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1. Introduction

In the early 1990s, many authors investigated two-parameter or multi-parameter quantum
groups. Recall that Du, Parshall and Wang’s work!"), Dobrev and Parashar’s work!? focused
on quantized function algebras and quantum enveloping algebras for the type A case. In 2005,
Bergeron, Gao and Hul®! obtained two-parameter quantum groups of other types and proved that
they are just the Drinfel’d doubles. On the other hand, many mathematicians and physicians
are interested in the generalization of Hopf algebra, a typical way is to introduce a kind of weak
co-product such that A(1) # 1 ® 1 into an algebral¥l. The face algebral® and generalized Kac
algebral® are examples of this class of weak Hopf algebras.

In fact, one can define a weak antipode on a given bialgebra by replacing the antipode of Hopf
algebral”. By definition, a bialgebra (H, ,n, A\, ) is called a weak Hopf algebra if there exists
an anti-homomorphism T € Homg (H, H) such that T xidg * T = idyg and idg «* T xidy = T,
where idy is the identity map and * is the convolution product. Yang[® constructed a class of
weak Hopf algebras in this sense based on the quantized enveloping algebras U,(g). Thanks to
the definition of quantized enveloping algebra Uj (g) associated with a generalized Kac-Moody
algebra gl Wul'% introduced a generator .J such that J™ = J for some integer m > 3 and
constructed a new class of weak Hopf algebra wU,(g) by weakening the group-likes of U/ (g)
motivated by the paper!®.
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A generalized Kac-Moody algebra can be regarded as a Kac-Moody algebra with imaginary
simple roots. It is determined by a Borcherds-Cartan matrix A = (a;;); jer, where either a;; = 2,
or a;; < 0. If a;; <0, then the index i is called imaginary and the corresponding simple root a;

is called imaginary root. Along the line of two-parameter quantum groups!®!

, it is interesting to
construct a class of two-parameter weak Hopf algebras w] ;(g). Following the idea of Yang!®! and
Wul'®) and basing on the two-parameter quantum group U, s(g) associated with a Borcherds-
Cartan matrix, in this paper we construct a class of two-parameter weak Hopf algebras. Let
7 = ({Ki}ier| {R})}ier) be an admissible type and E;, F; are of type 7. The algebra w;  (g) is
generated by F;, F;, K;, K;, K/,K! (i € I) and J with a series of relations, which is associated
with the generalized Kac-Moody algebra g. In this paper, it is shown that (w;s(g),u,n, Ae)
is a noncommutative and noncocommutative weak Hopf algebra with the weak antipode T', but

not a Hopf algebra. Some properties of this class of weak Hopf algebras are also investigated.

We organize the paper as follows. In Section 2 we give some notations and recall some basic
facts. In Section 3 we define a two-parameter quantum algebra w; ,(g). In Section 4 a weak
Hopf algebra structure is equipped with w; ;(g) and a basic fact for w] (g) is described. And

furthermore we give a special example in the case of m = 2.

2. Notations and preliminaries

We fix some notations and review some fundamental results about generalized Kac-Moody

algebras.

Let I = {1,...,n} or the set of positive integers and A = (a;;)i jer a Borcherds-Cartan

matrix. That is, the matrix A satisfies:
(1) aj; =2o0ra; <0foralliel,
(2) ai; <0 forall i # j,
(3) aij €Z,

(4) ai; =0 if and only if aj; = 0. An index ¢ is real if a;; = 2 and imaginary if a;; < 0. Let
It ={i € Ila; =2} and '™ = I — I'*. In addition, we assume that all a; € 2Z and a;; # 0.

Let A = (ai;) jer be a symmetrizable Borcherds-Cartan matrix. This means that there exist

a set of mutual prime positive integers {d;|¢ € I'} such that d;a;; = d;a;; for all i, j € I.

Let @ = (a;)ier € Z! and g = (bi)icr € ZM| where a;, b; almost all but finite are zero. For

example, a; = (a;)ier where a; =1 and a; = 0 with j # 7. We define

<a76> = Z diaibi - Zaijdjaibj.

iel i<j

Set
(o, 8) = (e, B) + (B, ).

It is well known that both (—,—) and (—, —) are well defined. The bilinear forms ( —, —) and
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(=, —) are called Euler form and symmetric Euler form, respectively. In particular, we have
_diaij7 1< j7
<7;,j>::<041',06j>: d’ia 7’:.]7
0, 1> 7.

