Improved Upper Bounds for the Largest Eigenvalue of Unicyclic Graphs

HU Sheng Biao
(Department of Mathematics, Qinghai Nationalities College, Qinghai 810007, China)
(E-mail: shengbiaohu@yahoo.com.cn)

Abstract

Let $G(V, E)$ be a unicyclic graph, C_{m} be a cycle of length m and $C_{m} \subset G$, and $u_{i} \in V\left(C_{m}\right)$. The $G-E\left(C_{m}\right)$ are m trees, denoted by $T_{i}, i=1,2, \ldots, m$. For $i=1,2, \ldots, m$, let $e_{u_{i}}$ be the excentricity of u_{i} in T_{i} and $$
e_{c}=\max \left\{e_{u_{i}}: i=1,2, \ldots, m\right\}
$$

Let $k=e_{c}+1$. For $j=1,2, \ldots, k-1$, let

$$
\begin{gathered}
\delta_{i j}=\max \left\{d_{v}: \operatorname{dist}\left(v, u_{i}\right)=j, v \in T_{i}\right\}, \\
\delta_{j}=\max \left\{\delta_{i j}: i=1,2, \ldots, m\right\} \\
\delta_{0}=\max \left\{d_{u_{i}}: u_{i} \in V\left(C_{m}\right)\right\}
\end{gathered}
$$

Then

$$
\lambda_{1}(G) \leq \max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\}
$$

If $G \cong C_{n}$, then the equality holds, where $\lambda_{1}(G)$ is the largest eigenvalue of the adjacency matrix of G.
Keywords unicyclic graph; adjacency matrix; largest eigenvalue.
Document code A
MR(2000) Subject Classification 05C50; 05C05
Chinese Library Classification O157.5

1. Introduction

Let $G=(V, E)$ be a simple undirected connected graph. Let $A(G)$ be the adjacency matrix of G, which is real symmetric matrix. Let $\lambda_{1}(G)$ be the largest eigenvalue of $A(G)$. Let d_{v} denote the degree of $v \in V$ and Δ denote the largest vertex degree of G.

Let T be a tree with largest vertex degree Δ. In [1], Godsil proved that

$$
\begin{equation*}
\lambda_{1}(T)<2 \sqrt{\Delta-1} \tag{1}
\end{equation*}
$$

For (1), Stevanović proved (1) again in [2, Theorem1, p.36] in a different way.
Received date: 2007-06-04; Accepted date: 2008-07-07
Foundation item: the National Natural Science Foundation of China (No. 10861009).

Definition 1 Let T be a tree. If x and y are nonadjacent vertices of T, then $T+x y$ is obtained from T by joining x to $y . T+x y$ just contains one cycle and is called unicyclic graph.

In [3], Hu proved that: If G is a unicyclic graph and Δ is the maximum vertex degree, then

$$
\begin{equation*}
\lambda_{1}(G) \leq 2 \sqrt{\Delta-1} \tag{2}
\end{equation*}
$$

The equality holds if and only if $G \cong C_{n}$.
We use already mentioned fact that if H is a subgraph of G, then $\lambda_{1}(H) \leq \lambda_{1}(G)$. If $G=T+x y$ is a unicyclic graph, then T is a subgraph of G. Thus we have that (1) is a corollary of (2). We recall that the excentricity of a vertex u is the largest distance from u to any other vertex of the graph. The excentricity of the vertex u is denoted by e_{u}.

In [4], Rojo gave an improvement of the bound (1). Let T be a tree with largest vertex degree Δ. Let u be a vertex of T such that $d_{u}=\Delta$. Let $k=e_{u}+1$. For $j=1,2, \ldots, k-1$, let $\delta_{j}=\max \left\{d_{v}: d(v, u)=j\right\}$. Then

$$
\begin{equation*}
\lambda_{1}(T)<\max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j}-1}+\sqrt{\delta_{j-1}-1}\right), \sqrt{\delta_{1}-1}+\sqrt{\Delta}\right\} \tag{3}
\end{equation*}
$$

where $d(u, v)$ denotes the distance between u and v.
In [5], Hu obtained another improvement of the bound (1). Let $w \in V$ such that $d_{w}=1$. Let $\mathrm{k}=e_{w}+1$. For $j=1,2, \ldots, k-2$, let $\delta_{j}^{\prime}=\max \left\{d_{v}: \operatorname{dist}(v, w)=j\right\}$. Then

$$
\begin{equation*}
\lambda_{1}(T)<\max _{1 \leq j \leq k-2}\left\{\sqrt{\delta_{j}^{\prime}-1}+\sqrt{\delta_{j-1}^{\prime}-1}\right\} \tag{4}
\end{equation*}
$$

where $\delta_{0}^{\prime}=2$.
In this paper, we improve the upper bounds for the largest eigenvalue of unicyclic graphs. For terminology and notation not introduced here, we refer to [7].

