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Abstract Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm ⊂ G, and

ui ∈ V (Cm). The G − E(Cm) are m trees, denoted by Ti, i = 1, 2, . . . , m. For i = 1, 2, . . . , m,

let eui
be the excentricity of ui in Ti and

ec = max{eui
: i = 1, 2, . . . , m}.

Let k = ec+1. For j = 1, 2, . . . , k − 1, let

δij = max{dv : dist(v, ui) = j, v ∈ Ti},

δj = max{δij : i = 1, 2, . . . , m},

δ0 = max{dui
: ui ∈ V (Cm)}.

Then

λ1(G) ≤ max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}.

If G ∼= Cn, then the equality holds, where λ1(G) is the largest eigenvalue of the adjacency matrix

of G.
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1. Introduction

Let G = (V, E) be a simple undirected connected graph. Let A(G) be the adjacency matrix

of G, which is real symmetric matrix. Let λ1(G) be the largest eigenvalue of A(G). Let dv denote

the degree of v ∈ V and ∆ denote the largest vertex degree of G.

Let T be a tree with largest vertex degree ∆. In [1], Godsil proved that

λ1(T ) < 2
√

∆ − 1. (1)

For (1), Stevanović proved (1) again in [2, Theorem1, p.36] in a different way.
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Definition 1 Let T be a tree. If x and y are nonadjacent vertices of T , then T +xy is obtained

from T by joining x to y. T + xy just contains one cycle and is called unicyclic graph.

In [3], Hu proved that: If G is a unicyclic graph and ∆ is the maximum vertex degree, then

λ1(G) ≤ 2
√

∆ − 1. (2)

The equality holds if and only if G ∼= Cn.

We use already mentioned fact that if H is a subgraph of G, then λ1(H) ≤ λ1(G). If

G = T +xy is a unicyclic graph, then T is a subgraph of G. Thus we have that (1) is a corollary

of (2). We recall that the excentricity of a vertex u is the largest distance from u to any other

vertex of the graph. The excentricity of the vertex u is denoted by eu.

In [4], Rojo gave an improvement of the bound (1). Let T be a tree with largest vertex

degree ∆. Let u be a vertex of T such that du = ∆. Let k = eu + 1. For j = 1, 2, . . . , k − 1, let

δj = max{dv : d(v, u) = j}. Then

λ1(T ) < max{ max
2≤j≤k−2

(
√

δj − 1 +
√

δj−1 − 1),
√

δ1 − 1 +
√

∆}, (3)

where d(u, v) denotes the distance between u and v.

In [5], Hu obtained another improvement of the bound (1). Let w ∈ V such that dw = 1.

Let k=ew+1. For j = 1, 2, . . . , k − 2, let δ′j = max{dv : dist(v, w) = j}. Then

λ1(T ) < max
1≤j≤k−2

{
√

δ′j − 1 +
√

δ′j−1 − 1}, (4)

where δ′0=2.

In this paper, we improve the upper bounds for the largest eigenvalue of unicyclic graphs.

For terminology and notation not introduced here, we refer to [7].

2. Preliminaries

Let T be a rooted tree such that in each level the vertices have equal degree. We agree that

the root vertex is at level 1 and that T has k level. Thus the vertices in the level k have degree

1.

Definition 2 Let Ti (i = 1, 2, . . . , m) be m copies of the rooted tree T and ui denote the root

vertex of the Ti. Let Gk be a graph obtained from Ti (i = 1, 2, . . . , m), adding an edge between

the vertex ui and the vertex ui+1 (i = 1, 2, . . . , m, m+1 ≡ 1 mod m). Then Gk is a rooted graph

with a cycle which is regarded as a root of Gk and we call Gk a cycle-rooted graph.

Obviously, as a root of Gk, the induced subgraph Cm = [{u1, u2, . . . , um}] is called cycle −
rooted of Gk.

Thus the Level 1 of Gk is a cycle Cm with m vertices and the level j (1 ≤ j ≤ k) of Gk is

the level j of
⋃m

i=1 Ti.