Let Q(r, s) be the function field in two variables r, s over the field Q of rational numbers.

Let r; = r%, s; = s% for i € I. For an indeterminant «, v and an integer n, we define

v —1
(n)v_ﬁv

(n)y! = (n)y -+ (2)y(1), and (0),!=1,

(&), = oo

Definition 2.1 The two-parameter quantum group U, s(g) associated with symmetrizable

Borcherds-Cartan matrix A = (a;;); jer Is a unital associative algebra over Q(r,s) generated

by e;, fi, kiil, k;il, 1 € I, subject to the following relations:

where

ikt =kk,t =1,

— -1 _ 1.—1 —17—-1 _ 1.—-1;7—-1
kiky = kikio  kikit =k e, Kkt =k
’ ’ o ’ ’ ’ /_1 o /_1 ’ /_1 /_1 o /_1 /_1
kiky = kiky ko =k kTR = kT

kjei = T<i’j>87<j’i>6il€j, k;el = ’f‘i<j’i>8<i’j>6i]€,

YRl
ki fy =) 000 fike k;fz = r<j>i>sf(i7j>fik;,
ki — k;
eifi = Jiei =%y i — i

17aij

1- 1] . —a;i— . . .
Z<—1>’“( ka]> clisgsk)e; " ejek =0 if ay =2, i# ],
k=0 '

1—a;;
1_0/1” . —a;;— . . .
Z (_1)k( k ]>.c(17]7k)fikfjfil k:O if ai; = 2, Z;é],

k=0 i
eiej —ejei = fif; — fifi=0, if ay; =0,

c(i,j, k) = (risfl)@ﬁ(jﬂs*k(i,j)’ it

1-— CLl'j L 1-— CLl'j
k i o k ”8_71'

Proposition 2.1 The algebra U, s(g) is a Hopf algebra with the co-multiplication, the counit

and the antipode given by

A KDY =k ok, A 6F) = B @ kY
Ale)=1®ei+e @k, Afi)=fiol+k® fi
e(ki!) = (k) =1, 2(e;) = (i) = 0;

S(kEY =K7Y, S(k*) = kT
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S(ei) = —eiki_l, S(fl) = —k;_lfi.

Proof It suffices to prove that /\, ¢ are algebra homomorphisms and .S is an antipode. One can
refer to the proof of Theorem in Section 4. We only prove that S is the antipode of U, s(g). It
is easy to see that S keeps relations (2.1), (2.2), (2.3) and (2.9),

S(ei)S(ks) = —esky kit = =l =G Tkt = —p (0D s~ S (1) S ey).

’

Similarly, we have S(e;)S(k;) = —r_<j’i>s<i’j>5(kj)5’(ei),

S(f5)S(ei) — S(ei)S(f;) = k;-flfjeik-fl — ik Tk
1o (ki) = T(k;)

T'—SZ Ty — 84

s . _ _ e
D (B A e e
k
= (—1)*H (s )RR R = (5= R) () k(6T )+ (5= RN (5:0) o
(3005 (}) etidcbiekeset )k <o,
k=0
For the relation (2.8) the proof is similar.
It remains to prove that the following relation
Zx'S’(m") = ZS(:C'):E” =e(x)
(@) (=)

holds when z is any of the generators e;, f;, kiﬂ k{il,i € I. For the generator e;, we have

ZeS )=p(id®S)A(e;) = pid@ S)(1®e; +e; @ k;)
(81
= S(ei) + 615(/%) = —eiki_l + eiki_l =

and

> S(ey) u(S @id) A (e;) = u(S @id)(1 ® e; 4 €; @ k;)
(ez

=e; + S(ei)k: = e; — eik; 'k, = 0.

Since £(e;) = 0, we have 3, e; S(ey) = 2 (en) S(e;)e; = e(e;). For other generators the proof
is similar. This completes the proof. O

3. The 7-type weak quantum algebras w; (g)

Let m > 2 be a fixed positive integer. Let us introduce generators J, K;, K;, K; and f(;
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with ¢ € I, which satisfy the following relations:

Jv=J, J=KK;,=KK =KK,=KK,. (3.1)

We suppose K; and K; are not zero divisors and

KJ" ="K, = K;, KJ"'=J"'K,=K,. (3.2)

K Jm =g K =K, KJ''=J"'K, =K,. (3.3)
An element FE; is said to be of type m — 1 if it satisfies

KB =l s OUOE K, KB =r{ 0B K,

KB =~ OO BKL KB =00 s BRY (3.4)
Similarly, if

KiFy=r= U0 R K, KiF =g OOEK,:

KiF, =00 s OD R KIF; = r (00 FKT (3.5)

then F; is said to be of type m — 1.