2. Preliminaries

Let T be a rooted tree such that in each level the vertices have equal degree. We agree that the root vertex is at level 1 and that T has k level. Thus the vertices in the level k have degree 1.

Definition 2 Let $T_{i}(i=1,2, \ldots, m)$ be m copies of the rooted tree T and u_{i} denote the root vertex of the T_{i}. Let G_{k} be a graph obtained from $T_{i}(i=1,2, \ldots, m)$, adding an edge between the vertex u_{i} and the vertex $u_{i+1}(i=1,2, \ldots, m, m+1 \equiv 1 \bmod m)$. Then G_{k} is a rooted graph with a cycle which is regarded as a root of G_{k} and we call G_{k} a cycle-rooted graph.

Obviously, as a root of G_{k}, the induced subgraph $C_{m}=\left[\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}\right]$ is called cycle rooted of G_{k}.

Thus the Level 1 of G_{k} is a cycle C_{m} with m vertices and the level $j(1 \leq j \leq k)$ of G_{k} is the level j of $\bigcup_{i=1}^{m} T_{i}$.

Let G be a unicyclic graph. Then G has an induced subgraph as cycle, denoted by C_{m}. Let $u_{i} \in V\left(C_{m}\right)$. Obviously, $G-E\left(C_{m}\right)$ has m trees, denoted by $T_{1}, T_{2}, \ldots, T_{m}$. For $i=1,2, \ldots, m$, let $e_{u_{i}}$ be excentricity of u_{i} in T_{i}. Let $e_{c}=\max \left\{e_{u_{i}}: i=1,2, \ldots, m\right\}$. We call e_{c} the excentricity
of the cycle C_{m} in G. Let $k=e_{c}+1$. For $j=1,2, \ldots, k-1$, let

$$
\begin{gathered}
\delta_{i j}=\max \left\{d_{v}: \operatorname{dist}\left(v, u_{i}\right)=j, v \in T_{i}\right\} \\
\delta_{j}=\max \left\{\delta_{i j}: i=1,2, \ldots, m\right\}, \quad \delta_{0}=\max \left\{d_{u_{i}}: u_{i} \in V\left(C_{m}\right)\right\}
\end{gathered}
$$

Let G_{k} be a cycle-rooted graph of k levels such that C_{m} is the cycle-rooted. For $j=1,2, \ldots, k$, the vertices in level j have degree δ_{j-1}. Observe that $\delta_{k-1}=1$. Clearly, the unicyclic graph G is an induced subgraph of G_{k}.

Example 1 Let G_{3} be the cycle-rooted graph, as shown in Figure 1.

Figure $1 G_{3}$
We see that this graph has 3 levels. The cycle-rooted is $C_{4}=\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$, where $e_{c}=2$, $k=e_{c}+1=3, \delta_{0}=3, \delta_{1}=4, \delta_{2}=1$.

Definition $3^{[6]}$ For a given graph $G=(V, E)$, let $V_{1}, V_{2}, \ldots, V_{k}$ be a partition of V. Then $V_{1}, V_{2}, \ldots, V_{k}$ are said to be equitable if for each $i, j=1,2, \ldots, k$, there is a constant $c_{i j}$ such that for each $v \in V_{i}$ there are exactly $c_{i j}$ edges joining v to the vertices in V_{j}. Given an equitable partition $P=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of a graph G, we now define the quotient G / P of G. We know that $c_{i j}$ is the number of edges which join a fixed vertex in V_{i} to vertices in V_{j}. Then G / P is the directed graph with the cells $V_{i}(i=1,2, \ldots, k)$ of P as its vertices, and with $c_{i j}$ going from V_{i} to V_{j}. Thus the adjacency matrix $A(G / P)$ is the $k \times k$ matrix with (i, j) entry equal to $c_{i j}$.

For the cycle-rooted graph G_{k}, let

$$
V_{1}=V\left(C_{m}\right) \quad(\text { the vertices of level } 1 \text { in } G)
$$

$$
V_{j}=\{\text { the vertices of level } j \text { in } G, j=2,3, \ldots k\}
$$

Then $P=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is an equitable partition. The adjacency matrix of quotient G / P is

$$
A(G / P)=\left(\begin{array}{ccccccc}
2 & \delta_{0}-2 & 0 & 0 & \ldots & 0 & 0 \tag{5}\\
1 & 0 & \delta_{1}-1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \delta_{2}-1 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 0 & \delta_{k-2}-1 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

