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Abstract Let V be a linear space over a field F with finite dimension, L(V ) the semigroup, under

composition, of all linear transformations from V into itself. Suppose that V = V1⊕V2⊕· · ·⊕Vm

is a direct sum decomposition of V , where V1, V2, . . . , Vm are subspaces of V with the same

dimension. A linear transformation f ∈ L(V ) is said to be sum-preserving, if for each i (1 ≤

i ≤ m), there exists some j (1 ≤ j ≤ m) such that f(Vi) ⊆ Vj . It is easy to verify that all

sum-preserving linear transformations form a subsemigroup of L(V ) which is denoted by L⊕(V ).

In this paper, we first describe Green’s relations on the semigroup L⊕(V ). Then we consider

the regularity of elements and give a condition for an element in L⊕(V ) to be regular. Finally,

Green’s equivalences for regular elements are also characterized.

Keywords linear spaces; linear transformations; semigroups; Green’s equivalence; regular

semigroups.
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1. Introduction and preliminaries

Let X be an arbitrary set, TX the full transformation semigroup on the set X and E be an

equivalence relation on X . The first author observed in [6] a class of transformation semigroups

determined by the equivalence E, namely

TE(X) = {f ∈ TX : ∀ (a, b) ∈ E, (f(a), f(b)) ∈ E}.

TE(X) is obviously a subsemigroup of TX . The common nature of all elements in TE(X) is that

they preserve the decomposition induced by the equivalence E. In other words, all f ∈ TE(X)

satisfy the condition that for each E-class A there exists some E-class B such that f(A) ⊆ B.

In recent years, some properties for TE(X) are investigated in many papers. For example, [7]

considered the Green’s equivalences, [9] and [10] discussed some subsemigroups of TE(X) inducing

certain lattices of equivalences on the set X , and [8] investigated the rank of TE(X) for a special

case of X and E.

In this paper we examine a related semigroup defined as follows. Let V be a linear space over

a field F and L(V ) be the semigroup, under composition, of all linear transformations on the
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linear space V . Suppose that V = ⊕{Vi : i ∈ I}, where each Vi is a subspace of V with |I| ≥ 2

and dimVi ≥ 2 for each i. A linear transformation f ∈ L(V ) is called sum-preserving if for each

i ∈ I, there exists some j ∈ I such that f(Vi) ⊆ Vj . It is not hard to verify that if f and g are

sum-preserving, then so is fg. Consequently, all sum-preserving linear transformations form a

subsemigroup of L(V ) which will be denoted by L⊕(V ).

We notice that many conclusions for TX have their parallelism for L(V ). For example, in

1966, Howie[2] characterized the transformations in TX that can be written as a product of finite

number idempotents in TX . Since then Erdos[3] and Dawlings[4] gave different proofs of the result

that when V is finite-dimensional, α ∈ L(V ) is a finite product of proper idempotents in L(V ) if

and only if dim(α(V )) < dimV . Later in 1985, Reynolds and Sullivan[5] investigated the case of

infinite-dimensional spaces and obtained the results similar to Howie’s.

We may compare the elements in L⊕(V ) with that in TE(X) and find that all they are

transformations of a set (or a linear space) preserving some decomposition. Therefore, L⊕(V )

can be regarded as the linear transformation version of the semigroup TE(X).

In this paper, we are going to consider a special case for the direct sum decomposition,

namely, we assume dimVi = n ≥ 2 for each i ∈ I = {1, 2, . . . ,m} with m ≥ 2 while

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, dimVi = n (1 ≤ i ≤ m).

Here we focus our attention to Green’s equivalence relations and the regularity for the semi-

group L⊕(V ). Accordingly, in Section 2, we describe five Green’s relations and conclude that

D = J . In Section 3, we consider the condition for an element f ∈ L⊕(V ) to be regular. By the

way, we describe the Green’s relations for regular elements in the semigroup L⊕(V ).

In order to avoid repeat, in the remainder of the paper, the symbols Vi, Vj , Vl, Vjs
, . . . will

always denote certain subspaces in the direct sum decomposition V = V1⊕V2⊕· · ·⊕Vm without

further mention. In addition, if we have defined a number of linear mappings fi : Vi → Vi′ where

i, i′ ∈ I, then there exists a unique linear transformation f ∈ L⊕(V ) satisfying f |Vi = fi. Finally,

for convenience, we do not distinguish the zero vector 0 and the singleton set {0}. As we have

seen previously, we write f(Vi) = 0 to mean f(Vi) = {0}.

For standard concepts and notations in semigroup theory one can consult [1].

2. Green’s relations

In this section, we focus our attention on Green’s relations for the semigroup L⊕(V ). We

begin with the relation L. Before stating the result, we need some notations.

Let f ∈ L⊕(V ) with Vj ∩ f(V ) 6= 0. Denote Wj = ⊕{Vi : 0 6= f(Vi) ⊆ Vj}. Then it is easy

to see that f(Wj) = Vj ∩ f(V ). Suppose that all the subspaces Vj such that Vj ∩ f(V ) 6= 0

are Vj1 , Vj2 , . . . , Vjt
. Denote K(f) = {Wj1 , . . . ,Wjt

}. Denote by ker(f) the kernel of f , that is,

ker(f) = {x ∈ V : f(x) = 0}.

Theorem 2.1 Let f, g ∈ L⊕(V ). Then fLg if and only if ker(f) = ker(g) and K(f) = K(g).



Green’s relations on a kind of semigroups of linear transformations 933

Proof Suppose fLg. Then there exist u, v ∈ L⊕(V ), such that uf = g and vg = f . Hence

g(ker(f)) = uf(ker(f)) = u(0) = 0.

Thus, ker(f) ⊆ ker(g). Similarly, ker(g) ⊆ ker(f) and ker(f) = ker(g). Suppose that

K(f) = {Wj1 , . . . ,Wjt
} and K(g) = {Ul1, . . . , Uls}.

Without loss of generality, we may assume that u(Vj1) ⊆ Vl1 . So

g(Wj1) = uf(Wj1) ⊆ u(Vj1) ⊆ Vl1 .