To define other relations, it is convenient to set J° = J™~!. Suppose
KB J'K; =) s G E g KB, = 00D B g Bg™ = B (3.6)

for some 0 <t < m — 2. Then we say that E; is of type t. Similarly, F; is of type t if it satisfies
the following

KiFJUKy = GO F g KRR, = p00 s G p gt pgm=l = B (3.7)

Lemma 3.1 (1) If E; is of type t for 0 <t < m — 2, then E;J'™! is of type m — 1.
(2) If F; is of type t for 0 <t < m — 2, then F;J'T! is of type m — 1.

Proof If F; is of type t, we have
KiEJH = KB JY = KGEJUR K =) s~ 00 B AR
and
KB g =0 ON R KB K = 0000 TR TR = v (00 00 B LR

Similarly,
KEJ™ = K,EJ' = KB JK K, = r~ (00000 B jH

and
KB g =00 =G KRB TR = 00 s ) JB UK = p(00) s~ ) B U K

So E;J'*1 is of type m — 1 by definition.
The proof of (2) is similar to that of (1). O

Proposition 3.1 (1) E; is of type t for 0 < t < m — 2 if and only if E; is of type m — 1 and
Ei‘]mil =F;.
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(2) F; is of type t for 0 <t < m — 2 if and only if F; is of type m — 1 and F;J™~! = F;.
Proof (1) If E; is of type ¢ for 0 < t < m — 2, then K;E;J'! = p(43)s~ GO E, JIHEK; by

Lemma 3.1. So we have

KB = K;E,JJ" ' = KB gm—t72 = p{ed) =) g gt g gm=t=2 = (60D 5= 00 B
and

KB = K;B;J™ Y = KB JH gm=t72 = p= i) U gy JHHL R gm—t=2 = = (00D s U B
Similarly,

KB = KB, g™ = K B JH ym=t=2 = p= (@) () p gl g gm=t=2 = =00 500D By |
and

K/E KIE Jm— 1 K/E Jt+1Jm t—2 _ (j,i)sf(i,j>Eth+1K§Jmft72 :T<j,1>sf(z,J>ElK]/

Hence E; is of type m — 1.
Conversely, if F; is of type m — 1 and E;J™ ! = E;, then

KjEthKj = T<i’j>87<j"i>EinJtKj = T<i’j>87<j"i>Eth+l,
KEJ' K, =r= G0N B KR, = r= (0050000 g, g1,

This means that F; is of type t.
(2) The proof of (2) is similar to (1). 0

Remark 3.1 Note that if F; is of type t, then JE; = E;J. Indeed, if E; is of type m — 1 for
example, then
JEl = KJKJEZ = ’I”7<i’j>5<i’j>KjEin = EZKJKJ = EZJ

Similarly, JF; = F;J if F; is of type t.

The types of E; and F; are denoted by k;, &}, respectively. Let 7 = ({x;}ier| {R})}ier) and
the 7 is called admissible if it satisfies the following condition:

(1) Ifk; =t,then k; =t for 1 <t <m—2;

(2) If k; = 0, then k; = 0, m — 1;

(3) If ky =m — 1, then k; =0, m — 1.

In the sequel, we always assume that 7 is admissible and m > 2.

Definition 3.2 The algebra w] ,(g) over Q(r, s) is generated by E;, F;, K;, K;, K, K, (iel)
and J, which satisfy the following relations:

