ for V_{t}, where $e_{r_{1}+1}, \ldots, e_{n}$ is a basis for $\operatorname{ker}\left(f_{1}\right), \alpha_{r_{2}+1}, \ldots, \alpha_{n}$ is a basis for $\operatorname{ker}\left(f_{2}\right), \ldots, \beta_{r_{t}+1}, \ldots, \beta_{n}$ is a basis for $\operatorname{ker}\left(f_{t}\right)$. Then $\left\{e_{i}\right\} \cup\left\{\alpha_{i}\right\} \cup \cdots \cup\left\{\beta_{i}\right\}$ is a basis for W. While in the subspace $V_{j}^{\prime}, f\left(e_{1}\right), \ldots, f\left(e_{r_{1}}\right)$ are linearly independent, and so also are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r_{2}}\right), \ldots$, and $f\left(\beta_{1}\right), \ldots, f\left(\beta_{r_{t}}\right)$. It is not difficult to see that

$$
V_{j}^{\prime}=\left\langle f\left(e_{1}\right), \ldots, f\left(e_{r_{1}}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r_{2}}\right), \ldots, f\left(\beta_{1}\right), \ldots, f\left(\beta_{r_{t}}\right)\right\rangle
$$

Now we extend $f\left(e_{1}\right), \ldots, f\left(e_{r_{1}}\right)$ to obtain a basis for V_{j}^{\prime} by adding some $f\left(\alpha_{s}\right)(1 \leq s \leq$ $\left.r_{2}\right), \ldots$, and $f\left(\beta_{k}\right)\left(1 \leq k \leq r_{t}\right)$. Without loss of generality, we assume the basis is

$$
\begin{equation*}
f\left(e_{1}\right), \ldots, f\left(e_{r_{1}}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{p}\right), \ldots, f\left(\beta_{1}\right), \ldots, f\left(\beta_{q}\right) \tag{2.1.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
g\left(e_{1}\right), \ldots, g\left(e_{r_{1}}\right), g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{p}\right), \ldots, g\left(\beta_{1}\right), \ldots, g\left(\beta_{q}\right) \tag{2.1.3}
\end{equation*}
$$

are linearly independent. Otherwise, suppose

$$
\sum_{i=1}^{r_{1}} a_{i} g\left(e_{i}\right)+\sum_{j=1}^{p} b_{j} g\left(\alpha_{j}\right)+\cdots+\sum_{k=1}^{q} c_{k} g\left(\beta_{k}\right)=0
$$

for some $a_{i}, b_{j}, c_{k} \in F$. Let

$$
\xi=a_{1} e_{1}+\cdots+a_{r_{1}} e_{r_{1}}+b_{1} \alpha_{1}+\cdots+b_{p} \alpha_{p}+\cdots+c_{1} \beta_{1}+\cdots+c_{q} \beta_{q} \in W
$$

Then $g(\xi)=0$ and $\xi \in W \cap \operatorname{ker}(g)=W \cap \operatorname{ker}(f)$. Hence

$$
0=f(\xi)=\sum_{i=1}^{r_{1}} a_{i} f\left(e_{i}\right)+\sum_{j=1}^{p} b_{j} f\left(\alpha_{j}\right)+\cdots+\sum_{k=1}^{q} c_{k} f\left(\beta_{k}\right)
$$

Notice that (2.1.2) is linearly independent, the above equation implies that

$$
a_{1}=\cdots=a_{r_{1}}=b_{1}=\cdots=b_{p}=\cdots=c_{1}=\cdots=c_{q}=0
$$

Thus, (2.1.3) are linearly independent, while being a basis for V_{l}^{\prime}.
Extend (2.1.2) to a basis B for V_{j} and define a linear mapping $u_{j}: V_{j} \rightarrow V_{l}$ such that

$$
\begin{gathered}
u_{j}\left(f\left(e_{1}\right)\right)=g\left(e_{1}\right), \ldots, u_{j}\left(f\left(e_{r_{1}}\right)\right)=g\left(e_{r_{1}}\right), \\
u_{j}\left(f\left(\alpha_{1}\right)\right)=g\left(\alpha_{1}\right), \ldots, u_{j}\left(f\left(\alpha_{p}\right)\right)=g\left(\alpha_{p}\right), \\
\ldots \\
u_{j}\left(f\left(\beta_{1}\right)\right)=g\left(\beta_{1}\right), \ldots, u_{j}\left(f\left(\beta_{q}\right)\right)=g\left(\beta_{q}\right),
\end{gathered}
$$

and for each $\eta \in B$ out of (2.1.2), let $u_{j}(\eta)=0$. For each V_{i}, if $V_{i} \cap f(V) \neq 0$, then define u_{i} on V_{i} as above. If $V_{i} \cap f(V)=0$, then let $u_{i}(x)=0$ for each $x \in V_{i}$. Thus, these u_{i} uniquely determine a linear transformation u on the linear space V. Obviously, $u \in L^{\oplus}(V)$.

Now we verify that $u f=g$. For each V_{i} and $x \in V_{i}$, if $f(x)=0$, then $g(x)=0$ since $\operatorname{ker}(f)=\operatorname{ker}(g)$, and $u f(x)=g(x)$ in this case. If $f(x) \neq 0$, then there exists some $W \in K(f)$ such that $V_{i} \subseteq W$. Without loss of generality, we assume

$$
W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{t}
$$

then $f(x) \in f(W)=V_{j}^{\prime} \subseteq V_{j}$. As above, we assume (2.1.2) to be a basis for V_{j}^{\prime}. Then

$$
f(x)=\sum_{i=1}^{r_{1}} a_{i} f\left(e_{i}\right)+\sum_{j=1}^{p} b_{j} f\left(\alpha_{j}\right)+\cdots+\sum_{k=1}^{q} c_{k} f\left(\beta_{k}\right)=f(\xi)
$$

where

$$
\xi=a_{1} e_{1}+\cdots+a_{r_{1}} e_{r_{1}}+b_{1} \alpha_{1}+\cdots+b_{p} \alpha_{p}+\cdots+c_{1} \beta_{1}+\cdots+c_{q} \beta_{q} .
$$

Since $\operatorname{ker}(f)=\operatorname{ker}(g)$, we have $g(x)=g(\xi)$. By the definition of u,

$$
u f(x)=u\left(\sum_{i=1}^{r_{1}} a_{i} f\left(e_{i}\right)+\sum_{j=1}^{p} b_{j} f\left(\alpha_{j}\right)+\cdots+\sum_{k=1}^{q} c_{k} f\left(\beta_{k}\right)\right)=g(\xi)=g(x)
$$

Thus, $u f(x)=g(x)$ holds for every $x \in V_{i}$. Consequently, $u f(x)=g(x)$ holds for every $x \in V$ and $u f=g$. Similarly, one can find $v \in L^{\oplus}(V)$ such that $v g=f$. Therefore, $f \mathcal{L} g$ holds.

Before describing the relation \mathcal{R} on $L^{\oplus}(V)$ some notations should be introduced. Let $f \in$ $L^{\oplus}(V)$. If $V_{j} \cap f(V) \neq 0$, then there exists some V_{i} such that $0 \neq f\left(V_{i}\right) \subseteq V_{j}$. Denote

$$
P_{j}(f)=\left\{f\left(V_{i}\right): 0 \neq f\left(V_{i}\right) \subseteq V_{j}\right\}
$$

and define a partial order \leq on $P_{j}(f)$ by letting $A \leq B$ if and only if $A \subseteq B$. Denote by $M_{j}(f)$ the collection of all maximal elements in $P_{j}(f)$. Then for each i with $0 \neq f\left(V_{i}\right) \subseteq V_{j}$, there exists some s such that $f\left(V_{i}\right) \subseteq f\left(V_{s}\right) \in M_{j}(f)$.