Clearly, g(Vi) 6= 0 for each Vi ⊆ Wj1 , since ker(f) = ker(g). Thus Wj1 ⊆ Ul1 . Assume f(Ul1) =

vg(Ul1) ⊆ v(Vl1 ) ⊆ Vp for some p. Notice that f = vg = vuf , f(Wj1 ) ⊆ Vj1 and

f(Wj1) = vuf(Wj1) ⊆ vu(Vj1 ) ⊆ v(Vl1) ⊆ Vp,

we have Vp = Vj1 and f(Ul1) ⊆ Vj1 . By ker(f) = ker(g) again, f(Vi) 6= 0 for each Vi ⊆ Ul1 .

Consequently, Ul1 ⊆Wj1 and Wj1 = Ul1 holds. Similarly, one can verify that each W ∈ K(f) is

equal to some U ∈ K(g) and s = t. Therefore, K(f) = K(g) and the necessity follows.

In order to show the sufficiency, suppose ker(f) = ker(g) and K(f) = K(g). We must find

some u, v ∈ L⊕(V ) satisfying uf = g and vg = f . Denote fi = f |Vi and gi = g|Vi (1 ≤ i ≤ m).

Then kerfi = kergi. While for each W ∈ K(f) = K(g), f |W and g|W are linear mappings and

ker(f |W ) = ker(g|W ). (2.1.1)

If Vj ∩ f(V ) 6= 0, then there exists some W ∈ K(f) = K(g) such that f(W ) = Vj ∩ f(V ),

g(W ) = Vl ∩ g(V ). Let f(W ) = V ′
j ⊆ Vj and g(W ) = V ′

l ⊆ Vl. From (2.1.1), V ′
j and V ′

l

have the same dimension. Without loss of generality, we may assume W = V1 ⊕ V2 ⊕ · · · ⊕ Vt.

Take a basis e1, . . . , er1
, er1+1, . . . , en for V1, a basis α1, . . . , αr2

, αr2+1, . . . , αn for V2, . . ., a basis

β1, . . . , βrt
, βrt+1, . . . , βn for Vt, where er1+1, . . . , en is a basis for ker(f1), αr2+1, . . . , αn is a basis

for ker(f2), . . ., βrt+1, . . . , βn is a basis for ker(ft). Then {ei} ∪ {αi} ∪ · · · ∪ {βi} is a basis

for W . While in the subspace V ′
j , f(e1), . . . , f(er1

) are linearly independent, and so also are

f(α1), . . . , f(αr2
), . . ., and f(β1), . . . , f(βrt

). It is not difficult to see that

V ′

j = 〈f(e1), . . . , f(er1
), f(α1), . . . , f(αr2

), . . . , f(β1), . . . , f(βrt
)〉.

Now we extend f(e1), . . . , f(er1
) to obtain a basis for V ′

j by adding some f(αs) (1 ≤ s ≤

r2), . . ., and f(βk) (1 ≤ k ≤ rt). Without loss of generality, we assume the basis is

f(e1), . . . , f(er1
), f(α1), . . . , f(αp), . . . , f(β1), . . . , f(βq). (2.1.2)

We claim that

g(e1), . . . , g(er1
), g(α1), . . . , g(αp), . . . , g(β1), . . . , g(βq) (2.1.3)

are linearly independent. Otherwise, suppose

r1
∑

i=1

aig(ei) +

p
∑

j=1

bjg(αj) + · · · +

q
∑

k=1

ckg(βk) = 0
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for some ai, bj, ck ∈ F . Let

ξ = a1e1 + · · · + ar1
er1

+ b1α1 + · · · + bpαp + · · · + c1β1 + · · · + cqβq ∈W.

Then g(ξ) = 0 and ξ ∈W ∩ ker(g) = W ∩ ker(f). Hence

0 = f(ξ) =

r1
∑

i=1

aif(ei) +

p
∑

j=1

bjf(αj) + · · · +

q
∑

k=1

ckf(βk).

Notice that (2.1.2) is linearly independent, the above equation implies that

a1 = · · · = ar1
= b1 = · · · = bp = · · · = c1 = · · · = cq = 0.

Thus, (2.1.3) are linearly independent, while being a basis for V ′
l .

Extend (2.1.2) to a basis B for Vj and define a linear mapping uj : Vj → Vl such that

uj(f(e1)) = g(e1), . . . , uj(f(er1
)) = g(er1

),

uj(f(α1)) = g(α1), . . . , uj(f(αp)) = g(αp),

· · ·

uj(f(β1)) = g(β1), . . . , uj(f(βq)) = g(βq),

and for each η ∈ B out of (2.1.2), let uj(η) = 0. For each Vi, if Vi ∩ f(V ) 6= 0, then define ui

on Vi as above. If Vi ∩ f(V ) = 0, then let ui(x) = 0 for each x ∈ Vi. Thus, these ui uniquely

determine a linear transformation u on the linear space V . Obviously, u ∈ L⊕(V ).

Now we verify that uf = g. For each Vi and x ∈ Vi, if f(x) = 0, then g(x) = 0 since

ker(f) = ker(g), and uf(x) = g(x) in this case. If f(x) 6= 0, then there exists some W ∈ K(f)

such that Vi ⊆W . Without loss of generality, we assume

W = V1 ⊕ V2 ⊕ · · · ⊕ Vt,

then f(x) ∈ f(W ) = V ′
j ⊆ Vj . As above, we assume (2.1.2) to be a basis for V ′

j . Then

f(x) =

r1
∑

i=1

aif(ei) +

p
∑

j=1

bjf(αj) + · · · +

q
∑

k=1

ckf(βk) = f(ξ),

where

ξ = a1e1 + · · · + ar1
er1

+ b1α1 + · · · + bpαp + · · · + c1β1 + · · · + cqβq.

Since ker(f) = ker(g), we have g(x) = g(ξ). By the definition of u,

uf(x) = u(

r1
∑

i=1

aif(ei) +

p
∑

j=1

bjf(αj) + · · · +

q
∑

k=1

ckf(βk)) = g(ξ) = g(x).

