Improved Upper Bounds for the Largest Eigenvalue of Unicyclic Graphs

HU Sheng Biao

(Department of Mathematics, Qinghai Nationalities College, Qinghai 810007, China) (E-mail: shengbiaohu@yahoo.com.cn)

Abstract Let G(V, E) be a unicyclic graph, C_m be a cycle of length m and $C_m \subset G$, and $u_i \in V(C_m)$. The $G - E(C_m)$ are m trees, denoted by T_i , i = 1, 2, ..., m. For i = 1, 2, ..., m, let e_{u_i} be the excentricity of u_i in T_i and

$$e_c = \max\{e_{u_i} : i = 1, 2, \dots, m\}.$$

Let $k = e_c + 1$. For j = 1, 2, ..., k - 1, let

$$\delta_{ij} = \max\{d_v : \operatorname{dist}(v, u_i) = j, v \in T_i\},\$$

$$\delta_j = \max\{\delta_{ij} : i = 1, 2, \dots, m\},\$$

$$\delta_0 = \max\{d_{u_i} : u_i \in V(C_m)\}.$$

Then

$$\lambda_1(G) \le \max\{\max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\}.$$

If $G \cong C_n$, then the equality holds, where $\lambda_1(G)$ is the largest eigenvalue of the adjacency matrix of G.

Keywords unicyclic graph; adjacency matrix; largest eigenvalue.

Document code A

MR(2000) Subject Classification 05C50; 05C05

Chinese Library Classification O157.5

1. Introduction

Let G = (V, E) be a simple undirected connected graph. Let A(G) be the adjacency matrix of G, which is real symmetric matrix. Let $\lambda_1(G)$ be the largest eigenvalue of A(G). Let d_v denote the degree of $v \in V$ and Δ denote the largest vertex degree of G.

Let T be a tree with largest vertex degree Δ . In [1], Godsil proved that

$$\lambda_1(T) < 2\sqrt{\Delta - 1}.\tag{1}$$

For (1), Stevanović proved (1) again in [2, Theorem1, p.36] in a different way.

Received date: 2007-06-04; Accepted date: 2008-07-07

Foundation item: the National Natural Science Foundation of China (No. 10861009).

946 HUSB

Definition 1 Let T be a tree. If x and y are nonadjacent vertices of T, then T + xy is obtained from T by joining x to y. T + xy just contains one cycle and is called unicyclic graph.

In [3], Hu proved that: If G is a unicyclic graph and Δ is the maximum vertex degree, then

$$\lambda_1(G) \le 2\sqrt{\Delta - 1}.\tag{2}$$

The equality holds if and only if $G \cong C_n$.

We use already mentioned fact that if H is a subgraph of G, then $\lambda_1(H) \leq \lambda_1(G)$. If G = T + xy is a unicyclic graph, then T is a subgraph of G. Thus we have that (1) is a corollary of (2). We recall that the *excentricity* of a vertex u is the largest distance from u to any other vertex of the graph. The *excentricity* of the vertex u is denoted by e_u .

In [4], Rojo gave an improvement of the bound (1). Let T be a tree with largest vertex degree Δ . Let u be a vertex of T such that $d_u = \Delta$. Let $k = e_u + 1$. For j = 1, 2, ..., k - 1, let $\delta_j = \max\{d_v : d(v, u) = j\}$. Then

$$\lambda_1(T) < \max\{\max_{2 \le j \le k-2} (\sqrt{\delta_j - 1} + \sqrt{\delta_{j-1} - 1}), \sqrt{\delta_1 - 1} + \sqrt{\Delta}\},$$
 (3)

where d(u, v) denotes the distance between u and v.

In [5], Hu obtained another improvement of the bound (1). Let $w \in V$ such that $d_w = 1$. Let $k=e_w+1$. For $j=1,2,\ldots,k-2$, let $\delta_j' = \max\{d_v : \operatorname{dist}(v,w)=j\}$. Then

$$\lambda_1(T) < \max_{1 \le j \le k-2} \{ \sqrt{\delta'_j - 1} + \sqrt{\delta'_{j-1} - 1} \},$$
 (4)

where $\delta_0'=2$.