Now we can state and prove the conclusion for the relation \mathcal{R}.
Theorem 2.2 Let $f, g \in L^{\oplus}(V)$. Then the following statements are equivalent:
(1) $f \mathcal{R} g$.
(2) For each $i(1 \leq i \leq m)$ there exist j, k such that $f\left(V_{i}\right) \subseteq g\left(V_{j}\right)$ and $g\left(V_{i}\right) \subseteq f\left(V_{k}\right)$.
(3) $f(V)=g(V)$ and $M_{j}(f)=M_{j}(g)$ holds for each j with $V_{j} \cap f(V) \neq 0$.

Proof $(1) \Longrightarrow(2)$ Suppose $f \mathcal{R} g$. Then there exist $u, v \in L^{\oplus}(V)$ such that $f u=g$ and $g v=f$. For each i, there exists some j such that $v\left(V_{i}\right) \subseteq V_{j}$. Consequently, $f\left(V_{i}\right)=g v\left(V_{i}\right) \subseteq g\left(V_{j}\right)$. Similarly, there exists some k such that $g\left(V_{i}\right) \subseteq f\left(V_{k}\right)$ holds.
$(2) \Longrightarrow(3)$ It is not difficult to see from (2) that $f(V) \subseteq g(V)$ and $g(V) \subseteq f(V)$, so $f(V)=$ $g(V)$. Suppose $V_{j} \cap f(V) \neq 0$ and $f\left(V_{i}\right) \in M_{j}(f)$. Then there exist i_{1}, i_{2} such that $f\left(V_{i}\right) \subseteq$ $g\left(V_{i_{1}}\right) \subseteq f\left(V_{i_{2}}\right)$. From $f\left(V_{i}\right) \subseteq V_{j} \cap f\left(V_{i_{2}}\right)$, we see that $f\left(V_{i_{2}}\right) \subseteq V_{j}$. Since $f\left(V_{i}\right) \in M_{j}(f)$ and $f\left(V_{i}\right) \subseteq f\left(V_{i_{2}}\right)$, we have $f\left(V_{i_{2}}\right)=g\left(V_{i_{1}}\right)=f\left(V_{i}\right)$. Take $g\left(V_{i_{3}}\right) \in M_{j}(g)$ such that $g\left(V_{i_{1}}\right) \subseteq g\left(V_{i_{3}}\right)$. By (2) again, there exists i_{4} such that $g\left(V_{i_{3}}\right) \subseteq f\left(V_{i_{4}}\right)$. Thus,

$$
f\left(V_{i}\right) \subseteq g\left(V_{i_{1}}\right) \subseteq g\left(V_{i_{3}}\right) \subseteq f\left(V_{i_{4}}\right) \subseteq V_{j}
$$

which implies that $f\left(V_{i_{4}}\right)=f\left(V_{i}\right)=g\left(V_{i_{3}}\right) \in M_{j}(g)$ and that $M_{j}(f) \subseteq M_{j}(g)$. By symmetry, we have $M_{j}(g) \subseteq M_{j}(f)$ and therefore $M_{j}(f)=M_{j}(g)$ holds.
$(3) \Longrightarrow(1)$ Suppose that $f(V)=g(V)$ and $M_{j}(f)=M_{j}(g)$ holds for each j with $V_{j} \cap f(V) \neq 0$. We first look for some $h \in L^{\oplus}(V)$ such that $f h=g$. For each V_{i}, if $g\left(V_{i}\right)=0$, then define $h(x)=0$ for each $x \in V_{i}$. If there is some j such that $0 \neq g\left(V_{i}\right) \subseteq V_{j}$, then there is some $A \in M_{j}(g)=$ $M_{j}(f)$ such that $g\left(V_{i}\right) \subseteq A$. Denote $g_{i}=g \mid V_{i}$ and assume $A=f\left(V_{s}\right)=g\left(V_{t}\right)$. Take a basis $e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}$ for V_{i} where e_{r+1}, \ldots, e_{n} is a basis for $\operatorname{ker}\left(g_{i}\right)$. Then $g\left(e_{1}\right), g\left(e_{2}\right), \ldots, g\left(e_{r}\right)$ are linearly independent. Let $f_{s}=f \mid V_{s}: V_{s} \rightarrow V_{j}$. Choose $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{r}^{\prime} \in V_{s}$ such that

$$
f_{s}\left(e_{1}^{\prime}\right)=g\left(e_{1}\right), f_{s}\left(e_{2}^{\prime}\right)=g\left(e_{2}\right), \ldots, f_{s}\left(e_{r}^{\prime}\right)=g\left(e_{r}\right)
$$

Then $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{r}^{\prime}$ are linearly independent. Define a linear mapping $h_{i}: V_{i} \rightarrow V_{s}$ such that

$$
h_{i}\left(e_{1}\right)=e_{1}^{\prime}, \ldots, h_{i}\left(e_{r}\right)=e_{r}^{\prime}, \quad h_{i}\left(e_{r+1}\right)=0, \ldots, h_{i}\left(e_{n}\right)=0
$$

Then for each vector $x=a_{1} e_{1}+\cdots+a_{r} e_{r}+a_{r+1} e_{r+1}+\cdots+a_{n} e_{n} \in V_{i}$, we have

$$
\begin{aligned}
f h_{i}(x) & =f\left(a_{1} h_{i}\left(e_{1}\right)+\cdots+a_{r} h_{i}\left(e_{r}\right)\right)=f\left(a_{1} e_{1}^{\prime}+\cdots+a_{r} e_{r}^{\prime}\right) \\
& =a_{1} f\left(e_{1}^{\prime}\right)+\cdots+a_{r} f\left(e_{r}^{\prime}\right)=a_{1} g\left(e_{1}\right)+\cdots+a_{r} g\left(e_{r}\right) \\
& =g(x)
\end{aligned}
$$

These h_{i} defined on each V_{i} determine a linear transformation h on V. It is obvious that $h \in L^{\oplus}(V)$ and $f h=g$. By symmetry, there exists $k \in L^{\oplus}(V)$ such that $g k=f$ holds. Therefore, $f \mathcal{R} g$.

As an immediate consequence of Theorems 2.1 and 2.2, we have the following
Theorem 2.3 Let $f, g \in L^{\oplus}(V)$. Then the following statements are equivalent:
(1) $(f, g) \in \mathcal{H}$.
(2) $\operatorname{ker}(f)=\operatorname{ker}(g), K(f)=K(g)$ and for each $i(1 \leq i \leq m)$, there exist j, k such that $f\left(V_{i}\right) \subseteq g\left(V_{j}\right), g\left(V_{i}\right) \subseteq f\left(V_{k}\right)$.