Thus, uf(x) = g(x) holds for every x ∈ Vi. Consequently, uf(x) = g(x) holds for every x ∈ V

and uf = g. Similarly, one can find v ∈ L⊕(V ) such that vg = f . Therefore, fLg holds. 2

Before describing the relation R on L⊕(V ) some notations should be introduced. Let f ∈

L⊕(V ). If Vj ∩ f(V ) 6= 0, then there exists some Vi such that 0 6= f(Vi) ⊆ Vj . Denote

Pj(f) = {f(Vi) : 0 6= f(Vi) ⊆ Vj}
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and define a partial order ≤ on Pj(f) by letting A ≤ B if and only if A ⊆ B. Denote by Mj(f)

the collection of all maximal elements in Pj(f). Then for each i with 0 6= f(Vi) ⊆ Vj , there exists

some s such that f(Vi) ⊆ f(Vs) ∈Mj(f).

Now we can state and prove the conclusion for the relation R.

Theorem 2.2 Let f, g ∈ L⊕(V ). Then the following statements are equivalent:

(1) fRg.

(2) For each i (1 ≤ i ≤ m) there exist j, k such that f(Vi) ⊆ g(Vj) and g(Vi) ⊆ f(Vk).

(3) f(V ) = g(V ) and Mj(f) = Mj(g) holds for each j with Vj ∩ f(V ) 6= 0.

Proof (1)=⇒(2) Suppose fRg. Then there exist u, v ∈ L⊕(V ) such that fu = g and gv = f .

For each i, there exists some j such that v(Vi) ⊆ Vj . Consequently, f(Vi) = gv(Vi) ⊆ g(Vj).

Similarly, there exists some k such that g(Vi) ⊆ f(Vk) holds.

(2)=⇒(3) It is not difficult to see from (2) that f(V ) ⊆ g(V ) and g(V ) ⊆ f(V ), so f(V ) =

g(V ). Suppose Vj ∩ f(V ) 6= 0 and f(Vi) ∈ Mj(f). Then there exist i1, i2 such that f(Vi) ⊆

g(Vi1) ⊆ f(Vi2 ). From f(Vi) ⊆ Vj ∩ f(Vi2 ), we see that f(Vi2) ⊆ Vj . Since f(Vi) ∈ Mj(f) and

f(Vi) ⊆ f(Vi2), we have f(Vi2) = g(Vi1 ) = f(Vi). Take g(Vi3) ∈Mj(g) such that g(Vi1 ) ⊆ g(Vi3).

By (2) again, there exists i4 such that g(Vi3) ⊆ f(Vi4). Thus,

f(Vi) ⊆ g(Vi1) ⊆ g(Vi3 ) ⊆ f(Vi4) ⊆ Vj

which implies that f(Vi4) = f(Vi) = g(Vi3 ) ∈Mj(g) and that Mj(f) ⊆Mj(g). By symmetry, we

have Mj(g) ⊆Mj(f) and therefore Mj(f) = Mj(g) holds.

(3)=⇒(1) Suppose that f(V ) = g(V ) andMj(f) = Mj(g) holds for each j with Vj∩f(V ) 6= 0.

We first look for some h ∈ L⊕(V ) such that fh = g. For each Vi, if g(Vi) = 0, then define h(x) = 0

for each x ∈ Vi. If there is some j such that 0 6= g(Vi) ⊆ Vj , then there is some A ∈ Mj(g) =

Mj(f) such that g(Vi) ⊆ A. Denote gi = g|Vi and assume A = f(Vs) = g(Vt). Take a basis

e1, . . . , er, er+1, . . . , en for Vi where er+1, . . . , en is a basis for ker(gi). Then g(e1), g(e2), . . . , g(er)

are linearly independent. Let fs = f |Vs : Vs → Vj . Choose e′1, e
′
2, . . . , e

′
r ∈ Vs such that

fs(e
′

1) = g(e1), fs(e
′

2) = g(e2), . . . , fs(e
′

r) = g(er).

Then e′1, e
′
2, . . . , e

′
r are linearly independent. Define a linear mapping hi : Vi → Vs such that

hi(e1) = e′1, . . . , hi(er) = e′r, hi(er+1) = 0, . . . , hi(en) = 0.

Then for each vector x = a1e1 + · · · + arer + ar+1er+1 + · · · + anen ∈ Vi, we have

fhi(x) = f(a1hi(e1) + · · · + arhi(er)) = f(a1e
′

1 + · · · + are
′

r)

= a1f(e′1) + · · · + arf(e′r) = a1g(e1) + · · · + arg(er)

= g(x).

These hi defined on each Vi determine a linear transformation h on V . It is obvious that

h ∈ L⊕(V ) and fh = g. By symmetry, there exists k ∈ L⊕(V ) such that gk = f holds.

Therefore, fRg. 2
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As an immediate consequence of Theorems 2.1 and 2.2, we have the following

Theorem 2.3 Let f, g ∈ L⊕(V ). Then the following statements are equivalent:

(1) (f, g) ∈ H.

(2) ker(f) = ker(g), K(f) = K(g) and for each i (1 ≤ i ≤ m), there exist j, k such that

f(Vi) ⊆ g(Vj), g(Vi) ⊆ f(Vk).

Let f ∈ L⊕(V ) and assume that all the subspaces Vi with f(V )∩ Vi 6= 0 are Vi1 , Vi2 , . . . , Vis
.

Denote V ′
it

= f(V ) ∩ Vit
(1 ≤ t ≤ s). Then one easily verifies that

f(V ) = V ′

i1
⊕ V ′

i2
⊕ · · · ⊕ V ′

is
.

The following concept will be useful in describing the relations D and J on L⊕(V ).