=1

J=KK;,=KK, forall i€l, (3.8)
J e =2 g = 2, forz = K;, K;, K[, K/, (3.9)
KZ'KJ‘ = KjKi, KZKJ = KjKi, 71'Kj = Kjki, (310)
Kin = KjKl-, Kin = KjKl-, K; K; = G (3.11)
K,K; = K;K;, KZ-KJ-:KJ-KZ-, K= KK, K= KK, (3.12)
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E; F; are of admissible type T, (3.13)
K- K,
EiFj - FjE; = 0ij———, (3.14)
il 1—ay;
> (-1)’“( L ”> (i, j, k)E; TV EEF =0 if ay =2,i # j, (3.15)
k=0 @
il 1—ay;
> (—1>’“( K ) (i, R)FEFF T = 00 if ai=2,i #j, (3.16)
k=0 @
EiEj — EjEi = EF] — F]Fl = 0, ifaij = O, (317)

where

c(i,j, k) = (Tislfl)k““{” pk(3i) g=kCisd) 2

1-— Qi L 1-— Qi
k 7 . k r»s.ﬁl'

The algebra wgs(g) is said to be a T-type weak quantum algebra associated with the generalized
Kac-Moody algebra g.

It is straightforward to check by induction that F; (respectively F;) is of type m — 1 or type
t for 0 <t < m — 2, the following relations hold in w] ((g)

EmeJn = T'_mn“’])San’l)K;—lElm, Fmegn _ Tmn(z,] )S—mn(],wK;_zFim'
EmK/n* mn(j,i) 7mn<i,j)K’nEm FmKln* —mn(j,i) mn(i,j)K’nFm
i B =r s ;BT P K= S SE
In particular, we have

miIon . .—mn _mn gon pm miIon . omn _—mnigon pm

E"K =7, s KGET,  FUKS =r"s UK FT

m 'n _ mn ,—mn 'n m m ’n _ —mn _mn 'n m

B K =rs K R, FUKT = s G E

By Remark 3.1, J" is a central element for all 0 <t <m — 1 in w] ,(g).

4. The weak Hopf algebras structure of w] (g)

To make the 7-type algebra wy ,(g) become a weak Hopf algebra, we define three maps

A :,s(g) I w:,s(g) ® w:‘—,s(g)

w
e w (g) — K
w

T: wi(g) — wr,(g)
as follows
AK)=K ®K;, AK)=K;®K, (4.1)
AK)=K,® K, AK,)=K,oKk,, (4.2)
AE)=J" "R E + E; ® K;J", E;is of type t. (4.3)

If t =0, then A(E;)) = J" '@ E;+ E;® K;. Ift =m —1, then A(E;) = 1® E; + E; ® K;.
Similarly,
AF)=FeJ" """+ K,J'®F,, F,isof type t, (4.4)
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The map T is defined as follows
T(1) =1, T(K;)=KJ"? T(K;) =K J" 2
T(J) — Jm727 T(K;) _ Jm72, T(KZ,) _ K;JmiQ,

T(E;) = —E;K,J"%, T(F)=—K,FJ"2

(4.5)

(4.6)

(4.7)
(4.8)

(4.9)

We use y, 7 to denote the multiplication and unit of w ;(g). The main theorem is as follows.

Theorem (w] ((g), 1,7, A, €) is a noncommutative and noncocommutative weak Hopf algebra

with the weak antipode T', but not a Hopf algebra.

The Theorem follows from Lemmas 4.1 and 4.2 below.
Lemma 4.1 w; ((g) is a bialgebra with a co-multiplication /A and co-unit ¢.

Proof It is easy to check that the following relations hold:

’ — 7

A(T) = A(K) O (Kq) = A(K;) A (K;),

— — ’ — 7 — ’

A(K) A (Kj) = A(K;) A (Ks),  AK;) A (K;) = AK;) A (K,
ANK T = AKy), AK ™Y = A(K),
AET™) = MK, AE T = AK).
If F; is of type m — 1, then
AKHAE) = (K; 0 K) (1@ Ei+ B9 K,;) = K; @ K;E + K, B @ K, K;
= (0 s~ A(E)A(K;).

Similarly, we can prove  A(K)A(E;) = r= ) s A(E)A(K;).