Let $f \in L^{\oplus}(V)$ and assume that all the subspaces V_{i} with $f(V) \cap V_{i} \neq 0$ are $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{s}}$. Denote $V_{i_{t}}^{\prime}=f(V) \cap V_{i_{t}}(1 \leq t \leq s)$. Then one easily verifies that

$$
f(V)=V_{i_{1}}^{\prime} \oplus V_{i_{2}}^{\prime} \oplus \cdots \oplus V_{i_{s}}^{\prime} .
$$

The following concept will be useful in describing the relations \mathcal{D} and \mathcal{J} on $L^{\oplus}(V)$.
Definition 2.4 Let U and W be two subspaces of V where

$$
U=V_{i_{1}}^{\prime} \oplus V_{i_{2}}^{\prime} \oplus \cdots \oplus V_{i_{k}}^{\prime} \quad \text { and } \quad W=V_{j_{1}}^{\prime} \oplus V_{j_{2}}^{\prime} \oplus \cdots \oplus V_{j_{k}}^{\prime}
$$

and each $V_{i_{s}}^{\prime}$ is a non-zero subspace of $V_{i_{s}}$ while each $V_{j_{s}}^{\prime}$ is a non-zero subspace of $V_{j_{s}}$. If $\phi: U \rightarrow W$ is an isomorphism such that for each $s(1 \leq s \leq k)$ there exists a unique $r(1 \leq r \leq k)$ such that $\phi\left(V_{i_{s}}^{\prime}\right)=V_{j_{r}}^{\prime}$, then ϕ is called a sum-preserving isomorphism.

Suppose that $f, g \in L^{\oplus}(V)$ and $\phi: f(V) \rightarrow g(V)$ is a sum-preserving isomorphism satisfying $\phi\left(V_{i} \cap f(V)\right)=V_{j} \cap g(V)$. If for each $A \in M_{j}(g)$, there exists $B \in M_{i}(f)$ such that $\phi(B)=A$, while for each $C \in M_{i}(f)$ there exists $D \in M_{j}(g)$ such that $\phi(C)=D$, then we write $\phi\left(M_{i}(f)\right)=$ $M_{j}(g)$.

Next we consider the condition for two elements in $L^{\oplus}(V)$ to be \mathcal{D} equivalent.
Theorem 2.5 Let $f, g \in L^{\oplus}(V)$. Then $f \mathcal{D} g$ if and only if there exists a sum-preserving isomorphism $\phi: f(V) \rightarrow g(V)$ such that for each i with $f(V) \cap V_{i} \neq 0$, there exists some j such that $\phi\left(f(V) \cap V_{i}\right)=g(V) \cap V_{j}$ and $\phi\left(M_{i}(f)\right)=M_{j}(g)$.

Proof Suppose $f \mathcal{D} g$. Then there exists $h \in L^{\oplus}(V)$ such that $f \mathcal{L} h$ and $h \mathcal{R} g$. From Theorems 2.1 and 2.2, we have $\operatorname{ker}(f)=\operatorname{ker}(h), K(f)=K(h), h(V)=g(V)$ and $M_{j}(h)=M_{j}(g)$ holds for each j with $h(V) \cap V_{j} \neq 0$.

We first establish the isomorphism ϕ from $f(V)$ onto $h(V)$. Suppose $f(V) \cap V_{i} \neq 0$. Take $W \in$ $K(f)=K(h)$ such that $f(W)=f(V) \cap V_{i}$. Then there is some j such that $h(W)=h(V) \cap V_{j}$. Since $\operatorname{ker}(f)=\operatorname{ker}(h)$, we have $\operatorname{ker}(f \mid W)=\operatorname{ker}(h \mid W)$ and $\operatorname{dim} f(W)=\operatorname{dim} h(W)$ which implies that $f(W)$ and $h(W)$ are isomorphic. Take a basis $e_{1}, e_{2}, \ldots, e_{r}$ for $f(W)=f(V) \cap V_{i}$ and choose $w_{1}, w_{2}, \ldots, w_{r} \in W$ such that

$$
f\left(w_{1}\right)=e_{1}, f\left(w_{2}\right)=e_{2}, \ldots, f\left(w_{r}\right)=e_{r}
$$

Then $w_{1}, w_{2}, \ldots, w_{r}$ are linearly independent.
Let

$$
e_{1}^{\prime}=h\left(w_{1}\right), e_{2}^{\prime}=h\left(w_{2}\right), \ldots, e_{r}^{\prime}=h\left(w_{r}\right)
$$

Then $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{r}^{\prime}$ are linearly independent while being a basis for $h(W)$. Define a linear mapping
$\phi_{i}: f(V) \cap V_{i} \rightarrow h(V) \cap V_{j}$ such that $\phi_{i}\left(e_{t}\right)=e_{t}^{\prime}, t=1,2, \ldots, r$. Then ϕ_{i} is an isomorphism and $\phi_{i} f(x)=h(x)$ for each $x \in W$. Suppose

$$
M_{i}(f)=\left\{f\left(V_{i_{1}}\right), f\left(V_{i_{2}}\right), \ldots, f\left(V_{i_{s}}\right)\right\}
$$

By virtue of $\operatorname{ker}(f)=\operatorname{ker}(h)$, one routinely verifies that

$$
M_{j}(h)=\left\{h\left(V_{i_{1}}\right), h\left(V_{i_{2}}\right), \ldots, h\left(V_{i_{s}}\right)\right\} .
$$

Besides, since $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{s}}$ are contained in W and $\phi_{i} f=h$ on W, we have

$$
\phi_{i}\left(f\left(V_{i_{1}}\right)\right)=h\left(V_{i_{1}}\right), \ldots, \phi_{i}\left(f\left(V_{i_{s}}\right)\right)=h\left(V_{i_{s}}\right)
$$

which implies that $\phi_{i}\left(M_{i}(f)\right)=M_{j}(h)$. Notice that $h(V)=g(V)$ and $M_{j}(h)=M_{j}(g)$, it is evident that $\phi_{i}: f(V) \cap V_{i} \rightarrow g(V) \cap V_{j}$ is an isomorphism satisfying $\phi_{i}\left(M_{i}(f)\right)=M_{j}(g)$. Furthermore, we obtain the isomorphism ϕ from $f(V)$ onto $g(V)$ determined by these ϕ_{i} on $f(V) \cap V_{i}$. Clearly, ϕ is a sum-preserving isomorphism as required.

Conversely, suppose that there exists a sum-preserving isomorphism $\phi: f(V) \rightarrow g(V)$ satisfying the condition of the theorem. Let $h=\phi f$. Then $h \in L^{\oplus}(V), h(V)=g(V)$ and $\operatorname{ker}(f)=\operatorname{ker}(h)$. Assume $W \in K(f)$ with $f(W)=f(V) \cap V_{i} \neq 0$. Then there exists j such that

$$
h(W)=\phi f(W)=\phi\left(f(V) \cap V_{i}\right)=g(V) \cap V_{j}=h(V) \cap V_{j} \subseteq V_{j}
$$

Notice that $f\left(V_{i}\right) \neq 0$ for every $V_{i} \subseteq W$ and that $\operatorname{ker}(f)=\operatorname{ker}(h)$, it readily follows that $h\left(V_{i}\right) \neq 0$ for every $V_{i} \subseteq W$. Denote $W^{\prime}=\oplus\left\{V_{i}: 0 \neq h\left(V_{i}\right) \subseteq V_{j}\right\}$. Then $W^{\prime} \in K(h)$ and $W \subseteq W^{\prime}$. Hence $K(f)$ refines $K(h)$. Take $W^{*} \in K(h)$. Then there exists some s, such that

$$
\phi f\left(W^{*}\right)=h\left(W^{*}\right)=h(V) \cap V_{s}=g(V) \cap V_{s}
$$

Since ϕ is a sum-preserving isomorphism, there exists some t such that

$$
\phi\left(f\left(W^{*}\right)\right)=g(V) \cap V_{s}=\phi\left(f(V) \cap V_{t}\right)
$$

It follows that $f\left(W^{*}\right)=f(V) \cap V_{t}$ and that W^{*} is contained in some $W \in K(f)$. So $K(h)$ refines $K(f)$ as well and $K(f)=K(h)$. Consequently, $f \mathcal{L} h$ holds.