Let G be a unicyclic graph. Then G has an induced subgraph as cycle, denoted by Cm. Let

ui ∈ V (Cm). Obviously, G−E(Cm) has m trees, denoted by T1, T2, . . . , Tm. For i = 1, 2, . . . , m,

let eui
be excentricity of ui in Ti. Let ec = max{eui

: i = 1, 2, . . . , m}. We call ec the excentricity
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of the cycle Cm in G. Let k = ec+1. For j = 1, 2, . . . , k − 1, let

δij = max{dv : dist(v, ui) = j, v ∈ Ti},

δj = max{δij : i = 1, 2, . . . , m}, δ0 = max{dui
: ui ∈ V (Cm)}.

Let Gk be a cycle-rooted graph of k levels such that Cm is the cycle-rooted. For j = 1, 2, . . . , k,

the vertices in level j have degree δj−1. Observe that δk−1=1. Clearly, the unicyclic graph G is

an induced subgraph of Gk.

Example 1 Let G3 be the cycle-rooted graph, as shown in Figure 1.
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Figure 1 G3

We see that this graph has 3 levels. The cycle-rooted is C4 = [{u1, u2, u3, u4}], where ec=2,

k = ec+1=3, δ0=3, δ1=4, δ2=1.

Definition 3[6] For a given graph G = (V, E), let V1, V2, . . . , Vk be a partition of V . Then

V1, V2, . . . , Vk are said to be equitable if for each i, j = 1, 2, . . . , k, there is a constant cij such

that for each v ∈ Vi there are exactly cij edges joining v to the vertices in Vj . Given an equitable

partition P = (V1, V2, . . . , Vk) of a graph G, we now define the quotient G/P of G. We know

that cij is the number of edges which join a fixed vertex in Vi to vertices in Vj . Then G/P is

the directed graph with the cells Vi(i = 1, 2, . . . , k) of P as its vertices, and with cij going from

Vi to Vj . Thus the adjacency matrix A(G/P ) is the k × k matrix with (i, j) entry equal to cij .

For the cycle-rooted graph Gk, let

V1 = V (Cm) (the vertices of level 1 in G),

Vj = {the vertices of level j in G, j = 2, 3, . . . k}.

Then P = (V1, V2, . . . , Vk) is an equitable partition. The adjacency matrix of quotient G/P is

A(G/P ) =



























2 δ0 − 2 0 0 . . . 0 0

1 0 δ1 − 1 0 . . . 0 0

0 1 0 δ2 − 1 . . . 0 0

0 0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 δk−2 − 1

0 0 0 0 . . . 1 0



























. (5)
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Lemma 1 Let Ak = A(G/P ) and

Bk =



























2
√

δ0 − 2 0 0 . . . 0 0√
δ0 − 2 0

√
δ1 − 1 0 . . . 0 0

0
√

δ1 − 1 0
√

δ2 − 1 . . . 0 0

0 0
√

δ2 − 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0
√

δk−2 − 1

0 0 0 0 . . .
√

δk−2 − 1 0



























. (6)

Then Ak and Bk have the same spectra.

Proof Clearly

det(λIk − Ak) = λdet(λIk−1 − Ak−1) + (1 − δk−2)det(λIk−2 − Ak−2),

and

det(λIk − Bk) = λdet(λIk−1 − Bk−1) + (1 − δk−2)det(λIk−2 − Bk−2).

By induction, it is easy to get

det(λIk − Ak) = det(λIk − Bk).

Thus Ak and Bk have the same spectra.

Lemma 2[6] Let P be an equitable partition of the connected graph G. Then A(G) and A(G/P )

have the same spectral radius.

3. Main results

Theorem 1 Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm ⊂ G, and

ui ∈ V (Cm). The G−E(Cm) are m trees and denoted by Ti, i = 1, 2, . . . , m. For i = 1, 2, . . . , m,

let eui
be the excentricity of ui in Ti and

ec = max{eui
: i = 1, 2, . . . , m}.

Let k = ec+1. For j = 1, 2, . . . , k − 1, let

δij = max{dv : dist(v, ui) = j, v ∈ Ti},

δj = max{δij : i = 1, 2, . . . , m}, δ0 = max{dui
: ui ∈ V (Cm)}.