If E; is of type ¢ for 0 <t < m — 2, then
AKHAE)A) T = (K; @ K)(J" " @ B+ B @ K;JH)(J' @ J)K; @ K;)
=K;J" "' J'K; ® K;EJ'K; + K;EJ'K; @ K;K;J' J'K;
— ,,,,( Z,J>57<j,l>(‘]m ® Eth+1 + Eth+1 ® KiJ2t+1)
=plid >sf<j’i>A(Ei)A(J)t+1
and
AEHNAT) = (J" '@ EjJ + B;J @ K;J™) = A(J)A(E;).
Similarly, we can prove

A(K;)A(Ei)A(J)tA(K;) = Tﬁ(j’i>S<i’j>A(Ei)A(J)t+1_

For the F; cases, all relations can be proved in a similar way.
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To show that

AE)AE;) — AF)A(E,) = 6, M) =AU (4.10)

ri — 8;
we assume that E; and Fj are of type p, g, respectively, where 0 < p,q < m — 2. We have

A(E)A(F)) — AFHA(E) =(J" P @ B + B; @ KJP)(Fy @ J" 179+ K7 @ Fy)—
(Fj @ J" 1714 K,J® Fy)(J" P @ B + B; ® K;JP)
=J" VP @ (B Fj — FiE;) + (BEiF; — FjE;) @ K;Jm 7P+
A(K:) — A(K;)
:51'3'—-
Ti — Si
Suppose Ej; is of type m — 1 and Fj is of type ¢ for ¢ = 0, m — 1. We have

A(E)A(F;) — A(F)A(E;) =(1Q B + E; @ K;)(F; @ Jmlza 4 K;-Jq ® F;)—
(Fj @ "1 4 K,J @ F))(1© E; + B; @ K;)
=K,J"® (E;Fj — F;E;) + (E;F; — F;E;) ® K;J" 171
A(K;) — A(K;)
Z(SU—
Ty — S
Similarly, we can prove that

A(K) = A(K)

A(E)A(F;) = A(F)A(E) = by —————

if E; is of type p for p =0,m — 1 and Fj is of type m — 1. Therefore (3.14) holds for all ¢, j.
Finally, we have to prove that A satisfies the relations (3.15)—(3.17). The direct calculation

shows that
A(E)A(E;) — A(E;)A(E;) =0,  A(F)A(F)) — A(F))A(F;) = 0.

Hence A satisfies the relation (3.17).

To show that A satisfies relation (3.15), the following cases should be considered:

(1) E;is of type t, Ej is of type p. a; = 2, where 0 < ¢, p <m — 2;

(2) E;isof type m — 1, Ej is of type p. a;; = 2, where 0 < p <m — 2;

(3) Ej;is of type t, Ej is of type m — 1. a;; = 2, where 0 <t <m —2;

(4) E; and E; are of type m — 1.

We will show that A keeps the relation (3.14) for the case (1). The proof for the rest cases
are more or less the same as the case of U, (g)[11PP67-68],

Let r =1 —a;; and

wig = _(=1)° (T) (L) *=5 patdi) gmotid) pra g g,

a=0 a i Si
Since A(E;) = Jm Y ® E; + E; ® K;J* and

(B @ KJJ)(J" @ B) =risy H(J D @ BB @ KiJY),
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we have

A(Ei)a _ Z (a> J(m—l—t)BEZ{l*Q ® EiﬁK;l*ﬁJt(a—B)_
.5;1
This implies that

S0 () (B ) o (e ) 5 (B

a0 a i S

_ J(m—l—t)r—i-(m—l—p) ® uij + Ui © Jtr-i-pKHKj + Z J(m—l—t)s-l-(m—l—p)Eir—E ® X+

e=1

Zj(mflft)(rilin)EéEjE? ®le,n

l,n
with suitable X, and Y} ,. The last sum is over the integers [,n > 0 with { +n < r. We have to

show that all X. and Y} ,, are equal to zero. Since

KIS B¢ = p(r=a=0i) g=(r=a=0)(i) (g =1 ) (r=a=O)(e=0) . pe=C jgr—a=¢,

X: (with 1 <e <) is just the following identity

X =Y (1) et 3 (U0 B ()
a=0 % ¢ i

Fe—C ra—etC gt(r—e)
: r r—a a ala—1)
R () ()
a=0 ¢ a);\ ¢ Ji\e=C/;
p(r=0(51) g—(r=0)(4,j >E§EjEZ§*CK£T_€)Jt(T*E) = 0.

Since K7 " K EP = (rys; 1 )rr—a=Dpn(id) g=n(G0) Er KT K for all I,n as above the term
Y, n is equal to

r—l1

Yin =Y (1) <2> (rys; 1) T peldi) gmalid) (T ; a> EjK] 'K

a=n A A

ol ,i)+n(i,j)Sfa(i,j)7n(j.,i)EZ@EZ.nKi(T—l—")KjJt(Tflfn)Jr;D = 0.