Finally we verify that $h \mathcal{R} g$. As we have seen above that $h(V)=g(V)$. Now for each V_{i} with $g(V) \cap V_{i} \neq 0$, there exists some j such that $\phi\left(f(V) \cap V_{j}\right)=g(V) \cap V_{i}$ and $\phi\left(M_{j}(f)\right)=M_{i}(g)$. Then

$$
h(V) \cap V_{i}=\phi f(V) \cap V_{i}=g(V) \cap V_{i}=\phi\left(f(V) \cap V_{j}\right)
$$

which together with $\operatorname{ker}(f)=\operatorname{ker}(h)$ and $K(f)=K(h)$ implies that $M_{i}(h)=\phi\left(M_{j}(f)\right)=M_{i}(g)$ and $h \mathcal{R} g$. Consequently, $f \mathcal{D} g$ follows and the proof is completed.

Now we consider the final Green relation \mathcal{J} on the semigroup $L^{\oplus}(V)$.
Theorem 2.6 Let $f, g \in L^{\oplus}(V)$. Then $f \mathcal{J} g$ if and only if there exist sum-preserving isomorphisms

$$
\phi: f(V) \rightarrow g(V) \text { and } \psi: g(V) \rightarrow f(V)
$$

such that for each i, there exist p, q such that $f\left(V_{i}\right) \subseteq \psi\left(g\left(V_{p}\right)\right), g\left(V_{i}\right) \subseteq \phi\left(f\left(V_{q}\right)\right)$.

Proof Suppose $f \mathcal{J} g$. Then there exist $h, k, u, v \in L^{\oplus}(V)$ such that $h f k=g$ and $u g v=f$. Thus, uhfkv $(V)=f(V)$. Since $f k v(V)$ is a subspace of $f(V)$ and

$$
\operatorname{dim} f(V)=\operatorname{dim} u h f k v(V) \leq \operatorname{dim} f k v(V) \leq \operatorname{dim} f(V)
$$

we have $\operatorname{dim} f k v(V)=\operatorname{dim} f(V)$ and $f k v(V)=f k(V)=f(V)$. Similarly, $g(V)=g v(V)$. Consequently, from $h f(V)=h(f k(V))=g(V)$ we see that $\operatorname{dim} g(V) \leq \operatorname{dim} f(V)$. By symmetry, $\operatorname{dim} f(V) \leq \operatorname{dim} g(V)$. Thus, $\operatorname{dim} f(V)=\operatorname{dim} g(V)$ and $f(V)$ is isomorphic to $g(V)$. Let $\phi=$ $h \mid f(V)$ and $\psi=u \mid g(V)$. Then $\phi: f(V) \rightarrow g(V)$ and $\psi: g(V) \rightarrow f(V)$ are isomorphisms. Next we verify that both ϕ and ψ are sum-preserving. Suppose

$$
f(V)=V_{i_{1}}^{\prime} \oplus V_{i_{2}}^{\prime} \oplus \cdots \oplus V_{i_{t}}^{\prime} \text { and } g(V)=V_{j_{1}}^{\prime} \oplus V_{j_{2}}^{\prime} \oplus \cdots \oplus V_{j_{s}}^{\prime}
$$

where $V_{i_{p}}^{\prime}=f(V) \cap V_{i_{p}}, 1 \leq p \leq t$ and $V_{j_{q}}^{\prime}=g(V) \cap V_{j_{q}}, 1 \leq q \leq s$. Since h is sum-preserving, for each p there exists a unique q such that $\phi\left(V_{i_{p}}^{\prime}\right) \subseteq V_{j_{q}}^{\prime}$. Notice that ϕ is surjective, it must be the case that $t \geq s$. By symmetry, $s \geq t$ and $t=s$. Thus, $\phi\left(V_{i_{p}}^{\prime}\right)=V_{j_{q}}^{\prime}$ and ϕ maps different $V_{i_{p}}^{\prime}$ into different $V_{j_{q}}^{\prime}$ isomorphically. Hence ϕ is a sum-preserving isomorphism. Similarly, ψ is sum-preserving isomorphism as well.

Now for each i, there exists some p such that $v\left(V_{i}\right) \subseteq V_{p}$. Then $f\left(V_{i}\right)=u g v\left(V_{i}\right) \subseteq u g\left(V_{p}\right)=$ $\psi\left(g\left(V_{p}\right)\right)$. By symmetry, there exists q such that $g\left(V_{i}\right) \subseteq \phi\left(f\left(V_{q}\right)\right)$, and the necessity follows.

Conversely, suppose the condition holds and we need to show that $f \mathcal{J} g$. We first look for some $h, k \in L^{\oplus}(V)$ such that $h f k=g$. For each i, if $g\left(V_{i}\right)=0$, then define $k(x)=0$ for every $x \in V_{i}$. If $g\left(V_{i}\right) \neq 0$, choose a basis $e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}$ for V_{i} such that $g\left(e_{r+1}\right)=$ $0, \ldots, g\left(e_{n}\right)=0$ and $g\left(e_{1}\right), \ldots, g\left(e_{r}\right)$ are linearly independent. By hypothesis, there exists V_{q} such that $g\left(V_{i}\right) \subseteq \phi\left(f\left(V_{q}\right)\right)$. Take linearly independent vectors $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ in V_{q} such that

$$
g\left(e_{1}\right)=\phi f\left(\varepsilon_{1}\right), g\left(e_{2}\right)=\phi f\left(\varepsilon_{2}\right), \ldots, g\left(e_{r}\right)=\phi f\left(\varepsilon_{r}\right)
$$

Define a linear mapping k from V_{i} into V_{q} such that

$$
k\left(e_{1}\right)=\varepsilon_{1}, k\left(e_{2}\right)=\varepsilon_{2}, \ldots, k\left(e_{r}\right)=\varepsilon_{r}, k\left(e_{r+1}\right)=0, \ldots, k\left(e_{n}\right)=0
$$

One easily verifies that $g(x)=\phi f k(x)$ holds for each $x \in V_{i}$. Thus, these k defined on each V_{i} determine uniquely a linear transformation k of V. Clearly, $k \in L^{\oplus}(V)$ and $g(x)=\phi f k(x)$ for each $x \in V$.

Now we define the linear transformation h. For each V_{j} with $V_{j} \cap f(V)=0$, define $h(x)=0$ for every $x \in V_{j}$. For those V_{j} with $f(V) \cap V_{j} \neq 0$, since ϕ is sum-preserving, there exists some l such that $\phi\left(f(V) \cap V_{j}\right)=g(V) \cap V_{l}$. Take a basis e_{1}, \ldots, e_{r} for $f(V) \cap V_{j}$ and extend this to a basis

$$
e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}
$$

for V_{j}. Define a linear mapping h from V_{j} into V_{l} such that

$$
h\left(e_{1}\right)=\phi\left(e_{1}\right), \ldots, h\left(e_{r}\right)=\phi\left(e_{r}\right), h\left(e_{r+1}\right)=0, \ldots, h\left(e_{n}\right)=0
$$

Then one routinely verifies that $h\left|\left(f(V) \cap V_{j}\right)=\phi\right|\left(f(V) \cap V_{j}\right)$. Consequently, there exists a unique linear transformation h on V determined by these linear mappings h defined on each
V_{j}. Clearly, $h \in L^{\oplus}(V), h \mid f(V)=\phi$ and $g(x)=\phi f k(x)=h f k(x)$ holds for arbitrary $x \in V$. Consequently, $g=h f k$. By symmetry, there exist $u, v \in L^{\oplus}(V)$ such that $u g v=f$ and it follows that $f \mathcal{J} g$.