In this paper, we improve the upper bounds for the largest eigenvalue of unicyclic graphs. For terminology and notation not introduced here, we refer to [7].

2. Preliminaries

Let T be a rooted tree such that in each level the vertices have equal degree. We agree that the root vertex is at level 1 and that T has k level. Thus the vertices in the level k have degree 1.

Definition 2 Let T_i (i = 1, 2, ..., m) be m copies of the rooted tree T and u_i denote the root vertex of the T_i . Let G_k be a graph obtained from T_i (i = 1, 2, ..., m), adding an edge between the vertex u_i and the vertex u_{i+1} $(i = 1, 2, ..., m, m+1 \equiv 1 \mod m)$. Then G_k is a rooted graph with a cycle which is regarded as a root of G_k and we call G_k a cycle-rooted graph.

Obviously, as a root of G_k , the induced subgraph $C_m = [\{u_1, u_2, \dots, u_m\}]$ is called *cycle – rooted* of G_k .

Thus the Level 1 of G_k is a cycle C_m with m vertices and the level j $(1 \le j \le k)$ of G_k is the level j of $\bigcup_{i=1}^m T_i$.

Let G be a unicyclic graph. Then G has an induced subgraph as cycle, denoted by C_m . Let $u_i \in V(C_m)$. Obviously, $G - E(C_m)$ has m trees, denoted by T_1, T_2, \ldots, T_m . For $i = 1, 2, \ldots, m$, let e_{u_i} be excentricity of u_i in T_i . Let $e_c = \max\{e_{u_i} : i = 1, 2, \ldots, m\}$. We call e_c the excentricity

of the cycle C_m in G. Let $k = e_c + 1$. For $j = 1, 2, \ldots, k - 1$, let

$$\delta_{ij} = \max\{d_v : \operatorname{dist}(v, u_i) = j, v \in T_i\},\$$

$$\delta_i = \max\{\delta_{ij} : i = 1, 2, \dots, m\}, \ \delta_0 = \max\{d_{u_i} : u_i \in V(C_m)\}.$$

Let G_k be a cycle-rooted graph of k levels such that C_m is the cycle-rooted. For j = 1, 2, ..., k, the vertices in level j have degree δ_{j-1} . Observe that $\delta_{k-1}=1$. Clearly, the unicyclic graph G is an induced subgraph of G_k .

Example 1 Let G_3 be the cycle-rooted graph, as shown in Figure 1.

Figure 1 G_3

We see that this graph has 3 levels. The cycle-rooted is $C_4 = [\{u_1, u_2, u_3, u_4\}]$, where $e_c=2$, $k = e_c+1=3$, $\delta_0=3$, $\delta_1=4$, $\delta_2=1$.

Definition 3^[6] For a given graph G = (V, E), let V_1, V_2, \ldots, V_k be a partition of V. Then V_1, V_2, \ldots, V_k are said to be equitable if for each $i, j = 1, 2, \ldots, k$, there is a constant c_{ij} such that for each $v \in V_i$ there are exactly c_{ij} edges joining v to the vertices in V_j . Given an equitable partition $P = (V_1, V_2, \ldots, V_k)$ of a graph G, we now define the quotient G/P of G. We know that c_{ij} is the number of edges which join a fixed vertex in V_i to vertices in V_j . Then G/P is the directed graph with the cells V_i ($i = 1, 2, \ldots, k$) of P as its vertices, and with c_{ij} going from V_i to V_j . Thus the adjacency matrix A(G/P) is the $k \times k$ matrix with (i, j) entry equal to c_{ij} .

For the cycle-rooted graph G_k , let

$$V_1 = V(C_m)$$
 (the vertices of level 1 in G),

$$V_i = \{ \text{the vertices of level } j \text{ in } G, j = 2, 3, \dots k \}.$$

Then $P = (V_1, V_2, \dots, V_k)$ is an equitable partition. The adjacency matrix of quotient G/P is

$$A(G/P) = \begin{pmatrix} 2 & \delta_0 - 2 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \delta_1 - 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \delta_2 - 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & \delta_{k-2} - 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$
 (5)