Lemma 1 Let $A_{k}=A(G / P)$ and

$$
B_{k}=\left(\begin{array}{ccccccc}
2 & \sqrt{\delta_{0}-2} & 0 & 0 & \cdots & 0 & 0 \tag{6}\\
\sqrt{\delta_{0}-2} & 0 & \sqrt{\delta_{1}-1} & 0 & \cdots & 0 & 0 \\
0 & \sqrt{\delta_{1}-1} & 0 & \sqrt{\delta_{2}-1} & \cdots & 0 & 0 \\
0 & 0 & \sqrt{\delta_{2}-1} & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & \sqrt{\delta_{k-2}-1} \\
0 & 0 & 0 & 0 & \cdots & \sqrt{\delta_{k-2}-1} & 0
\end{array}\right) .
$$

Then A_{k} and B_{k} have the same spectra.
Proof Clearly

$$
\operatorname{det}\left(\lambda I_{k}-A_{k}\right)=\lambda \operatorname{det}\left(\lambda I_{k-1}-A_{k-1}\right)+\left(1-\delta_{k-2}\right) \operatorname{det}\left(\lambda I_{k-2}-A_{k-2}\right)
$$

and

$$
\operatorname{det}\left(\lambda I_{k}-B_{k}\right)=\lambda \operatorname{det}\left(\lambda I_{k-1}-B_{k-1}\right)+\left(1-\delta_{k-2}\right) \operatorname{det}\left(\lambda I_{k-2}-B_{k-2}\right)
$$

By induction, it is easy to get

$$
\operatorname{det}\left(\lambda I_{k}-A_{k}\right)=\operatorname{det}\left(\lambda I_{k}-B_{k}\right)
$$

Thus A_{k} and B_{k} have the same spectra.
Lemma $2{ }^{[6]}$ Let P be an equitable partition of the connected graph G. Then $A(G)$ and $A(G / P)$ have the same spectral radius.

3. Main results

Theorem 1 Let $G(V, E)$ be a unicyclic graph, C_{m} be a cycle of length m and $C_{m} \subset G$, and $u_{i} \in V\left(C_{m}\right)$. The $G-E\left(C_{m}\right)$ are m trees and denoted by $T_{i}, i=1,2, \ldots, m$. For $i=1,2, \ldots, m$, let $e_{u_{i}}$ be the excentricity of u_{i} in T_{i} and

$$
e_{c}=\max \left\{e_{u_{i}}: i=1,2, \ldots, m\right\}
$$

Let $k=e_{c}+1$. For $j=1,2, \ldots, k-1$, let

$$
\begin{gathered}
\delta_{i j}=\max \left\{d_{v}: \operatorname{dist}\left(v, u_{i}\right)=j, v \in T_{i}\right\} \\
\delta_{j}=\max \left\{\delta_{i j}: i=1,2, \ldots, m\right\}, \quad \delta_{0}=\max \left\{d_{u_{i}}: u_{i} \in V\left(C_{m}\right)\right\}
\end{gathered}
$$

Then

$$
\begin{equation*}
\lambda_{1}(G) \leq \max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} \tag{7}
\end{equation*}
$$

If $G \cong C_{n}$, then the equality holds.
Proof Let G_{k} be a cycle-rooted graph with cycle-rooted C_{m}. For $j=1,2, \ldots, k$, the vertices in level j have degree δ_{j-1}. Let

$$
V_{1}=V\left(C_{m}\right) \quad\left(\text { the vertices of level } 1 \text { in } G_{k}\right)
$$

$$
V_{j}=\text { the vertices of level } \mathrm{j} \text { in } G_{k}, \mathrm{j}=2,3, \ldots, \mathrm{k} .
$$

Then $P=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is an equitable partition of G_{k}. The adjacency matrix $A(G / P)$ of quotient G / P of G_{k} is (5). By Lemma $1, A(G / P)$ and B_{k} have the same spectra. For (6), from the Geršhgorin theorem and Lemma 2, we obtain

$$
\lambda_{1}\left(G_{k}\right) \leq \max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} .
$$

Since G is an induced subgraph of G_{k}, we have

$$
\lambda_{1}(G) \leq \lambda_{1}\left(G_{k}\right)
$$

Thus the upper bound (7) follows.
If $G \cong C_{n}$, then $\lambda_{1}(G)=\lambda_{1}\left(C_{n}\right)=2$. For $j=1,2, \ldots, k-2, \delta_{j}$ does not exist and $\delta_{0}=2$. Then there holds the following equality

$$
\begin{aligned}
& \max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} \\
& =2+\sqrt{\delta_{0}-2}=2 .
\end{aligned}
$$

Since a tree T is a subgraph of a unicyclic graph G, we have
Corollary 2 Let T be a tree. Then

$$
\begin{equation*}
\lambda_{1}(T)<\max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} \tag{8}
\end{equation*}
$$

where the root of T is a path with m vertices, denoted by $P_{m}=u_{1} u_{2} \ldots u_{m} . \delta_{0}=\max \left\{d_{u_{1}}+\right.$ $\left.1, d_{u_{2}}, d_{u_{3}}, \ldots, d_{u_{m-1}}, d_{u_{m}}+1\right\}$.