It is well-known that $\mathcal{D} \subseteq \mathcal{J}$ for every semigroup. In what follows, we will soon see that $\mathcal{D}=\mathcal{J}$ for the semigroups $L^{\oplus}(V)$.

Suppose $f, g \in L^{\oplus}(V)$ and $f \mathcal{J} g$. Assume that

$$
f(V)=V_{i_{1}}^{\prime} \oplus V_{i_{2}}^{\prime} \oplus \cdots \oplus V_{i_{s}}^{\prime}, \quad g(V)=V_{j_{1}}^{\prime} \oplus V_{j_{2}}^{\prime} \oplus \cdots \oplus V_{j_{s}}^{\prime}
$$

and $\phi: f(V) \rightarrow g(V), \psi: g(V) \rightarrow f(V)$ are both sum-preserving isomorphisms satisfying the condition in Theorem 2.6. Then we have the following two lemmas.

Lemma 2.7 There exists a positive integer r such that $(\psi \phi)^{r}: f(V) \rightarrow f(V)$ is a sumpreserving isomorphism such that

$$
(\psi \phi)^{r}\left(V_{i_{k}}^{\prime}\right)=V_{i_{k}}^{\prime} \quad \text { and }(\psi \phi)^{r}\left(M_{i_{k}}(f)\right)=M_{i_{k}}(f)
$$

holds for each $k(1 \leq k \leq s)$.
Proof It is clear that $\psi \phi: f(V) \rightarrow f(V)$ is a sum-preserving isomorphism and for each i_{k}, there exists a unique i_{k}^{\prime} such that

$$
\psi \phi\left(V_{i_{k}}^{\prime}\right)=V_{i_{k}^{\prime}}^{\prime}, \quad k=1,2, \ldots, s
$$

Thus, $\psi \phi$ induces a permutation ρ of the set $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ where

$$
\rho=\left(\begin{array}{cccc}
i_{1} & i_{2} & \cdots & i_{s} \\
i_{1}^{\prime} & i_{2}^{\prime} & \cdots & i_{s}^{\prime}
\end{array}\right)
$$

By the property of permutations, there exists a positive integer r such that ρ^{r} is the identity permutation of the set $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$. Let $\xi=(\psi \phi)^{r}$. Then $\xi: f(V) \rightarrow f(V)$ is a sum-preserving isomorphism satisfying $\xi\left(V_{i_{k}}^{\prime}\right)=V_{i_{k}}^{\prime}, k=1,2, \ldots, s$.

In order to show the remainder, we assume $M_{i_{1}}(f)=M_{1} \cup M_{2} \cup \cdots \cup M_{u}$, where $M_{r}(1 \leq r \leq u)$ is the collection of those A in $M_{i_{1}}(f)$ with $\operatorname{dim} A=m_{r}$, and $m_{1}>m_{2}>\cdots>m_{u} \geq 1$. By Theorem 2.6, for each $A \in M_{i_{1}}(f)$ there is some p such that $A \subseteq \psi\left(g\left(V_{p}\right)\right)$. While there is some q such that $g\left(V_{p}\right) \subseteq \phi\left(f\left(V_{q}\right)\right)$. Hence $A \subseteq \psi \phi\left(f\left(V_{q}\right)\right)$. Repeating the discussion, there exists some $p(A)(1 \leq p(A) \leq m)$ such that

$$
\begin{equation*}
A \subseteq(\psi \phi)^{r}\left(f\left(V_{p(A)}\right)\right)=\xi\left(f\left(V_{p(A)}\right)\right) \tag{2.7.1}
\end{equation*}
$$

Since ξ is sum-preserving and $\xi\left(V_{i_{1}}^{\prime}\right)=V_{i_{1}}^{\prime}$, one routinely verifies that $f\left(V_{p(A)}\right) \subseteq V_{i_{1}}^{\prime}$.
We first verify

$$
\begin{equation*}
\left\{f\left(V_{p(A)}\right): A \in M_{1}\right\}=M_{1} \tag{2.7.2}
\end{equation*}
$$

Suppose $A \in M_{1}$. Then $\operatorname{dim} f\left(V_{p(A)}\right) \leq m_{1}$ since m_{1} is the maximal dimension of the elements in $M_{i_{1}}(f)$. Now by (2.7.1), we have

$$
\operatorname{dim} f\left(V_{p(A)}\right) \geq \operatorname{dim} A=m_{1}
$$

Therefore, $\operatorname{dim} f\left(V_{p(A)}\right)=m_{1}$ and $f\left(V_{p(A)}\right) \in M_{1}$. Thus, $\left\{f\left(V_{p(A)}\right): A \in M_{1}\right\} \subseteq M_{1}$. From (2.7.1) it follows that $A=\xi\left(f\left(V_{p(A)}\right)\right)$ for each $A \in M_{1}$. Notice that ξ is a sum-preserving isomorphism and that M_{1} is a finite set, it is clear that (2.7.2) holds. Consequently, we have $\xi\left(M_{1}\right)=M_{1}$.

Next we verify that

$$
\begin{equation*}
\left\{f\left(V_{p(B)}\right): B \in M_{2}\right\}=M_{2} \tag{2.7.3}
\end{equation*}
$$

Suppose $B \in M_{2}$. By (2.7.1) again, we have $\operatorname{dim} f\left(V_{p(B)}\right) \geq \operatorname{dim} B=m_{2}$. If $\operatorname{dim} f\left(V_{p(B)}\right)>m_{2}$, then there exists $A \in M_{1}$ such that $f\left(V_{p(B)}\right) \subseteq A$. Consequently,

$$
B \subseteq \xi\left(f\left(V_{p(B)}\right)\right) \subseteq \xi(A) \in M_{1}
$$

which contradicts the hypothesis that B is a maximal element in $P_{i_{1}}(f)$. Hence $\operatorname{dim} f\left(V_{p(B)}\right)=m_{2}$ and $B=\xi\left(f\left(V_{p(B)}\right)\right)$. While $f\left(V_{p(B)}\right)$ cannot be contained in any element of M_{1}. Consequently, $f\left(V_{p(B)}\right) \in M_{2}$ for each $B \in M_{2}$ and (2.7.3) follows. While we also have $\xi\left(M_{2}\right)=M_{2}$. Go on in this way, we can finally get

$$
\left\{f\left(V_{p(A)}\right): A \in M_{i}\right\}=M_{i} \text { and } \xi\left(M_{i}\right)=M_{i}, i=1,2, \ldots, u
$$

Furthermore, $M_{i_{1}}(f)=\xi\left(M_{i_{1}}(f)\right)$ holds. One similarly verifies that $M_{i_{k}}(f)=\xi\left(M_{i_{k}}(f)\right)$ holds for $k=2, \ldots, s$. The proof is completed.

Lemma 2.8 Let $\theta=\phi(\psi \phi)^{r-1}$. Then $\theta: f(V) \rightarrow g(V)$ is a sum-preserving isomorphism. Moreover, if $\theta\left(V_{i_{k}}^{\prime}\right)=V_{j_{k}}^{\prime}$, then $M_{j_{k}}(g)=\theta\left(M_{i_{k}}(f)\right)$.