948 HUSB

Lemma 1 Let $A_k = A(G/P)$ and

$$B_{k} = \begin{pmatrix} 2 & \sqrt{\delta_{0} - 2} & 0 & 0 & \dots & 0 & 0\\ \sqrt{\delta_{0} - 2} & 0 & \sqrt{\delta_{1} - 1} & 0 & \dots & 0 & 0\\ 0 & \sqrt{\delta_{1} - 1} & 0 & \sqrt{\delta_{2} - 1} & \dots & 0 & 0\\ 0 & 0 & \sqrt{\delta_{2} - 1} & 0 & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & 0 & 0 & \dots & 0 & \sqrt{\delta_{k-2} - 1}\\ 0 & 0 & 0 & 0 & \dots & \sqrt{\delta_{k-2} - 1} & 0 \end{pmatrix}.$$
 (6)

Then A_k and B_k have the same spectra

Proof Clearly

$$\det(\lambda I_k - A_k) = \lambda \det(\lambda I_{k-1} - A_{k-1}) + (1 - \delta_{k-2}) \det(\lambda I_{k-2} - A_{k-2}),$$

and

$$\det(\lambda I_k - B_k) = \lambda \det(\lambda I_{k-1} - B_{k-1}) + (1 - \delta_{k-2})\det(\lambda I_{k-2} - B_{k-2}).$$

By induction, it is easy to get

$$\det(\lambda I_k - A_k) = \det(\lambda I_k - B_k).$$

Thus A_k and B_k have the same spectra.

Lemma 2^[6] Let P be an equitable partition of the connected graph G. Then A(G) and A(G/P) have the same spectral radius.

3. Main results

Theorem 1 Let G(V, E) be a unicyclic graph, C_m be a cycle of length m and $C_m \subset G$, and $u_i \in V(C_m)$. The $G - E(C_m)$ are m trees and denoted by T_i , i = 1, 2, ..., m. For i = 1, 2, ..., m, let e_{u_i} be the excentricity of u_i in T_i and

$$e_c = \max\{e_{u_i} : i = 1, 2, \dots, m\}.$$

Let $k = e_c + 1$. For j = 1, 2, ..., k - 1, let

$$\delta_{ij} = \max\{d_v : \operatorname{dist}(v, u_i) = j, v \in T_i\},\$$

$$\delta_j = \max\{\delta_{ij} : i = 1, 2, \dots, m\}, \quad \delta_0 = \max\{d_{u_i} : u_i \in V(C_m)\}.$$

Then

$$\lambda_1(G) \le \max\{ \max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1} \}.$$
 (7)

If $G \cong C_n$, then the equality holds.

Proof Let G_k be a cycle-rooted graph with cycle-rooted C_m . For j = 1, 2, ..., k, the vertices in level j have degree δ_{j-1} . Let

$$V_1 = V(C_m)$$
 (the vertices of level 1 in G_k),

$$V_i$$
 = the vertices of level j in G_k , j=2,3,..., k.

Then $P = (V_1, V_2, ..., V_k)$ is an equitable partition of G_k . The adjacency matrix A(G/P) of quotient G/P of G_k is (5). By Lemma 1, A(G/P) and B_k have the same spectra. For (6), from the $Ger\check{s}hgorin$ theorem and Lemma 2, we obtain

$$\lambda_1(G_k) \le \max\{\max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\}.$$

Since G is an induced subgraph of G_k , we have

$$\lambda_1(G) \leq \lambda_1(G_k).$$

Thus the upper bound (7) follows.

If $G \cong C_n$, then $\lambda_1(G) = \lambda_1(C_n) = 2$. For j = 1, 2, ..., k - 2, δ_j does not exist and $\delta_0 = 2$. Then there holds the following equality

$$\max\{\max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\}$$

$$= 2 + \sqrt{\delta_0 - 2} = 2.$$

Since a tree T is a subgraph of a unicyclic graph G, we have

Corollary 2 Let T be a tree. Then

$$\lambda_1(T) < \max\{\max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\},$$
 (8)

where the root of T is a path with m vertices, denoted by $P_m = u_1 u_2 \dots u_m$. $\delta_0 = \max\{d_{u_1} + 1, d_{u_2}, d_{u_3}, \dots, d_{u_{m-1}}, d_{u_m} + 1\}$.