Definition 2.4 Let U and W be two subspaces of V where

U = V ′

i1
⊕ V ′

i2
⊕ · · · ⊕ V ′

ik
and W = V ′

j1
⊕ V ′

j2
⊕ · · · ⊕ V ′

jk

and each V ′
is

is a non-zero subspace of Vis
while each V ′

js
is a non-zero subspace of Vjs

. If

φ : U → W is an isomorphism such that for each s (1 ≤ s ≤ k) there exists a unique r (1 ≤ r ≤ k)

such that φ(V ′
is

) = V ′
jr

, then φ is called a sum-preserving isomorphism.

Suppose that f, g ∈ L⊕(V ) and φ : f(V ) → g(V ) is a sum-preserving isomorphism satisfying

φ(Vi ∩ f(V )) = Vj ∩ g(V ). If for each A ∈ Mj(g), there exists B ∈ Mi(f) such that φ(B) = A,

while for each C ∈Mi(f) there exists D ∈Mj(g) such that φ(C) = D, then we write φ(Mi(f)) =

Mj(g).

Next we consider the condition for two elements in L⊕(V ) to be D equivalent.

Theorem 2.5 Let f, g ∈ L⊕(V ). Then fDg if and only if there exists a sum-preserving

isomorphism φ : f(V ) → g(V ) such that for each i with f(V ) ∩ Vi 6= 0, there exists some j such

that φ(f(V ) ∩ Vi) = g(V ) ∩ Vj and φ(Mi(f)) = Mj(g).

Proof Suppose fDg. Then there exists h ∈ L⊕(V ) such that fLh and hRg. From Theorems

2.1 and 2.2, we have ker(f) = ker(h), K(f) = K(h), h(V ) = g(V ) and Mj(h) = Mj(g) holds for

each j with h(V ) ∩ Vj 6= 0.

We first establish the isomorphism φ from f(V ) onto h(V ). Suppose f(V )∩Vi 6= 0. TakeW ∈

K(f) = K(h) such that f(W ) = f(V ) ∩ Vi. Then there is some j such that h(W ) = h(V ) ∩ Vj .

Since ker(f) = ker(h), we have ker(f |W ) = ker(h|W ) and dimf(W )= dimh(W ) which implies

that f(W ) and h(W ) are isomorphic. Take a basis e1, e2, . . . , er for f(W ) = f(V )∩Vi and choose

w1, w2, . . . , wr ∈W such that

f(w1) = e1, f(w2) = e2, . . . , f(wr) = er.

Then w1, w2, . . . , wr are linearly independent.

Let

e′1 = h(w1), e
′

2 = h(w2), . . . , e
′

r = h(wr).

Then e′1, e
′
2, . . . , e

′
r are linearly independent while being a basis for h(W ). Define a linear mapping
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φi : f(V )∩ Vi → h(V )∩ Vj such that φi(et) = e′t, t = 1, 2, . . . , r. Then φi is an isomorphism and

φif(x) = h(x) for each x ∈ W . Suppose

Mi(f) = {f(Vi1), f(Vi2 ), . . . , f(Vis
)}.

By virtue of ker(f) = ker(h), one routinely verifies that

Mj(h) = {h(Vi1), h(Vi2 ), . . . , h(Vis
)}.

Besides, since Vi1 , Vi2 , . . . , Vis
are contained in W and φif = h on W , we have

φi(f(Vi1)) = h(Vi1), . . . , φi(f(Vis
)) = h(Vis

)

which implies that φi(Mi(f)) = Mj(h). Notice that h(V ) = g(V ) and Mj(h) = Mj(g), it is

evident that φi : f(V ) ∩ Vi → g(V ) ∩ Vj is an isomorphism satisfying φi(Mi(f)) = Mj(g).

Furthermore, we obtain the isomorphism φ from f(V ) onto g(V ) determined by these φi on

f(V ) ∩ Vi. Clearly, φ is a sum-preserving isomorphism as required.

Conversely, suppose that there exists a sum-preserving isomorphism φ : f(V ) → g(V ) sat-

isfying the condition of the theorem. Let h = φf . Then h ∈ L⊕(V ), h(V ) = g(V ) and

ker(f) = ker(h). Assume W ∈ K(f) with f(W ) = f(V ) ∩ Vi 6= 0. Then there exists j such that

h(W ) = φf(W ) = φ(f(V ) ∩ Vi) = g(V ) ∩ Vj = h(V ) ∩ Vj ⊆ Vj .

Notice that f(Vi) 6= 0 for every Vi ⊆W and that ker(f) = ker(h), it readily follows that h(Vi) 6= 0

for every Vi ⊆W . Denote W ′ = ⊕{Vi : 0 6= h(Vi) ⊆ Vj}. Then W ′ ∈ K(h) and W ⊆W ′. Hence

K(f) refines K(h). Take W ∗ ∈ K(h). Then there exists some s, such that

φf(W ∗) = h(W ∗) = h(V ) ∩ Vs = g(V ) ∩ Vs.

Since φ is a sum-preserving isomorphism, there exists some t such that

φ(f(W ∗)) = g(V ) ∩ Vs = φ(f(V ) ∩ Vt).

It follows that f(W ∗) = f(V )∩Vt and that W ∗ is contained in some W ∈ K(f). So K(h) refines

K(f) as well and K(f) = K(h). Consequently, fLh holds.

Finally we verify that hRg. As we have seen above that h(V ) = g(V ). Now for each Vi with

g(V ) ∩ Vi 6= 0, there exists some j such that φ(f(V ) ∩ Vj) = g(V ) ∩ Vi and φ(Mj(f)) = Mi(g).

Then

h(V ) ∩ Vi = φf(V ) ∩ Vi = g(V ) ∩ Vi = φ(f(V ) ∩ Vj),

which together with ker(f) = ker(h) and K(f) = K(h) implies that Mi(h) = φ(Mj(f)) = Mi(g)

and hRg. Consequently, fDg follows and the proof is completed. 2

Now we consider the final Green relation J on the semigroup L⊕(V ).

Theorem 2.6 Let f, g ∈ L⊕(V ). Then fJ g if and only if there exist sum-preserving isomor-

phisms

φ : f(V ) → g(V ) and ψ : g(V ) → f(V ),

such that for each i, there exist p, q such that f(Vi) ⊆ ψ(g(Vp)), g(Vi) ⊆ φ(f(Vq)).
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Proof Suppose fJ g. Then there exist h, k, u, v ∈ L⊕(V ) such that hfk = g and ugv = f .