Proof θ is clearly a sum-preserving isomorphism and $\xi=\psi \theta$. Denote

$$
M_{i_{k}}(f)=M_{1} \cup M_{2} \cup \cdots \cup M_{u} \text { and } M_{j_{k}}(g)=N_{1} \cup N_{2} \cup \cdots \cup N_{v}
$$

where $\operatorname{dim} B=m_{r}$ for each $B \in M_{r}(1 \leq r \leq u)$ and $\operatorname{dim} A=n_{t}$ for each $A \in N_{t}(1 \leq t \leq v)$ with $m_{1}>m_{2}>\cdots>m_{u} \geq 1$ and $n_{1}>n_{2}>\cdots>n_{v} \geq 1$. Suppose $\theta\left(V_{i_{k}}^{\prime}\right)=V_{j_{k}}^{\prime}$, then

$$
\psi\left(V_{j_{k}}^{\prime}\right)=\psi \theta\left(V_{i_{k}}^{\prime}\right)=\xi\left(V_{i_{k}}^{\prime}\right)=V_{i_{k}}^{\prime}
$$

For each $A \in M_{j_{k}}(g)$ there exists some p such that $f\left(V_{p}\right) \subseteq V_{i_{k}}^{\prime}$ and $A \subseteq \theta\left(f\left(V_{p}\right)\right)$. Moreover, there exists some $B \in M_{i_{k}}(f)$ with $f\left(V_{p}\right) \subseteq B$. Consequently,

$$
\begin{equation*}
A \subseteq \theta\left(f\left(V_{p}\right)\right) \subseteq \theta(B) \tag{2.8.1}
\end{equation*}
$$

By Theorem 2.6, for this B there exists some q such that $B \subseteq \psi\left(g\left(V_{q}\right)\right)$ and it is clear that $g\left(V_{q}\right) \subseteq V_{j_{k}}^{\prime}$. Thus there is $A^{\prime} \in M_{j_{k}}(g)$ such that $g\left(V_{q}\right) \subseteq A^{\prime}$. Hence we have

$$
\begin{equation*}
B \subseteq \psi\left(g\left(V_{q}\right)\right) \subseteq \psi\left(A^{\prime}\right) \tag{2.8.2}
\end{equation*}
$$

Suppose $A \in N_{1}$. Then $\operatorname{dim} A=n_{1}$. By (2.8.1) and (2.8.2), we have

$$
n_{1}=\operatorname{dim} A \leq \operatorname{dim} B \leq \operatorname{dim} A^{\prime} \leq n_{1}
$$

and $\operatorname{dim} B=n_{1}=\operatorname{dim} A^{\prime}$. Notice that $B \in M_{i_{k}}(f)$, so $\operatorname{dim} B \leq m_{1}$ and $n_{1} \leq m_{1}$. Conversely, suppose $B \in M_{i_{k}}(f)$ and $\operatorname{dim} B=m_{1}$. From the discussion above, there exist q and some
$A^{\prime} \in M_{j_{k}}(g)$ such that $B \subseteq \psi\left(g\left(V_{q}\right)\right) \subseteq \psi\left(A^{\prime}\right)$. Hence

$$
m_{1}=\operatorname{dim} B \leq \operatorname{dim} A^{\prime} \leq n_{1}
$$

and $m_{1}=n_{1}$. Thus, (2.8.1) implies that $A=\theta(B)$ and that every element $A \in N_{1}$ is an image of some $B \in M_{1}$ under the isomorphism θ. Consequently, $\left|M_{1}\right| \geq\left|N_{1}\right|$. Similarly, from (2.8.2), for each $B \in M_{1}$ there exists $A^{\prime} \in N_{1}$ such that $B=\psi\left(A^{\prime}\right)$, so $\left|M_{1}\right| \leq\left|N_{1}\right|$. Therefore, $\left|M_{1}\right|=\left|N_{1}\right|$ and $\theta\left(M_{1}\right)=N_{1}$.

Now suppose $A \in N_{2}$. By (2.8.1) again, there exists $B \in M_{i_{k}}(f)$ such that $A \subseteq \theta(B)$. If $B \in M_{1}$, then there is some $A^{\prime} \in N_{1}$ such that $A \subseteq \theta(B)=A^{\prime}$ which contradicts the fact that A is maximal. Thus, it must be the case that $B \notin M_{1}$ and $\operatorname{dim}(B)<m_{1}$. While from (2.8.2) we see that there exists some $A^{\prime} \in M_{j_{k}}(g)$ such that $B \subseteq \psi\left(A^{\prime}\right)$. If $\operatorname{dim} A^{\prime}=n_{1}\left(=m_{1}\right)$, since $\theta\left(M_{1}\right)=N_{1}$, then there exists some $B^{\prime} \in M_{1}$ such that $A^{\prime}=\theta\left(B^{\prime}\right)$. Therefore there exists some $B^{\prime \prime} \in M_{1}$ such that $B \subseteq \psi\left(A^{\prime}\right) \subseteq \psi \theta\left(B^{\prime}\right)=B^{\prime \prime}$ holds, contradicting the fact that B is maximal. So $\operatorname{dim} A^{\prime}<n_{1}\left(=m_{1}\right)$ and

$$
n_{2}=\operatorname{dim} A \leq \operatorname{dim} B \leq \operatorname{dim} A^{\prime} \leq n_{2} .
$$

Consequently, $\operatorname{dim} B=n_{2}, A=\theta(B)$ and $n_{2}=m_{2}$. Similarly, we have $\left|N_{2}\right|=\left|M_{2}\right|$ and $\theta\left(M_{2}\right)=N_{2}$. Repeating the discussion above, we finally obtain that

$$
u=v,\left|N_{i}\right|=\left|M_{i}\right|, \theta\left(M_{i}\right)=N_{i}, n_{i}=m_{i}, i=1,2, \ldots, u .
$$

Consequently, $M_{j_{k}}(g)=\theta\left(M_{i_{k}}(f)\right)$ holds. The proof is completed.
By Lemma 2.8 and Theorem 2.5, we can prove the following
Theorem 2.9 In the semigroup $L^{\oplus}(V), \mathcal{D}=\mathcal{J}$.
Proof We only need to show that $\mathcal{J} \subseteq \mathcal{D}$. Suppose $(f, g) \in \mathcal{J}$. From Theorem 2.6, there exist sum-preserving isomorphisms $\phi: f(V) \rightarrow g(V)$ and $\psi: g(V) \rightarrow f(V)$ satisfying the condition in Theorem 2.6. Let $\xi=(\psi \phi)^{r}$. By Lemma 2.7, $\xi: f(V) \rightarrow f(V)$ is a sum-preserving isomorphism satisfying that $\xi\left(V_{i_{k}}^{\prime}\right)=V_{i_{k}}^{\prime}, \xi\left(M_{i_{k}}(f)\right)=M_{i_{k}}(f)(1 \leq k \leq s)$. Denote $\theta=\phi(\psi \phi)^{r-1}$. By Lemma 2.8, $\theta: f(V) \rightarrow g(V)$ is a sum-preserving isomorphism and if $\theta\left(V_{i_{k}}^{\prime}\right)=V_{j_{k}}^{\prime}$, then $M_{j_{k}}(g)=$ $\theta\left(M_{i_{k}}(f)\right)$. Thus θ satisfies the condition of Theorem 2.5, hence $(f, g) \in \mathcal{D}$ and $\mathcal{J}=\mathcal{D}$ holds.

3. Regular elements in $L^{\oplus}(V)$

In this section we consider the condition under which an element in $L^{\oplus}(V)$ is regular and when the semigroup $L^{\oplus}(V)$ is a regular semigroup. And then we investigate the Green's relations for regular elements in the semigroup $L^{\oplus}(V)$.

For $f \in L^{\oplus}(V)$, denote $\operatorname{Fix}(f)=\{x \in V: f(x)=x\}$. The following result is routinely verified and the proof is omitted.