Now, we observe that, except for the case when $\delta_{0}=\Delta=3$, we have

$$
\max \left\{\max _{2 \leq j \leq k-2}\left(\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} \leq 2 \sqrt{\Delta-1}
$$

Since

$$
\begin{gathered}
\sqrt{\delta_{j-1}-1}+\sqrt{\delta_{j}-1} \leq 2 \sqrt{\Delta-1} \text { for } j=2,3, \ldots, k-2, \\
\sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}<2 \sqrt{\Delta-1} .
\end{gathered}
$$

For $\Delta \geq 4$, we have

$$
2+\sqrt{\delta_{0}-2} \leq 2+\sqrt{\Delta-2}<2 \sqrt{\Delta-1} .
$$

When $\Delta=3$, if $\delta_{0}=2$, then $2+\sqrt{\delta_{0}-2}<2 \sqrt{\Delta-1}$.
When $\Delta=2, \delta_{0}=2$ and for $j=1,2, \ldots, k-1, \delta_{j}$ is non-existent, $G \cong C_{n}$,

$$
\lambda_{1}(G)=2+\sqrt{\delta_{0}-2}=2 \sqrt{\Delta-1}=2 .
$$

Consequently, the new bounds (7) and (8) give better results than the bounds (2) and (1) except for the case when $\delta_{0}=\Delta=3$.

Example 2 Figure 2

Figure $2 T$

Let the induced subgraph $G[\{1,2,3\}] \cong P_{3}$ be the root of T. Then $e_{c}=2, k=e_{c}+1=3, \delta_{0}=4$, $\delta_{1}=5, \delta_{2}=1$. From (8) we have that

$$
\begin{aligned}
\lambda_{1}(T) & <\max \left\{\left(\sqrt{\delta_{1}-1}+\sqrt{\delta_{2}-1}\right), 2+\sqrt{\delta_{0}-2}, \sqrt{\delta_{0}-2}+\sqrt{\delta_{1}-1}\right\} \\
& =\max \{2,2+\sqrt{2}\} \doteq 3.414
\end{aligned}
$$

From (1)

$$
\lambda_{1}(\mathcal{T})<2 \sqrt{\Delta-1}=2 \sqrt{4}=4
$$

Let the vertex 4 be a root vertex of T. Since $d_{4}=5=\Delta$, we have $e_{4}=3, k=e_{4}+1=4, \delta_{1}=4$, $\delta_{2}=3, \delta_{3}=1$. From (3) we have that

$$
\begin{aligned}
\lambda_{1}(T) & <\max \left\{\sqrt{\delta_{2}-1}+\sqrt{\delta_{1}-1}, \sqrt{\delta_{3}-1}+\sqrt{\delta_{2}-1}, \sqrt{\delta_{1}-1}+\sqrt{\Delta}\right\} \\
& =\max \{\sqrt{2}+\sqrt{3}, \sqrt{2}, \sqrt{3}+\sqrt{5}\} \doteq 3.968
\end{aligned}
$$

Let the vertex 5 be a root vertex of T. Since $d_{5}=1$, we have $e_{5}=3, k=e_{5}+1=4, \delta_{1}^{\prime}=4, \delta_{2}^{\prime}=5$, $\delta_{3}^{\prime}=1$, and we know $\delta_{0}^{\prime}=2^{[5]}$. From (4) we have that

$$
\begin{aligned}
\lambda_{1}(T) & <\max _{1 \leq j \leq k-2}\left\{\sqrt{\delta_{j}^{\prime}-1}+\sqrt{\delta_{j-1}^{\prime}-1}\right\} \\
& =\max \{\sqrt{3}+1,2+\sqrt{3}, 2\} \doteq 3.732
\end{aligned}
$$

For this example, the upper bound (8) is better than the upper bounds (1), (3) and (4).

References

[1] GODSIL C D. Spectra of Trees [M]. North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984.
[2] STEVANOVIĆ D. Bounding the largest eigenvalue of trees in terms of the largest vertex degree [J]. Linear Algebra Appl., 2003, 360: 35-42.
[3] HU Shengbiao. The largest eigenvalue of unicyclic graphs [J]. Discrete Math., 2007, 307(2): 280-284.
[4] ROJO O. Improved bounds for the largest eigenvalue of trees [J]. Linear Algebra Appl., 2005, 404: 297-304.
[5] HU Shengbiao. A note on an upper bound for the largest eigenvalue of trees [J]. Acta Math. Sinica (Chin. Ser.), 2007, 50(1): 145-148. (in Chinese)
[6] GODSIL C D. Algebraic Combinatorics [M]. Chapman \& Hall, New York, 1993.
[7] BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.