Thus, uhfkv(V ) = f(V ). Since fkv(V ) is a subspace of f(V ) and

dimf(V ) = dimuhfkv(V ) ≤ dimfkv(V ) ≤ dimf(V ),

we have dimfkv(V ) = dimf(V ) and fkv(V ) = fk(V ) = f(V ). Similarly, g(V ) = gv(V ).

Consequently, from hf(V ) = h(fk(V )) = g(V ) we see that dimg(V ) ≤ dimf(V ). By symmetry,

dimf(V ) ≤ dimg(V ). Thus, dimf(V ) = dimg(V ) and f(V ) is isomorphic to g(V ). Let φ =

h|f(V ) and ψ = u|g(V ). Then φ : f(V ) → g(V ) and ψ : g(V ) → f(V ) are isomorphisms. Next

we verify that both φ and ψ are sum-preserving. Suppose

f(V ) = V ′

i1
⊕ V ′

i2
⊕ · · · ⊕ V ′

it
and g(V ) = V ′

j1
⊕ V ′

j2
⊕ · · · ⊕ V ′

js

where V ′
ip

= f(V ) ∩ Vip
, 1 ≤ p ≤ t and V ′

jq
= g(V ) ∩ Vjq

, 1 ≤ q ≤ s. Since h is sum-preserving,

for each p there exists a unique q such that φ(V ′
ip

) ⊆ V ′
jq

. Notice that φ is surjective, it must be

the case that t ≥ s. By symmetry, s ≥ t and t = s. Thus, φ(V ′
ip

) = V ′
jq

and φ maps different

V ′
ip

into different V ′
jq

isomorphically. Hence φ is a sum-preserving isomorphism. Similarly, ψ is

sum-preserving isomorphism as well.

Now for each i, there exists some p such that v(Vi) ⊆ Vp. Then f(Vi) = ugv(Vi) ⊆ ug(Vp) =

ψ(g(Vp)). By symmetry, there exists q such that g(Vi) ⊆ φ(f(Vq)), and the necessity follows.

Conversely, suppose the condition holds and we need to show that fJ g. We first look for

some h, k ∈ L⊕(V ) such that hfk = g. For each i, if g(Vi) = 0, then define k(x) = 0 for

every x ∈ Vi. If g(Vi) 6= 0, choose a basis e1, . . . , er, er+1, . . . , en for Vi such that g(er+1) =

0, . . . , g(en) = 0 and g(e1), . . . , g(er) are linearly independent. By hypothesis, there exists Vq

such that g(Vi) ⊆ φ(f(Vq)). Take linearly independent vectors ε1, ε2, . . . , εr in Vq such that

g(e1) = φf(ε1), g(e2) = φf(ε2), . . . , g(er) = φf(εr).

Define a linear mapping k from Vi into Vq such that

k(e1) = ε1, k(e2) = ε2, . . . , k(er) = εr, k(er+1) = 0, . . . , k(en) = 0.

One easily verifies that g(x) = φfk(x) holds for each x ∈ Vi. Thus, these k defined on each Vi

determine uniquely a linear transformation k of V . Clearly, k ∈ L⊕(V ) and g(x) = φfk(x) for

each x ∈ V .

Now we define the linear transformation h. For each Vj with Vj ∩ f(V ) = 0, define h(x) = 0

for every x ∈ Vj . For those Vj with f(V ) ∩ Vj 6= 0, since φ is sum-preserving, there exists some

l such that φ(f(V ) ∩ Vj) = g(V ) ∩ Vl. Take a basis e1, . . . , er for f(V ) ∩ Vj and extend this to a

basis

e1, . . . , er, er+1, . . . , en

for Vj . Define a linear mapping h from Vj into Vl such that

h(e1) = φ(e1), . . . , h(er) = φ(er), h(er+1) = 0, . . . , h(en) = 0.

Then one routinely verifies that h|(f(V ) ∩ Vj) = φ|(f(V ) ∩ Vj). Consequently, there exists a

unique linear transformation h on V determined by these linear mappings h defined on each
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Vj . Clearly, h ∈ L⊕(V ), h|f(V ) = φ and g(x) = φfk(x) = hfk(x) holds for arbitrary x ∈ V .

Consequently, g = hfk. By symmetry, there exist u, v ∈ L⊕(V ) such that ugv = f and it follows

that fJ g. 2

It is well-known that D ⊆ J for every semigroup. In what follows, we will soon see that

D = J for the semigroups L⊕(V ).

Suppose f, g ∈ L⊕(V ) and fJ g. Assume that

f(V ) = V ′

i1
⊕ V ′

i2
⊕ · · · ⊕ V ′

is
, g(V ) = V ′

j1
⊕ V ′

j2
⊕ · · · ⊕ V ′

js

and φ : f(V ) → g(V ), ψ : g(V ) → f(V ) are both sum-preserving isomorphisms satisfying the

condition in Theorem 2.6. Then we have the following two lemmas.

Lemma 2.7 There exists a positive integer r such that (ψφ)r : f(V ) → f(V ) is a sum-

preserving isomorphism such that

(ψφ)r(V ′

ik
) = V ′

ik
and (ψφ)r(Mik

(f)) = Mik
(f)

holds for each k (1 ≤ k ≤ s).

Proof It is clear that ψφ : f(V ) → f(V ) is a sum-preserving isomorphism and for each ik,

there exists a unique i′k such that

ψφ(V ′

ik
) = V ′

i′
k
, k = 1, 2, . . . , s.

Thus, ψφ induces a permutation ρ of the set {i1, i2, . . . , is} where

ρ =

(

i1 i2 · · · is

i′1 i′2 · · · i′s

)

.

By the property of permutations, there exists a positive integer r such that ρr is the identity

permutation of the set {i1, i2, . . . , is}. Let ξ = (ψφ)r . Then ξ : f(V ) → f(V ) is a sum-preserving

isomorphism satisfying ξ(V ′
ik

) = V ′
ik

, k = 1, 2, . . . , s.