Now, we observe that, except for the case when $\delta_0 = \Delta = 3$, we have

$$\max\{\max_{2 \le j \le k-2} (\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\} \le 2\sqrt{\Delta - 1}.$$

Since

$$\sqrt{\delta_{j-1} - 1} + \sqrt{\delta_j - 1} \le 2\sqrt{\Delta - 1}$$
 for $j = 2, 3, \dots, k - 2,$
 $\sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1} < 2\sqrt{\Delta - 1}.$

For $\Delta \geq 4$, we have

$$2+\sqrt{\delta_0-2} \le 2+\sqrt{\Delta-2} < 2\sqrt{\Delta-1}.$$

When $\Delta=3$, if $\delta_0=2$, then $2+\sqrt{\delta_0-2}<2\sqrt{\Delta-1}$.

When $\Delta=2$, $\delta_0=2$ and for $j=1,2,\ldots,k-1$, δ_j is non-existent, $G\cong C_n$,

$$\lambda_1(G) = 2 + \sqrt{\delta_0 - 2} = 2\sqrt{\Delta - 1} = 2.$$

Consequently, the new bounds (7) and (8) give better results than the bounds (2) and (1) except for the case when $\delta_0 = \Delta = 3$.

Example 2 Figure 2

950 HUSB

Figure 2 T

Let the induced subgraph $G[\{1,2,3\}] \cong P_3$ be the root of T. Then $e_c=2$, $k=e_c+1=3$, $\delta_0=4$, $\delta_1=5$, $\delta_2=1$. From (8) we have that

$$\lambda_1(T) < \max\{(\sqrt{\delta_1 - 1} + \sqrt{\delta_2 - 1}), 2 + \sqrt{\delta_0 - 2}, \sqrt{\delta_0 - 2} + \sqrt{\delta_1 - 1}\}$$

= $\max\{2, 2 + \sqrt{2}\} \doteq 3.414.$

From (1)

$$\lambda_1(\mathcal{T}) < 2\sqrt{\Delta - 1} = 2\sqrt{4} = 4.$$

Let the vertex 4 be a root vertex of T. Since $d_4 = 5 = \Delta$, we have $e_4 = 3$, $k = e_4 + 1 = 4$, $\delta_1 = 4$, $\delta_2 = 3$, $\delta_3 = 1$. From (3) we have that

$$\lambda_1(T) < \max\{\sqrt{\delta_2 - 1} + \sqrt{\delta_1 - 1}, \sqrt{\delta_3 - 1} + \sqrt{\delta_2 - 1}, \sqrt{\delta_1 - 1} + \sqrt{\Delta}\}$$

= \text{max}\{\sqrt{2} + \sqrt{3}, \sqrt{2}, \sqrt{3} + \sqrt{5}\} \div 3.968.

Let the vertex 5 be a root vertex of T. Since $d_5=1$, we have $e_5=3$, $k=e_5+1=4$, $\delta_1'=4$, $\delta_2'=5$, $\delta_3'=1$, and we know $\delta_0'=2^{[5]}$. From (4) we have that

$$\lambda_1(T) < \max_{1 \le j \le k-2} \{ \sqrt{\delta'_j - 1} + \sqrt{\delta'_{j-1} - 1} \}$$

= $\max \{ \sqrt{3} + 1, 2 + \sqrt{3}, 2 \} \doteq 3.732.$

For this example, the upper bound (8) is better than the upper bounds (1), (3) and (4).

References

- [1] GODSIL C D. Spectra of Trees [M]. North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984.
- [2] STEVANOVIĆ D. Bounding the largest eigenvalue of trees in terms of the largest vertex degree [J]. Linear Algebra Appl., 2003, 360: 35-42.
- [3] HU Shengbiao. The largest eigenvalue of unicyclic graphs [J]. Discrete Math., 2007, 307(2): 280-284.
- [4] ROJO O. Improved bounds for the largest eigenvalue of trees [J]. Linear Algebra Appl., 2005, 404: 297-304.
- [5] HU Shengbiao. A note on an upper bound for the largest eigenvalue of trees [J]. Acta Math. Sinica (Chin. Ser.), 2007, 50(1): 145–148. (in Chinese)
- [6] GODSIL C D. Algebraic Combinatorics [M]. Chapman & Hall, New York, 1993.
- [7] BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.