Lemma 3.1 Let $f \in L^{\oplus}(V)$. Then f is idempotent if and only if $f(V)=F i x(f)$.
Lemma 3.2 Suppose $f \in L^{\oplus}(V)$ is an idempotent. Then for each $W \in K(f)$ there exits some
$V_{i} \subseteq W$ such that $f\left(V_{i}\right)=f(W)=V_{i} \cap f(V)$.
Proof Suppose $f(W)=V_{i} \cap f(V)$. Then for each $x \in V_{i} \cap f(V)$, by Lemma 3.1, $x=f(x) \in$ $f\left(V_{i}\right)$ which implies that $V_{i} \cap f(V) \subseteq f\left(V_{i}\right)$. Hence $0 \neq f\left(V_{i}\right) \subseteq V_{j}$ for some j. Notice that $V_{i} \cap f(V) \subseteq f\left(V_{i}\right)$ and $V_{i} \cap f(V)=f\left(V_{i} \cap f(V)\right) \subseteq V_{j}$, so $V_{i}=V_{j}$. Consequently, $f\left(V_{i}\right) \subseteq V_{i}$ and $f\left(V_{i}\right)=V_{i} \cap f(V)$. While $V_{i} \subseteq W$ follows from the definition of $K(f)$.

Theorem 3.3 Let $f \in L^{\oplus}(V)$. Then f is regular if and only if for each i with $V_{i} \cap f(V) \neq 0$ there exists some j such that $f\left(V_{j}\right)=V_{i} \cap f(V)$.

Proof If f is regular, then there exists an idempotent g in $L^{\oplus}(V)$ such that $f \mathcal{L} g$. By Theorem 2.1 we have $\operatorname{ker}(f)=\operatorname{ker}(g)$ and $K(f)=K(g)$. Take a subspace V_{i} such that $V_{i} \cap f(V) \neq 0$. Then there exists $W \in K(f)=K(g)$ such that $f(W)=V_{i} \cap f(V)$. By Lemma 3.2, we can choose $V_{j} \subseteq W$ such that $g\left(V_{j}\right)=g(W)=V_{j} \cap g(V)$. Now $\operatorname{ker}(f)=\operatorname{ker}(g)$ and $g\left(V_{j}\right)=g(W)$ implies that $f\left(V_{j}\right)=f(W)=V_{i} \cap f(V)$ and the necessity holds.

Now suppose that f satisfies the condition and we shall find some idempotent g such that $f \mathcal{L} g$ which of course implies that f is regular. We first define g on each $W \in K(f)$. By hypothesis, there exist i and j such that $V_{j} \subseteq W$ and $f\left(V_{j}\right)=f(W)=V_{i} \cap f(V)$. Take a basis $\left\{e_{u}\right\}$ for $V_{i} \cap f(V)$ and choose $e_{u}^{\prime} \in V_{j}$ such that $f\left(e_{u}^{\prime}\right)=e_{u}$ for each u. Then $\left\{e_{u}^{\prime}\right\}$ is linearly independent. Extend this to a basis $\left\{e_{u}\right\} \cup\left\{d_{v}\right\}$ for W. Then $f\left(d_{v}\right)=0$ for each v. Now define a linear mapping $g: W \rightarrow V_{j}$ such that $g\left(e_{u}^{\prime}\right)=e_{u}^{\prime}$ for each u and $g\left(d_{v}\right)=0$ for each v. For those V_{i} (if exists) with $f\left(V_{i}\right)=0$, define $g(x)=0$ for each $x \in V_{i}$. Thus, we have defined the linear transformation g of V. It is obvious that $g \in L^{\oplus}(V)$ and $g^{2}=g$. By definition of g it readily follows that $K(f)=K(g)$ and $\operatorname{ker}(f)=\operatorname{ker}(g)$. Consequently, $f \mathcal{L} g$ and f is regular in $L^{\oplus}(V)$.

The following example tells us that the semigroup $L^{\oplus}(V)$ is not, in general, a regular semigroup.

Example Let $V=V_{1} \oplus V_{2} \oplus V_{3}$ where V_{1} has a basis $e_{1}, e_{2}, \ldots, e_{n}(n \geq 3), V_{2}$ has a basis $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and V_{3} has a basis $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$. Define a linear transformation $f: V \rightarrow V$ such that

$$
f\left(e_{1}\right)=f\left(\beta_{1}\right)=\alpha_{1}, f\left(\alpha_{1}\right)=f\left(e_{i}\right)=\alpha_{2}, f\left(\alpha_{i}\right)=f\left(\beta_{i}\right)=\alpha_{3}(\text { for } i \neq 1)
$$

Then $f \in L^{\oplus}(V)$ and $V_{2} \cap f(V)=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle$. However, $f\left(V_{1}\right)=\left\langle\alpha_{1}, \alpha_{2}\right\rangle, f\left(V_{2}\right)=\left\langle\alpha_{2}, \alpha_{3}\right\rangle$ and $f\left(V_{3}\right)=\left\langle\alpha_{1}, \alpha_{3}\right\rangle$. It is clear that there is no $j(1 \leq j \leq 3)$ satisfying $V_{2} \cap f(V)=f\left(V_{j}\right)$. By Theorem 3.3, f is not regular in the semigroup $f \in L^{\oplus}(V)$.

Next we investigate when the semigroup $L^{\oplus}(V)$ is a regular semigroup.
Theorem 3.4 The semigroup $L^{\oplus}(V)$ is regular if and only if $m=1$ or $\operatorname{dim} V_{i}=1$ for each i.
Proof If $m=1$, then $V=V_{1}$ is an n dimensional space. Thus, $L^{\oplus}(V)=L(V)$ is a regular semigroup. If $\operatorname{dim} V_{i}=1$ for each i, then V is a direct sum of m one dimensional spaces. Let $f \in L^{\oplus}(V)$. If $V_{i} \cap f(V) \neq 0$, then we have $V_{i} \cap f(V)=V_{i}$ since the subspace $V_{i} \cap f(V)$ must be one dimensional. Notice that there must be some j such that $0 \neq f\left(V_{j}\right)=V_{i}$, otherwise, we would
conclude that $V_{i} \cap f(V)=0$, a contradiction. Consequently, we have $f\left(V_{j}\right)=V_{i} \cap f(V) \neq 0$. By Theorem 3.3, f is regular and $L^{\oplus}(V)$ is a regular semigroup.

Conversely, suppose that $m>1$ and $n \geq 2$. Take a basis $e_{1}, e_{2}, \ldots, e_{n}$ for V_{1}, a basis $g_{1}, g_{2}, \ldots, g_{n}$ for V_{2}. Define $f: V \rightarrow V$ such that $f\left(e_{k}\right)=e_{1}, f\left(g_{k}\right)=e_{2}$ for each k and $f(x)=0$ for any $x \in V_{s}(s \neq 1,2)$. Clearly, $f \in L^{\oplus}(V)$ and $f(V)=\left\langle e_{1}, e_{2}\right\rangle \subseteq V_{1}$. Thus, $V_{1} \cap f(V)=\left\langle e_{1}, e_{2}\right\rangle$. However, there is no j satisfying $V_{1} \cap f(V)=f\left(V_{j}\right)$ which implies that f is not a regular element. Consequently, $L^{\oplus}(V)$ is not a regular semigroup.

Finally, we describe Green's equivalences for regular elements in the semigroups $L^{\oplus}(V)$. We first make some observations.