Hence, A keeps the relation (3.15). Similarly, we can prove that A satisfies the relation (3.16).

Therefore, A is an algebra homomorphism. On the other hand, it is easy to see that
(A®id) A (z) = (id® A) A (z) for any = € w; ,(g)

and that ¢ is a homomorphism from w ;(g) to Q(r, s) and enjoys the counit axioms. This proves

T

wy

(g) is a bialgebra. O

Lemma 4.2 T is a weak antipode of the bialgebra wy (g).
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Proof The following relations hold

T(K)T(K;) = T(K)T(K:), T(K)T(K;) = T(K,)T(K,),
T(K,)T(K;) = T(K,)T(K;), T(K)T(K;)=T(K;)T(K,),
T T(K) = T(K), T NT(K;) = T(K,),
T NOT(K) = T(K,), T HT(K;) = T(K,),
T(E,)T(E;)=T(E;)T(E;), TF)T(F;)=T(F)T(F), if a;=

If F; is of type m — 1, then
T(E)T(K;) = —E; K J"2K;0m "2 = —p(8d) g~ G g ym=2 B, K, ™2
= (0 s~ O T(K)T(E).
If F; is of type t for 0 <t < m — 2, then

T(K)T(I)T(E)T(K;) = —K;J™ 2] B K, g™ 2K Jm 2
= —pl0d) g=(G) Jm=2)(+1) g ¢, ym—2

= p{80) =GP HIT(E).

The following relation can be proved in a similar way

’

T(K)T(J)'T(ENT(K;) = r~ 30 D) HT(E).

J

Similarly, we can prove
T(K)T(F) =~ W) s O OT(F)T(K;), T(K )T (F;) = r'#) s~ WD T(F)T(K;)

and
T(K;)T(J)'T(F)T(K;) = r~ W) s GOT ()T (Fy),

T(K)T(J)'T(F)T(K) = r$30 s~ BT ()T (F)

J J

if F; is of type t for 0 <t < m — 2. Moreover,
T(E))T(E;) — T(E)T(F)) = K;FjJ" 2B K, "~ — B K;J" 2K F; J™ 2
= J2m=2= G IR P B K — KB K F)
= 2R EK; — KB FK;)
T(K;) - T(K,;)
T — Si

= 61]

T also satisfies the quantum Serre relation. Indeed, suppose a;; = 2 and s =1 — a;;. We have

s . o
So-1(}) etiodDTESTE T (B
k=0 @
_ (_1)s+1J(m—2)(s+l) Z(_l)k <Z> e(i, 4, k)(ElK—Z)k(EJK—J)(EZKl)sfk
k=0 g
= (—1)S L m=D D) (L g Yo k) k()= (s=R) (i) gk isd ) + (5= k)3t

i



972 AI C R and YANG S L

S

(Z < > c(i mk)EijEf-k)f(jK; —0.

k=0
The argument for F; is similar. It follows that T can be extended to an anti-automorphism

of w] ,(g). Now, we define the convolution product in the bialgebra (wy ,(g), 1,1, A, €) as

(f #g)(@) = p(f + g) A (x)

for all f, g € Hom(wy ,(g), w; .(g9)) and = € w] (g). We have to prove that T satisfies the
antipode axioms such that id * 7' id = id and T*id*T = T'. In fact it can be proved as in!*4-16]
that T +id * T'(x) = T'(x) and id * T * id(x) = id(x) for any = € w] ;(g). Therefore, T' is a weak
antipode of w] ((g). O

Assume that w] . (g) is a Hopf algebra and there exists an algebra anti-morphism S : w] ,(g) —
wy ;(g). Then S must satisfy (S *id)(J) = pS(J) and S(J)J = 1 and J is invertible. It is im-
possible since J(Jm’1 — 1) = 0. The proof of the theorem is finished. O

Let J = L= LI W = wy (g)J and W, = w] (g)(1 — J). It is easy to sec that J
is a central 1demp0tent element and that w; (g) = W, s @ W, and W, = U, (g) as algebras
but not as Hopf algebras.