Then

λ1(G) ≤ max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}. (7)

If G ∼= Cn, then the equality holds.

Proof Let Gk be a cycle-rooted graph with cycle-rooted Cm. For j = 1, 2, . . . , k, the vertices in

level j have degree δj−1. Let

V1 = V (Cm) (the vertices of level 1 in Gk),
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Vj = the vertices of level j in Gk, j=2,3,. . . , k.

Then P = (V1, V2, . . . , Vk) is an equitable partition of Gk. The adjacency matrix A(G/P ) of

quotient G/P of Gk is (5). By Lemma 1, A(G/P ) and Bk have the same spectra. For (6), from

the Geršhgorin theorem and Lemma 2, we obtain

λ1(Gk) ≤ max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}.

Since G is an induced subgraph of Gk, we have

λ1(G) ≤ λ1(Gk).

Thus the upper bound (7) follows.

If G ∼= Cn, then λ1(G) = λ1(Cn) = 2. For j = 1, 2, . . . , k − 2, δj does not exist and δ0 = 2.

Then there holds the following equality

max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}

= 2 +
√

δ0 − 2 = 2. 2

Since a tree T is a subgraph of a unicyclic graph G, we have

Corollary 2 Let T be a tree. Then

λ1(T ) < max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}, (8)

where the root of T is a path with m vertices, denoted by Pm = u1u2 . . . um. δ0 = max{du1
+

1, du2
, du3

, . . . , dum−1
, dum

+ 1}.
Now, we observe that, except for the case when δ0 = ∆=3, we have

max{ max
2≤j≤k−2

(
√

δj−1 − 1 +
√

δj − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1} ≤ 2
√

∆ − 1.

Since
√

δj−1 − 1 +
√

δj − 1 ≤ 2
√

∆ − 1 for j = 2, 3, . . . , k − 2,

√

δ0 − 2 +
√

δ1 − 1 < 2
√

∆ − 1.

For ∆ ≥4, we have

2 +
√

δ0 − 2 ≤ 2 +
√

∆ − 2 < 2
√

∆ − 1.

When ∆=3, if δ0=2, then 2 +
√

δ0 − 2 < 2
√

∆ − 1.

When ∆=2, δ0=2 and for j = 1, 2, . . . , k − 1, δj is non-existent, G ∼= Cn,

λ1(G) = 2 +
√

δ0 − 2 = 2
√

∆ − 1 = 2.

Consequently, the new bounds (7) and (8) give better results than the bounds (2) and (1) except

for the case when δ0 = ∆=3.

Example 2 Figure 2
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Figure 2 T

Let the induced subgraph G[{1, 2, 3}] ∼= P3 be the root of T . Then ec=2, k = ec+1=3, δ0=4,

δ1=5, δ2=1. From (8) we have that

λ1(T ) < max{(
√

δ1 − 1 +
√

δ2 − 1), 2 +
√

δ0 − 2,
√

δ0 − 2 +
√

δ1 − 1}
= max{2, 2 +

√
2} .

= 3.414.

From (1)

λ1(T ) < 2
√

∆ − 1 = 2
√

4 = 4.

Let the vertex 4 be a root vertex of T . Since d4 = 5 = ∆, we have e4=3, k = e4+1=4, δ1=4,

δ2=3, δ3=1. From (3) we have that

λ1(T ) < max{
√

δ2 − 1 +
√

δ1 − 1,
√

δ3 − 1 +
√

δ2 − 1,
√

δ1 − 1 +
√

∆}
= max{

√
2 +

√
3,
√

2,
√

3 +
√

5} .
= 3.968.

Let the vertex 5 be a root vertex of T . Since d5=1, we have e5=3, k = e5+1=4, δ′1=4, δ′2=5,

δ′3=1, and we know δ′0=2[5]. From (4) we have that

λ1(T ) < max
1≤j≤k−2

{
√

δ′j − 1 +
√

δ′j−1 − 1}

= max{
√

3 + 1, 2 +
√

3, 2} .
= 3.732.

For this example, the upper bound (8) is better than the upper bounds (1), (3) and (4).
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