Theorem 3.5 Let $f, g \in L^{\oplus}(V)$ be regular. If $\operatorname{ker}(f)=\operatorname{ker}(g)$, then $K(f)=K(g)$.
Proof Suppose

$$
W=\oplus\left\{V_{i}: 0 \neq f\left(V_{i}\right) \subseteq V_{j}\right\} \in K(f)
$$

Then $f(W)=V_{j} \cap f(V)$. Since f is regular, by Theorem 3.3, there exists some l such that $f(W)=V_{j} \cap f(V)=f\left(V_{l}\right)$. Suppose $0 \neq g\left(V_{l}\right) \subseteq V_{k}$ for some k. Denote

$$
U=\oplus\left\{V_{s}: 0 \neq g\left(V_{s}\right) \subseteq V_{k}\right\}
$$

By Theorem 3.3 again, there exists some u such that $g(U)=V_{k} \cap g(V)=g\left(V_{u}\right)$. We claim that $W=U$. Actually, from $\operatorname{ker}(f)=\operatorname{ker}(g)$ one routinely verifies that, for each $V_{i} \subseteq W$, $f\left(V_{i}\right) \subseteq f\left(V_{l}\right)$ implies $0 \neq g\left(V_{i}\right) \subseteq g\left(V_{l}\right) \subseteq V_{k}$. Thus, $V_{i} \subseteq U$ and $W \subseteq U$ holds.

On the other hand, since $g\left(V_{u}\right)=V_{k} \cap g(V)$ and $g\left(V_{l}\right) \subseteq V_{k}$, we have $g\left(V_{l}\right) \subseteq g\left(V_{u}\right)$ which together with $\operatorname{ker}(f)=\operatorname{ker}(g)$ implies that $f\left(V_{l}\right) \subseteq f\left(V_{u}\right)$. Therefore,

$$
f\left(V_{l}\right)=V_{j} \cap f(V)=f\left(V_{u}\right)
$$

By $\operatorname{ker}(f)=\operatorname{ker}(g)$ again, we have $g\left(V_{l}\right)=g\left(V_{u}\right)$. Now for each $V_{s} \subseteq U$, we have $0 \neq g\left(V_{s}\right) \subseteq$ $g\left(V_{l}\right)$. Hence $0 \neq f\left(V_{s}\right) \subseteq f\left(V_{l}\right)$. Thus, $V_{s} \subseteq W$ and $U \subseteq W$ holds. Consequently, $U=W$ and $K(f) \subseteq K(g)$. By symmetry, $K(g) \subseteq K(f)$, so $K(f)=K(g)$.

Theorem 3.6 Let $f, g \in L^{\oplus}(V)$ be regular elements. If $f(V)=g(V)$, then, for each i, there exist j, k such that $f\left(V_{i}\right) \subseteq g\left(V_{j}\right), g\left(V_{i}\right) \subseteq f\left(V_{k}\right)$.

Proof If $f\left(V_{i}\right)=0$, then $f\left(V_{i}\right) \subseteq g\left(V_{j}\right)$ holds for arbitrary j. If $0 \neq f\left(V_{i}\right) \subseteq V_{l}$, then

$$
V_{l} \cap g(V)=V_{l} \cap f(V) \neq 0
$$

Since g is regular, there exists j such that $V_{l} \cap g(V)=g\left(V_{j}\right)$. Consequently,

$$
f\left(V_{i}\right) \subseteq V_{l} \cap f(V)=V_{l} \cap g(V)=g\left(V_{j}\right)
$$

By symmetry, for each i, there exists k such that $g\left(V_{i}\right) \subseteq f\left(V_{k}\right)$.
As an immediate consequence of Theorems 2.1, 2.2 and 3.3, we have the following result.
Theorem 3.7 Let $f, g \in L^{\oplus}(V)$ be regular elements. Then
(1) $f \mathcal{L} g$ if and only if $\operatorname{ker}(f)=\operatorname{ker}(g)$.
(2) $f \mathcal{R} g$ if and only if $f(V)=g(V)$.

Finally, we observe the relation \mathcal{D} for regular elements.
Theorem 3.8 Let $f, g \in L^{\oplus}(V)$ be regular elements. Then $f \mathcal{D} g$ if and only if there exists a sum-preserving isomorphism from $f(V)$ onto $g(V)$.

Proof Suppose $f \mathcal{D} g$. Then there exists some $h \in L^{\oplus}(V)$ such that $f \mathcal{L} h$ and $h \mathcal{R} g$. By Theorem 2.1, $\operatorname{ker}(f)=\operatorname{ker}(h)$ and $K(f)=K(h)$. While by Theorem $2.2, h(V)=g(V)$. Denote $K(f)=$ $\left\{W_{1}, \ldots, W_{t}\right\}=K(h)$. Denote $V_{i_{r}}^{\prime}=f\left(W_{r}\right)=V_{i_{r}} \cap f(V)$ and $V_{j_{r}}^{\prime}=h\left(W_{r}\right)=V_{j_{r}} \cap h(V)$, $1 \leq r \leq t$. Then

$$
\begin{gathered}
f(V)=V_{i_{1}}^{\prime} \oplus V_{i_{2}}^{\prime} \oplus \cdots \oplus V_{i_{t}}^{\prime} \\
h(V)=V_{j_{1}}^{\prime} \oplus V_{j_{2}}^{\prime} \oplus \cdots \oplus V_{j_{t}}^{\prime}=g(V) .
\end{gathered}
$$

By the proof of Theorem 2.5, there exists a sum-preserving isomorphism from $f(V)$ onto $h(V)=$ $g(V)$.

Conversely, if there exists a sum-preserving isomorphism ϕ from $f(V)$ onto $g(V)$, define $h: V \rightarrow V$ by $h=\phi f$. Then it is clear that $h \in L^{\oplus}(V), \operatorname{ker}(f)=\operatorname{ker}(h)$ and $K(f)=K(h)$. By Theorem 2.1, $f \mathcal{L} h$. Hence h is also regular. While from the definition of h one easily verifies that $h(V)=g(V)$ and $h \mathcal{R} g$ follows from Theorem 3.7. Consequently, $f \mathcal{D} g$ holds.

References

[1] HOWIE J M. Fundamentals of Semigroup Theory [M]. Oxford University Press, New York, 1995.
[2] HOWIE J M. The subsemigroup generated by the idempotents of a full transformation semigroup [J]. J. London Math. Soc., 1966, 41: 707-716.
[3] ERDOS J A. On products of idempotent matrices [J]. Glasgow Math. J., 1967, 8: 118-122.
[4] DAWLINGS R J H. Products of idempotents in the semigroup of singular endomorphisms of a finitedimensional vector space [J]. Proc. Roy. Soc. Edinburgh Sect. A, 1981, 91(1-2): 123-133.
[5] REYNOLDS M A, SULLIVAN R P. Products of idempotent linear transformations [J]. Proc. Roy. Soc. Edinburgh Sect. A, 1985, 100(1-2): 123-138.
[6] PEI Huisheng. Equivalences, α-semigroups and α-congruences [J]. Semigroup Forum, 1994, 49(1): 49-58.
[7] PEI Huisheng. Regularity and Green's relations for semigroups of transformations that preserve an equivalence [J]. Comm. Algebra, 2005, 33(1): 109-118.
[8] PEI Huisheng. On the rank of the semigroup $T_{E}(X)$ [J]. Semigroup Forum, 2005, 70(1): 107-117.
[9] PEI Huisheng. A regular α-semigroup inducing a certain lattice [J]. Semigroup Forum, 1996, 53(1): 98-113.
[10] PEI Huisheng. Some α-semigroups inducing certain lattices [J]. Semigroup Forum, 1998, 57(1): 48-59.