In order to show the remainder, we assumeMi1(f) = M1∪M2∪· · ·∪Mu, whereMr(1 ≤ r ≤ u)

is the collection of those A in Mi1(f) with dimA = mr, and m1 > m2 > · · · > mu ≥ 1. By

Theorem 2.6, for each A ∈Mi1(f) there is some p such that A ⊆ ψ(g(Vp)). While there is some q

such that g(Vp) ⊆ φ(f(Vq)). Hence A ⊆ ψφ(f(Vq)). Repeating the discussion, there exists some

p(A) (1 ≤ p(A) ≤ m) such that

A ⊆ (ψφ)r(f(Vp(A))) = ξ(f(Vp(A))). (2.7.1)

Since ξ is sum-preserving and ξ(V ′
i1

) = V ′
i1

, one routinely verifies that f(Vp(A)) ⊆ V ′
i1

.

We first verify

{f(Vp(A)) : A ∈M1} = M1. (2.7.2)

Suppose A ∈ M1. Then dimf(Vp(A)) ≤ m1 since m1 is the maximal dimension of the elements

in Mi1(f). Now by (2.7.1), we have

dimf(Vp(A)) ≥ dimA = m1.



940 PEI H S and LU F M

Therefore, dimf(Vp(A)) = m1 and f(Vp(A)) ∈ M1. Thus, {f(Vp(A)) : A ∈ M1} ⊆ M1. From

(2.7.1) it follows that A = ξ(f(Vp(A))) for each A ∈ M1. Notice that ξ is a sum-preserving

isomorphism and that M1 is a finite set, it is clear that (2.7.2) holds. Consequently, we have

ξ(M1) = M1.

Next we verify that

{f(Vp(B)) : B ∈M2} = M2. (2.7.3)

Suppose B ∈ M2. By (2.7.1) again, we have dimf(Vp(B)) ≥ dimB = m2. If dimf(Vp(B)) > m2,

then there exists A ∈M1 such that f(Vp(B)) ⊆ A. Consequently,

B ⊆ ξ(f(Vp(B))) ⊆ ξ(A) ∈M1,

which contradicts the hypothesis thatB is a maximal element in Pi1 (f). Hence dimf(Vp(B)) = m2

and B = ξ(f(Vp(B))). While f(Vp(B)) cannot be contained in any element of M1. Consequently,

f(Vp(B)) ∈M2 for each B ∈M2 and (2.7.3) follows. While we also have ξ(M2) = M2. Go on in

this way, we can finally get

{f(Vp(A)) : A ∈Mi} = Mi and ξ(Mi) = Mi, i = 1, 2, . . . , u.

Furthermore, Mi1(f) = ξ(Mi1(f)) holds. One similarly verifies that Mik
(f) = ξ(Mik

(f)) holds

for k = 2, . . . , s. The proof is completed. 2

Lemma 2.8 Let θ = φ(ψφ)r−1. Then θ : f(V ) → g(V ) is a sum-preserving isomorphism.

Moreover, if θ(V ′
ik

) = V ′
jk

, then Mjk
(g) = θ(Mik

(f)).

Proof θ is clearly a sum-preserving isomorphism and ξ = ψθ. Denote

Mik
(f) = M1 ∪M2 ∪ · · · ∪Mu and Mjk

(g) = N1 ∪N2 ∪ · · · ∪Nv,

where dimB = mr for each B ∈ Mr (1 ≤ r ≤ u) and dimA = nt for each A ∈ Nt (1 ≤ t ≤ v)

with m1 > m2 > · · · > mu ≥ 1 and n1 > n2 > · · · > nv ≥ 1. Suppose θ(V ′
ik

) = V ′
jk

, then

ψ(V ′

jk
) = ψθ(V ′

ik
) = ξ(V ′

ik
) = V ′

ik
.

For each A ∈ Mjk
(g) there exists some p such that f(Vp) ⊆ V ′

ik
and A ⊆ θ(f(Vp)). Moreover,

there exists some B ∈Mik
(f) with f(Vp) ⊆ B. Consequently,

A ⊆ θ(f(Vp)) ⊆ θ(B). (2.8.1)

By Theorem 2.6, for this B there exists some q such that B ⊆ ψ(g(Vq)) and it is clear that

g(Vq) ⊆ V ′
jk

. Thus there is A′ ∈Mjk
(g) such that g(Vq) ⊆ A′. Hence we have

B ⊆ ψ(g(Vq)) ⊆ ψ(A′). (2.8.2)

Suppose A ∈ N1. Then dimA = n1. By (2.8.1) and (2.8.2), we have

n1 = dimA ≤ dimB ≤ dimA′ ≤ n1

and dimB = n1 = dimA′. Notice that B ∈ Mik
(f), so dimB ≤ m1 and n1 ≤ m1. Conversely,

suppose B ∈ Mik
(f) and dimB = m1. From the discussion above, there exist q and some
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A′ ∈Mjk
(g) such that B ⊆ ψ(g(Vq)) ⊆ ψ(A′). Hence

m1 = dimB ≤ dimA′ ≤ n1

and m1 = n1. Thus, (2.8.1) implies that A = θ(B) and that every element A ∈ N1 is an image of

some B ∈ M1 under the isomorphism θ. Consequently, |M1| ≥ |N1|. Similarly, from (2.8.2), for

each B ∈M1 there exists A′ ∈ N1 such that B = ψ(A′), so |M1| ≤ |N1|. Therefore, |M1| = |N1|

and θ(M1) = N1.

Now suppose A ∈ N2. By (2.8.1) again, there exists B ∈ Mik
(f) such that A ⊆ θ(B). If

B ∈ M1, then there is some A′ ∈ N1 such that A ⊆ θ(B) = A′ which contradicts the fact that

A is maximal. Thus, it must be the case that B 6∈ M1 and dim(B) < m1. While from (2.8.2)

we see that there exists some A′ ∈ Mjk
(g) such that B ⊆ ψ(A′). If dimA′ = n1 (= m1), since

θ(M1) = N1, then there exists some B′ ∈M1 such that A′ = θ(B′). Therefore there exists some

B′′ ∈M1 such that B ⊆ ψ(A′) ⊆ ψθ(B′) = B′′ holds, contradicting the fact that B is maximal.