Example 4.1 W, ; = U, ,(g) as Hopf algebras if m = 2.
To see this, we have J = .J since m = 2. It is easy to see that

wTs(g) = Wr,s @ V_Vr,s

T7

as algebras. Note that W, ¢ is generated by E;J, F,J, K;J, K;J, K;J, K;J, and J subject to
the relations (3.8)—(3.11) and

Kj(BJ) =0 s= GBI K, Ky(BiJ) =r~ 9009 (B ) K, (4.11)
Kj(FJ) == 0O F DK, K(FJ) =r90 s S (F ) K, (4.12)
KiJ—K,J
(s )(E;T) = (F3 T)(Bid) = by — ————, (4.13)
17aij 1
— Q45 .. i . . .
Z(—1)k< ) J)_c(z,g,k)(EiJ)l WREI)E)E =0 if ay=2,i# 7], (4.14)
k=0 ?
1 Qijj 1
— Q45 .o i — . . .
Z(—l)’“< k J>c(umkxmk(m(mﬂ R0 i ag=2i#j  (4.15)
k=0 K
(E:J)(E;J) — (E; J)(EilJ) = (FiJ)(FjJ) — (F3J)(FiJ) =0 if a;; =0, (4.16)
where

c(i,j, k) = (Tlsfl)k(k = pk(3:4) g=RCid) £ .

Here J can be viewed as the identity of W, ;. At this point of view W, ; is a Hopf algebra. The
comultiplication A is
AEJ)=J® E;J+ E;J® K;,

ANFJ)=FJeJ+K,® FJ,
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NKJ) =K, J® KJ, NAKJ)=K;J®K;J,
AKJ) =K, JoK,J, AK,J)=K,J®K,lJ.

The counit € is

e(E;J) =¢e(F;J) =0,

e(KJ) =e(KJ) =1, e(K,J)=¢e(K,J)=1.

/
3

The antipode S is

S(EJ) = —(E;)K;, S(FJ)=—K,(F;J),
S(K;J) = K;J, S(KJ)=K;J,
S(K,J)=K,J, S(K;J)=K,J.

Let ¢ be the algebra morphism from U, s(g) to W, s, defined by

le)) = EiJ, ¢(fi)=FJ, (k) =K, k") =K,
Uk) = K0, k) = K J, (1) =J.

It is straightforward to check that v is a Hopf algebra isomorphism. O

5.

Remarks

In this paper a class of two-parameter weak Hopf algebras wy (g) corresponding to Borcherds-

Cartan matrix is constructed. One observation is possible to extend the construction to a quan-

tized superalgebra. All the two-parameter weak Hopf algebras given in this paper have non-

cocommutative coproducts. This implies existence of universal R-matrices that could give new

solutions of quantum Yang-Baxter equations. A future work is to investigate the form of such

R-matrices. We expect the expressions would not be that different from those of the original

Hopf algebra.

References

(1]

[2

[3]
[4]
[5]
[6]
[7]
(8]

[9]
(10]

(11]

DU Jie, PARSHALL B, WANG Jianpan. Two-parameter quantum linear groups and the hyperbolic invariance
of g-Schur algebras [J]. J. London Math. Soc. (2), 1991, 44(3): 420-436.

DOBREV V K, PARASHAR P. Duality for multiparametric quantum GL(n) [J]. J. Phys. A, 1993, 26(23):
6991-7002.

BERGERON N, GAO Yun, HU Naihong. Drinfel’d doubles and Lusztig’s symmetries of two-parameter
quantum groups [J]. J. Algebra, 2006, 301(1): 378-405.

BOHM G, NILL F, SZLACHANYI K. Weak Hopf algebras. I. Integral theory and C*-structure [J]. J. Algebra,
1999, 221(2): 385-438.

HAYASHI T. An algebra related to the fusion rules of Wess-Zumino-Witten models [J]. Lett. Math. Phys.,
1991, 22(4): 291-296.

YAMANOUCHI T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras
[J]. J. Algebra, 1994, 163(1): 9-50.

LI Fang. Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation [J]. J. Algebra,
1998, 208(1): 72-100.

YANG Shilin. Weak Hopf algebras corresponding to Cartan matrices [J]. J. Math. Phys., 2005, 46(7):
073502.

BORCHERDS R E. Generalised Kac-Moody algebras [J]. J. Algebra, 1988, 115(2): 501-512.

WU Zhixiang. A class of weak Hopf algebras related to a Borcherds-Cartan matrix [J]. J. Phys. A, 2006,
39(47): 14611-14626.

JANTZEN J C. Lectures on Quantum Group [M]. American Mathematical Society, Providence, RI, 1996.