So dimA′ < n1 (= m1) and

n2 = dimA ≤ dimB ≤ dimA′ ≤ n2.

Consequently, dimB = n2, A = θ(B) and n2 = m2. Similarly, we have |N2| = |M2| and

θ(M2) = N2. Repeating the discussion above, we finally obtain that

u = v, |Ni| = |Mi|, θ(Mi) = Ni, ni = mi, i = 1, 2, . . . , u.

Consequently, Mjk
(g) = θ(Mik

(f)) holds. The proof is completed. 2

By Lemma 2.8 and Theorem 2.5, we can prove the following

Theorem 2.9 In the semigroup L⊕(V ), D = J .

Proof We only need to show that J ⊆ D. Suppose (f, g) ∈ J . From Theorem 2.6, there exist

sum-preserving isomorphisms φ : f(V ) → g(V ) and ψ : g(V ) → f(V ) satisfying the condition in

Theorem 2.6. Let ξ = (ψφ)r . By Lemma 2.7, ξ : f(V ) → f(V ) is a sum-preserving isomorphism

satisfying that ξ(V ′
ik

) = V ′
ik

, ξ(Mik
(f)) = Mik

(f) (1 ≤ k ≤ s). Denote θ = φ(ψφ)r−1. By Lemma

2.8, θ : f(V ) → g(V ) is a sum-preserving isomorphism and if θ(V ′
ik

) = V ′
jk

, then Mjk
(g) =

θ(Mik
(f)). Thus θ satisfies the condition of Theorem 2.5, hence (f, g) ∈ D and J = D holds. 2

3. Regular elements in L
⊕(V )

In this section we consider the condition under which an element in L⊕(V ) is regular and

when the semigroup L⊕(V ) is a regular semigroup. And then we investigate the Green’s relations

for regular elements in the semigroup L⊕(V ).

For f ∈ L⊕(V ), denote Fix(f) = {x ∈ V : f(x) = x}. The following result is routinely

verified and the proof is omitted.

Lemma 3.1 Let f ∈ L⊕(V ). Then f is idempotent if and only if f(V ) = Fix(f).

Lemma 3.2 Suppose f ∈ L⊕(V ) is an idempotent. Then for each W ∈ K(f) there exits some
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Vi ⊆W such that f(Vi) = f(W ) = Vi ∩ f(V ).

Proof Suppose f(W ) = Vi ∩ f(V ). Then for each x ∈ Vi ∩ f(V ), by Lemma 3.1, x = f(x) ∈

f(Vi) which implies that Vi ∩ f(V ) ⊆ f(Vi). Hence 0 6= f(Vi) ⊆ Vj for some j. Notice that

Vi ∩ f(V ) ⊆ f(Vi) and Vi ∩ f(V ) = f(Vi ∩ f(V )) ⊆ Vj , so Vi = Vj . Consequently, f(Vi) ⊆ Vi and

f(Vi) = Vi ∩ f(V ). While Vi ⊆W follows from the definition of K(f). 2

Theorem 3.3 Let f ∈ L⊕(V ). Then f is regular if and only if for each i with Vi ∩ f(V ) 6= 0

there exists some j such that f(Vj) = Vi ∩ f(V ).

Proof If f is regular, then there exists an idempotent g in L⊕(V ) such that fLg. By Theorem

2.1 we have ker(f) = ker(g) and K(f) = K(g). Take a subspace Vi such that Vi ∩ f(V ) 6= 0.

Then there exists W ∈ K(f) = K(g) such that f(W ) = Vi∩f(V ). By Lemma 3.2, we can choose

Vj ⊆ W such that g(Vj) = g(W ) = Vj ∩ g(V ). Now ker(f) = ker(g) and g(Vj) = g(W ) implies

that f(Vj) = f(W ) = Vi ∩ f(V ) and the necessity holds.

Now suppose that f satisfies the condition and we shall find some idempotent g such that fLg

which of course implies that f is regular. We first define g on each W ∈ K(f). By hypothesis,

there exist i and j such that Vj ⊆ W and f(Vj) = f(W ) = Vi ∩ f(V ). Take a basis {eu} for

Vi∩f(V ) and choose e′u ∈ Vj such that f(e′u) = eu for each u. Then {e′u} is linearly independent.

Extend this to a basis {eu}∪{dv} for W . Then f(dv) = 0 for each v. Now define a linear mapping

g : W → Vj such that g(e′u) = e′u for each u and g(dv) = 0 for each v. For those Vi (if exists)

with f(Vi) = 0, define g(x) = 0 for each x ∈ Vi. Thus, we have defined the linear transformation

g of V . It is obvious that g ∈ L⊕(V ) and g2 = g. By definition of g it readily follows that

K(f) = K(g) and ker(f) = ker(g). Consequently, fLg and f is regular in L⊕(V ). 2

The following example tells us that the semigroup L⊕(V ) is not, in general, a regular semi-

group.

Example Let V = V1 ⊕ V2 ⊕ V3 where V1 has a basis e1, e2, . . . , en (n ≥ 3), V2 has a basis

α1, α2, . . . , αn and V3 has a basis β1, β2, . . . , βn. Define a linear transformation f : V → V such

that

f(e1) = f(β1) = α1, f(α1) = f(ei) = α2, f(αi) = f(βi) = α3 (for i 6= 1).

Then f ∈ L⊕(V ) and V2 ∩ f(V ) = 〈α1, α2, α3〉. However, f(V1) = 〈α1, α2〉, f(V2) = 〈α2, α3〉

and f(V3) = 〈α1, α3〉. It is clear that there is no j (1 ≤ j ≤ 3) satisfying V2 ∩ f(V ) = f(Vj). By

Theorem 3.3, f is not regular in the semigroup f ∈ L⊕(V ).

Next we investigate when the semigroup L⊕(V ) is a regular semigroup.

Theorem 3.4 The semigroup L⊕(V ) is regular if and only if m = 1 or dimVi = 1 for each i.

Proof If m = 1, then V = V1 is an n dimensional space. Thus, L⊕(V ) = L(V ) is a regular

semigroup. If dimVi = 1 for each i, then V is a direct sum of m one dimensional spaces. Let

f ∈ L⊕(V ). If Vi ∩ f(V ) 6= 0, then we have Vi ∩ f(V ) = Vi since the subspace Vi ∩ f(V ) must be

one dimensional. Notice that there must be some j such that 0 6= f(Vj) = Vi, otherwise, we would
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conclude that Vi ∩ f(V ) = 0, a contradiction. Consequently, we have f(Vj) = Vi ∩ f(V ) 6= 0. By

Theorem 3.3, f is regular and L⊕(V ) is a regular semigroup.

Conversely, suppose that m > 1 and n ≥ 2. Take a basis e1, e2, . . . , en for V1, a basis

g1, g2, . . . , gn for V2. Define f : V → V such that f(ek) = e1, f(gk) = e2 for each k and

f(x) = 0 for any x ∈ Vs (s 6= 1, 2). Clearly, f ∈ L⊕(V ) and f(V ) = 〈e1, e2〉 ⊆ V1. Thus,

V1 ∩ f(V ) = 〈e1, e2〉. However, there is no j satisfying V1 ∩ f(V ) = f(Vj) which implies that f

is not a regular element. Consequently, L⊕(V ) is not a regular semigroup. 2

Finally, we describe Green’s equivalences for regular elements in the semigroups L⊕(V ). We

first make some observations.

Theorem 3.5 Let f, g ∈ L⊕(V ) be regular. If ker(f) = ker(g), then K(f) = K(g).

Proof Suppose

W = ⊕{Vi : 0 6= f(Vi) ⊆ Vj} ∈ K(f).

Then f(W ) = Vj ∩ f(V ). Since f is regular, by Theorem 3.3, there exists some l such that

f(W ) = Vj ∩ f(V ) = f(Vl). Suppose 0 6= g(Vl) ⊆ Vk for some k. Denote

U = ⊕{Vs : 0 6= g(Vs) ⊆ Vk}.

By Theorem 3.3 again, there exists some u such that g(U) = Vk ∩ g(V ) = g(Vu). We claim

that W = U . Actually, from ker(f) = ker(g) one routinely verifies that, for each Vi ⊆ W ,

f(Vi) ⊆ f(Vl) implies 0 6= g(Vi) ⊆ g(Vl) ⊆ Vk. Thus, Vi ⊆ U and W ⊆ U holds.

On the other hand, since g(Vu) = Vk ∩ g(V ) and g(Vl) ⊆ Vk, we have g(Vl) ⊆ g(Vu) which

together with ker(f) = ker(g) implies that f(Vl) ⊆ f(Vu). Therefore,

f(Vl) = Vj ∩ f(V ) = f(Vu).

By ker(f) = ker(g) again, we have g(Vl) = g(Vu). Now for each Vs ⊆ U , we have 0 6= g(Vs) ⊆

g(Vl). Hence 0 6= f(Vs) ⊆ f(Vl). Thus, Vs ⊆ W and U ⊆ W holds. Consequently, U = W and

K(f) ⊆ K(g). By symmetry, K(g) ⊆ K(f), so K(f) = K(g). 2

Theorem 3.6 Let f , g ∈ L⊕(V ) be regular elements. If f(V ) = g(V ), then, for each i, there

exist j, k such that f(Vi) ⊆ g(Vj), g(Vi) ⊆ f(Vk).

Proof If f(Vi) = 0, then f(Vi) ⊆ g(Vj) holds for arbitrary j. If 0 6= f(Vi) ⊆ Vl, then

Vl ∩ g(V ) = Vl ∩ f(V ) 6= 0.

Since g is regular, there exists j such that Vl ∩ g(V ) = g(Vj). Consequently,

f(Vi) ⊆ Vl ∩ f(V ) = Vl ∩ g(V ) = g(Vj).

By symmetry, for each i, there exists k such that g(Vi) ⊆ f(Vk). 2

As an immediate consequence of Theorems 2.1, 2.2 and 3.3, we have the following result.

Theorem 3.7 Let f, g ∈ L⊕(V ) be regular elements. Then

(1) fLg if and only if ker(f) = ker(g).
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(2) fRg if and only if f(V ) = g(V ).

Finally, we observe the relation D for regular elements.

Theorem 3.8 Let f , g ∈ L⊕(V ) be regular elements. Then fDg if and only if there exists a

sum-preserving isomorphism from f(V ) onto g(V ).

Proof Suppose fDg. Then there exists some h ∈ L⊕(V ) such that fLh and hRg. By Theorem

2.1, ker(f) = ker(h) and K(f) = K(h). While by Theorem 2.2, h(V ) = g(V ). Denote K(f) =

{W1, . . . ,Wt} = K(h). Denote V ′
ir

= f(Wr) = Vir
∩ f(V ) and V ′

jr
= h(Wr) = Vjr

∩ h(V ),

1 ≤ r ≤ t. Then

f(V ) = V ′

i1
⊕ V ′

i2
⊕ · · · ⊕ V ′

it
,

h(V ) = V ′

j1
⊕ V ′

j2
⊕ · · · ⊕ V ′

jt
= g(V ).

By the proof of Theorem 2.5, there exists a sum-preserving isomorphism from f(V ) onto h(V ) =

g(V ).

Conversely, if there exists a sum-preserving isomorphism φ from f(V ) onto g(V ), define

h : V → V by h = φf . Then it is clear that h ∈ L⊕(V ), ker(f) = ker(h) and K(f) = K(h).

By Theorem 2.1, fLh. Hence h is also regular. While from the definition of h one easily verifies

that h(V ) = g(V ) and hRg follows from Theorem 3.7. Consequently, fDg holds. 2
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